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Abstract 
We are exploring how models can use models of human 
perception and motor control to interact directly with 
interfaces.  This opens new issues. We present CogDriver, a 
cognitive driving model capable of performing a long-
duration autonomous driving task in a virtual simulation 
environment. This model, built using the ACT-R cognitive 
architecture and enhanced with robotic hands and eyes, 
supports the cognitive-perceptual-motor knowledge 
essential for simple human driving. It has two main strengths 
compared to other autonomous driving models: (a) it built 
upon human-observed driving behavior, incorporating error-
making and learning, and (b) it leverages a cognitive 
architecture to provide insights into psychological driving 
behavior. Compared to our previous version, this model 
shows improved endurance, maintaining its driving state for 
over 16 hours from Tucson to Las Vegas, even under 
nighttime conditions. The enhancements were realized 
through incorporating human-like driving knowledge 
representations, and actions. It now includes a model of error 
handling and several logical visual cue strategies. The 
model's predictions can match certain aspects of human 
behavior in fine detail, such as the number of course 
corrections, average speed, learning rate, and adaptation to 
low visibility conditions. This model demonstrates that 
(a) perception and action loops with fallback handling
provide a very accessible testbed for examining further
aspects of behavior and (b) the model-task combination
supports exploring aspects of human behavior that remain
missing from ACT-R.

Keywords: Cognitive autonomous driving; ACT-R 
cognitive architecture 

Introduction 
Current autonomous driving has focused on real-time 

simulation with artificial sensor systems (CITE). However, 
our approach through cognitive modeling provides the 
opportunity to add human factors until a human-like 
autonomous simulation is made. Since cognitive 
architectures (CA) can develop cognitive models of 
various psychological phenomena and tasks (Newell, 
1990), they also provide procedures and structures that 
align with human behavior, such as reaction times, error 

rates, and fMRI results (Anderson, 2007; Laird, 2019). In 
this study, we developed a human-like cognitive model that 
can perform an autonomous driving task in a virtual 
simulation environment. The model has two strengths 
compared to other autonomous driving models on similar 
tasks: 1) it built upon human-observed driving behavior, 
incorporating error-making and learning, and (2) it 
leverages cognitive architecture to provide insights into 
psychological driving behavior. 

CogDriver architecture is shown in figure1.

This CogDriver architecture represents a closed-loop 
system (Trapp, Schroll, Hamker, 2012) where cognitive 
reasoning (through production and declarative memory) 
interacts with perceptual and motor processes. It begins 
with the (a) ACT-R Cognitive Architecture, which serves 
as the foundation for building a cognitive model. This 
architecture is composed of a (a1) cognition layer with 
production memory, which encodes human subjects’ 
procedural knowledge for decision-making, actions, and 
directing attention to specific targets within the 
environment. And declarative memory, which stores 
subjects’ factual knowledge, retrieved visual information, 
and provides motor intuition to guide task execution. (a2) 
The Perceptual/Motor Layer includes a vision manager, 
which manages visual attention and perception by 
instructing the eyes to focus on specific locations in the 
environment. The visual system processes chunks of 
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information about an object's location in the "where" buffer 
and information about objects in the visual scene in the 
"what" buffer. The motor manager coordinates motor 
actions, such as steering and keypresses, based on 
instructions from the cognition layer. The cognition and 
perceptual/motor layers are tightly integrated. The central 
production system can reason about chunks of information 
stored in the visual buffers to guide behavior. In a driving 
context, this enables the model to move forward or steer 
based on position data retrieved from the visual buffer 
(Ritter et al., 2019). However, the ACT-R model is not 
complete with the restriction that interaction knowledge 
cannot work on unaltered tasks. In this work, we extend it 
to include new types of interaction knowledge and the 
capability to interact with all tasks that have a computer 
interface represented by a screen and can be interacted with 
using a keyboard and a mouse. 

To extend the interaction knowledge of the cognitive 
model, we use the (b) Interaction Management Layer 
which facilitates the synergy between visual and motor 
functions. This layer allows the cognitive model to process 
inputs and execute outputs through visual functions (e.g., 
whatIsOnScreen to identify visual patterns, whereIs to 
locate patterns, getMouseLocation to track the mouse's 
position) and motor functions (e.g., click to simulate mouse 
clicks, Keypress to replicate key presses, moveCursorTo to 
move the mouse to a location). These functions enable the 
system to interact directly with (c) unaltered simulation 
environment, using the screen’s bitmap to detect objects 
and respond accordingly. For example, the system analyzes 
pixels or symbols to identify objects and locations on the 
screen, guiding motor responses like steering or clicking. 
The integration of these components ensures the model can 
dynamically adapt to and interact with its environment in a 
human-like manner guided by the cognitive model. 
Compared to the previous cognitive driving model for the 
same simulation environment (Wu et al., 2023), the model 
has demonstrated improved endurance, maintaining its 
driving state for over 16 hours, even under dynamic 
changes in the simulation environment (from daytime to 
nighttime), achieved through incorporating human factors 
into the ACT-R model and interaction layer.  

The following section introduces the task, the model 
design and development, the model evaluation, and the 
implications in the field of autonomous driving. 
The Task 

Penn and Teller created the video game Desert Bus 
with the intention of making a statement about video games. 
The game is deliberately monotonous and lengthy, with the 
player driving a bus in real-time at a maximum speed of 45 
mph from Tucson, AZ to Las Vegas, NV.  Each leg takes 
360 miles to complete, or at least eight hours at maximum 
speed, and the bus continuously drifts to the right. If the 
player swerves off the road, the engine will stall, and they 
will need to start over from Tucson. The game has no 
virtual passengers or other cars on the road. Once the player 

completes the 360-mile journey, the screen fades to black, 
and they return to the starting point to play again 
indefinitely. At night, the road is dark. Figure 1 (c) provides 
a screenshot of the game available through Steam (there are 
other versions available now). 

This game offers the player a first-person view as they 
carry out tasks, and the surroundings change dynamically 
based on their actions. The specific edition that we use was 
created by Dinosaur Games and released by Gearbox 
Software, based on the unreleased "Smoke and Mirrors" 
Sega CD game. The game's driving environment, Desert 
Bus, was obtained from Steam 
(https://store.steampowered.com/app/638110/Desert_Bus
_VR/) and can be downloaded for free on Windows 
machines. It should be noted that the game supports both 
virtual reality (VR) and 2D (non-VR) environments. All 
testing was done in the non-VR environment although 
future work could expand support for virtual reality 
headsets. There were no alterations made to the game to 
support the model. 

Related Work 

Cognition Architecture and Cognitive Models 
To create a cognitive driving model, we bring a suite 

of tools rooted in cognitive architecture (CAs) (C. Breazeal, 
A. Edsinger, P. Fitzpatrick and B. Scassellati, 2001). CAs 
are computational frameworks designed to capture the 
invariant mechanisms of human cognition. These 
mechanisms include functions related to attention, control, 
learning, memory, adaptivity, perception, and action. 
Cognitive architectures propose a set of fixed mechanisms 
to model human behavior, functioning akin to agents and 
aiming for a unified representation of the mind. By using 
task-specific knowledge, these architectures not only 
simulate but also explain behavior through direct 
examination and real-time reasoning tracing. One 
representative cognitive architecture is ACT-R. ACT-R is 
a theory of simulating and understanding human cognition 
(Anderson, 2007; Ritter, Tehranchi, & Oury, 2019). Its 
theory is embodied in the ACT-R software, through which 
we can construct models that can store, retrieve, and 
process knowledge, as well as explain and predict 
performance (Anderson, 1996; Bothell, 2017). There are 
currently two kinds of knowledge representations in ACT-
R, and they are declarative knowledge and procedural 
knowledge. Declarative knowledge consists of chunks of 
memory (e.g., apple is a kind of fruit), while procedural 
knowledge performs basic operations, moves data among 
buffers, and identifies the next instructions to be executed 
(e.g., to submit your answer, you have to click the submit 
bottom). When the model is driving a bus in a first-person 
perspective, these pieces of information will contain 
information such as what visual items to look at and what 
tasks to do next. ACT-R is a cognitive architecture and a 



theory of simulating and understanding human cognition 
(Anderson, 2007; Ritter, Tehranchi, & Oury, 2019). Its 
theory is embodied in the ACT-R software, through which 
we can construct models that can store, retrieve, and 
process knowledge, as well as explain and predict 
performance (Bothell, 2017).   

ACT-R is not complete, like all models.  In this work 
we extend it to include new types of interaction knowledge 
and the capability to interact with all tasks that have a 
computer interface that is represented with a screen and 
that can be interacted with a keyboard and a mouse.  

The Architecture of Interaction 
Models interact with the world through their visual 

and motor systems. The interaction includes processing 
visual items presented (visual systems), pressing keys, and 
moving and clicking the mouse (motor systems).   

Specifically, the visual system holds chunks of 
information about an object's location in the "where" buffer 
and chunks of information about objects in the visual scene 
in the "what" buffer. A central production system can 
reason about and lead to behavior based on these chunks. 
For example, the driving model may move forward, or 
steer based on the position data retrieved from the visual 
buffer (Ritter et al., 2019). 

Models can interact with the simulation, but the 
approach we will use is to use the screen’s bitmap directly 
to find objects. Motor output can be put on the USB bus 
and appear as if a user at the keyboard typed characters or 
moved the mouse. In Table 2, we list previous models’ 
history of interaction using this approach. 

 
Table 2: Previous models history of interaction. 

Name of 
model 

Interaction 
tool 

Reference 

Eyes and 
Hands 

ESegman (Tehranchi & Ritter, 2017) 

Biased coin  JSegman (Tehranchi & Ritter, 2020) 
Spreadsheet  JSegman (Tehranchi & Ritter, 2020) 
Desertbus 1 JSegman (Schwartz et al., 2020) 
Heads and 
Tails 

VisiTor (Bagherzadehkhorasani  
& Tehranchi, 2022) 

Desertbus 2 
 
Desertbus 3 

VisiTor 
 
VisiTor 

(Wu, Bagherzadeh,  
& Ritter, 2023)  
(This paper) 

 
VisiTor (Bagherzadeh & Tehranchi, 2022) is a Python 

software package stored on a public GitHub that has been 
developed to provide simulated hands and eyes. It is 
comprised of two types of functions—motor and visual.  
The visual functions include “whatIsOnScreen”, which 
checks if certain visual patterns are present in the 
environment, "whereIs", which locates a pattern within a 
defined module, and "getMouseLocation", which retrieves 

the mouse's location.  The motor functions consist of 
"click", which imitates a single mouse click, "Keypress," 
which replicates the pressing a key, "moveCursorTo", 
which emulates mouse movement to a specific screen 
location, and "moveCursorToPattern", which replicates 
mouse movement to a specific visual pattern. 

CogDriver 
        This section starts with capturing intuition and 
domain knowledge from the human subjects, followed by 
the model structure and learning mechanism, and 
concludes by examining a model’s driving performance. 

Incorporating Human Factors into Model Design 
The model, built upon human factors distilled from the 
behavior of human subjects in driving simulations, 
incorporates how cognitive models are designed for human-
like driving simulations. Data collection... Data analysis, and 
how the cognitive models map the collected data. (to be 
continued, Siyu) 

Declarative Chunks 
The model has two types of chunks, and a total of 12 

declarative memories, which are working memories that 
tell the model to make the action based on the visual cues 
it saw. The first chunk is named “drive” and has two slots, 
“strategy” and “state”, with state having parameters as 
object items. Another chunk type is “encoding”, which has 
slots for the screen-x locations of the two visual cues and a 
deviation slot. 

Procedural Memories 

 
Figure NEW: Control loop of the model. 

 



To improve the model’s lack of performance in 
nighttime environments, the revised cognitive model 
marked improvements through several key architectural 
and behavioral areas. The most fundamental change 
involves the transition from a single-reference visual 
system (by monitoring the center yellow line) to a dual-
reference system that tracks both left and right white road 
lines. These road lines both create a greater contrast 
against the road’s pavement during the night and allow 
for greater control over steering outputs depending on 
where the bus is located within the road. These 
modifications can be seen with the updated production 
rules named “whereisdanger” and “whereiscenter”. 

Talk about FDUCS book here.  
Colors at lower illumination lose hue and cause road 

lines to blend into one another. For this reason, VisiTor 
naturally recognizes the color white, with a higher 
contrast ratio, than yellow. [Add in the human centered 
factor to this] 

Two additional procedures were added to make the 
model drive more like a human. With some additional 
error handling and continuous operation mechanisms, the 
“continue-cycle” and “handle-missing-cue" production 
ensure the model maintains forward progress even when 
visual cues are temporarily lost.  

More significant enhancements involve the model’s 
motor control system, which now includes both long and 
short duration key presses for a more nuanced vehicle 
control experience. Demonstrated in the “consider-ahead” 
production, deviations from the left road line of more than 
300 pixels now result in a “short-keypress” which keeps 
the model in the right road lane.   

Using the knowledge found from Foundations for 
Designing User Centered Systems [FDUCS citation], 
transitioning from centerline tracking to edge-line 
detection would most likely significantly improve 
nighttime performance, as white edge lines maintain 
better visibility in low-light conditions than yellow. 

This model uses an explicit goal state to control the 
model. It contained 13 production rules and now contains 
an additional 2 which significantly advance the model’s 
autonomous longevity through those added procedures. 
Table 3 lists the high-level descriptions of the steps the 
model performs and the corresponding production rules. 

Step 4 handles missing cues by adding error recovery 
by providing a fallback mechanism for unclear or 
undetectable road lines. It also ensures the model does not 
halt if visual information is not immediately found when 
started. Finally, this procedure bridges the gap between 
step 3 and 5 by providing an alternative path when “where-
is-danger" and “where-is-center" can’t find cues.  

Step 7 ensures the model always has a valid state 
transition from the end of the action sequence to the 
beginning of the perception sequence. “Continue-cycle” 
prevents dead-end states where no production can fire due 
to “consider-steer" not firing. Step 7 allows for a 

reassessment of the current environment, meaning the 
model no longer freezes if it is unable to find a road line 
during the nighttime environment at around 8 hours into 
the game. 

 
Table 3: High Level Description of the Steps and the 

Production Rules.  Remove fill 

High level descriptions of 
steps 

Corresponding 
productions 

1. When it detects a start 
visual cue, attend it, and 
press the “W” key using the 
manual buffer 

Go 
PerceiveEnvironment 
Move-attention 
Ahead 

2. Clear the visual buffer and 
attend to the bus location 

Recheck-environment 
Danger 
Finding-danger 
Move-attention-  
   danger 

3. Calculate the bus 
deviation from the center 
lane 

Where-is-danger 
Where-is-center 
Calculate-deviation 

4. Checks if both cues are 
missing and continues to 
move forward if true 

Handle-missing-cue 

5. Use the manual buffer by 
pressing “w” if the deviation 
is less than 200 pixels 

Consider-ahead 

6. Clear the manual buffer if 
the deviation > 200 pixels. 
Using the manual buffer, 
align the bus by pressing the 
key for 6 seconds. 

Consider-steer 
 

7. Sets state to perceive and 
resets goals 

Continue-cycle 

The Mechanism of Interaction 
Here we can talk in details on how the extended 

Visitor help ACT-R model interacts with the 
environment. Most of the previous wrote parts can be 
reused here.  

This research advances the capabilities of cognitive 
modeling for extended driving tasks by developing 
enhancements to the model created by Schwartz et al. 
(2020). [Desertbus 2] built on ACT-R7's architecture, 
utilizing an enhanced version of the Perceptual-Motor 
module (MCL). This was done by creating VisiTor 
(Bagherzadeh & Tehranchi, 2022). VisiTor functions as a 
vision manager tool that receives motor commands from 
the ACT-R PM module and sends them to the 
environment through an Emacs/slime link. By using this 
tool, ACT-R can engage with any environment while 



maintaining operations that are as similar as possible to 
those of the user. When visual patterns are detected, 
ACT-R executes production rules that control the bus 
through a combination of continuous forward movements 
(through the “W” key) and steering controls (the “A” 
key).  

ACT-R instructs VisiTor to scan the screen for 
particular pixel patterns that activate a production rule to 
initiate the program. As opposed to previous iterations, 
ACT-R now detects both left and right road lines, of which, 
coordinates are sent to the Emacs/slime link to initiate the 
driving productions. ACT-R productions still include only 
a left and forward steering control, since the bus has a 
wheel misalignment causing it to always steer right. The 
primary control loop begins with a continuous forward 
keep press via “W”, while simultaneously monitoring the 
deviations between both coordinates from the road lines. 
The model calculates these deviations by measuring the 
distance between left road line (DrivingCueDanger.png) 
and right road line (drivingCueTest.png). When this 
deviation exceeds 300 pixels, indicating the bus is drifting 
to the right, the model runs a short keep press of “A” to 
steer the bus to the left.  

To undertake this task, VisiTor  requires one minor 
extension. [Desertbus 3] now incorporates both short and 
long-duration key presses, allowing for specific control 
based on deviation thresholds. To support extending the 
overall driving duration to more than 4 hours, we 
implemented several key enhancements to ACT-R 
including improved visual object processing, more 
duration-based motor commands, and error handling and 
logging mechanisms. 

With added error logging, handling, and a 
continuously looping event procedure, the model 
successfully completes the goal of creating the longest 
driving cognitive model. While the model successfully 
completed this extended task, its behavior revealed new 
insights into cognitive modeling, particularly regarding 
sustained driving performance and decision-making during 
changing environmental conditions. 

Model Performance Evaluation 
The updated model’s design relies on two improved 

aspects: the cognitive architecture and behavioral 
components. 

The experiment involved running the added 
behavioral factors to assess its performance and collect 
ACT-R output data using the new error handling and 
complementary mechanisms.  

The introduction of the “handle-missing-cue" 
production and dual reference visual cue systems allowed 
the model to maintain operation even when visual cues 
become temporarily out of sight. Furthermore, the 
improvements made to the model allowed the bus to drive 
at night-time for the first time.  

As seen in Figure 4, the screenshot shows the bus 
operating at low light conditions with only headlights 
illuminating the road. Checking for two reference images 
instead of one allows the model to compensate for either 
road line being too dim or undetectable. In Figure 4, this is 
shown by the headlights slightly illuminating the right side 
of the road more than the other. 

 
Figure 4: Screenshot of first nighttime test successfully 

working. 

As seen in Table 5, The ACT-R output data revealed 
that the total decision-making time the model took to detect 
the first visual cue to action execution was 0.450 seconds. 
This is an improvement of 0.45 seconds from the previous 
model, which slowly makes the model’s reaction time 
equivalent to the average of a human, which is around 250 
milliseconds. 

“On the order of hours, we will see the model will 
outperform humans. This allows the model to accomplish 
a task in driving the bus that surpasses human capability, 
as it does not experience fatigue or mistakes (Gunzelmann, 
Moore, Salvucci, & Gluck, 2011).” (Wu et al., 2023). At 
this point, the bus can now reliably drive in little to no light 
nighttime conditions, and at this point, was ready to drive 
from Tucson to Las Vegas for the entire 360-mile journey. 

 
Table 5: UPDATED Model running output 

CL-USER>  (run 10)  
0.000  GOAL           SET-BUFFER-CHUNK GOAL GOER NIL 
0.000  VISION     SET-BUFFER-CHUNK VISUAL-LOCATION CHUNKO NIL 
0.050  PROCEDURAL     PRODUCTION-FIRED GO 
Ready to go  
0.100  PROCEDURAL     PRODUCTION-FIRED CONTINUE-CYCLE 
Continuing cycle – choose new strategy 
0.150  PROCEDURAL     PRODUCTION-FIRED DANGER 
0.200  PROCEDURAL     PRODUCTION-FIRED FINDING DANGER 
0.200  VISION     SET-BUFFER-CHUNK VISUAL-LOCATION CHUNKO 
0.335  VISION     SET-BUFFER-CHUNK VISUAL CHUNK2 
0.385  PROCEDURAL     PRODUCTION-FIRED MOVE-ATTENTION-DANGER 
0.435  VISION     SET-BUFFER-CHUNK WHEREISDANGER 
Executing command: [Python file directory] 
Python script error output: [Returns blank if successful] 
Full path being searched: [Visual cue #1 file directory] 
File not found: [Output directory if file not found] 
File found: [Output directory when file is found] 
Pattern found at: (497.5, 671.0) 
Python script exit code: 0 
0.470  VISION         SET-BUFFER-CHUNK VISUAL CHUNK3 
0.635  IMAGINAL       SET-BUFFER-CHUNK-FROM-SPEC IMAGINAL 
0.685  PROCEDURAL     PRODUCTION-FIRED WHEREISCENTER 
Executing command: [Python file directory] 
Python script error output: [Returns blank if successful] 
Full path being searched: [Visual cue #2 file directory] 
File not found: [Output directory if file not found] 
File found: [Output directory when file is found] 
Pattern found at: (1344.5, 732.5) 
Python script exit code: 0 
0.785   VISION        PRODUCTION-FIRED CALCULATE-DEVIATION 
0.785   VISION.       PRODUCTION-FIRED CONSIDER-AHEAD 
Decision made: (COND ((= 497.5 -1) MOVE FORWARD        ((= 1344.5 -1) STEER LEFT        ((> 847.0 300) (T move forward) 



Results 
As with any cognitive model, the results vary on a 

case-by-case basis. After trialing the model by running the 
bus in the middle of the night, a second test was run from 
the game’s start to finish. At approximately 8 hours of 
driving, the game’s night cycle has already started. It is at 
this time in which the game has yet to turn on the bus's 
headlights and the lack of sunlight causes the model to be 
unable to distinguish the difference between yellow and 
white road lines due to how similar they look.  

Because the model relies on the rightmost white road 
line to steer left and stay centered, the middle yellow road 
line is mistakenly taken as the rightmost whenever it 
crosses over the yellow median. Around this time, the bus 
enters the oncoming lane and is unable to steer back, 
resulting in the bus steering too far into the left dirt 
shoulder and ending the game. Figure 6 shows a 
comparison between the yellow and white road lines after 
8 hours of gameplay. 

Philosophy of Software Design Ch. 20 Measure talks 
about how the two best ways to solve this include a coded 
approach or a human centered approach. Because of this, 
the model is not to blame for making such a mistake. After 
hours of driving and a low visibility road environment, 
human drivers may mistake which road line is which. Two 
solutions to such a problem were to either create a “short 
term memory” model that remembers the approximate last 
location the rightmost white line was at. A second, and 
albeit easier solution, was to always keep the model in the 
correct road lane. 

The final cognitive model significantly improves the 
driving behaviors of all previous model versions. The core 
enhancements to achieve this included a continue-cycle 
procedure which reruns the model regardless of failed 
visual cue operations, and a variable-duration steering 
system that mimics human keystroke actuation disparities 
and adjustments when steering the bus. The model’s 
production cycle consistently executes in 0.45 seconds 
from visual detection to action, demonstrating a 
streamlined stability regardless of environmental 
differences. To show this, the new production code 
demonstrates more minute steering to the left which 
continues at full throttle forwards. Most players drive as 
fast as possible while tapping left and right steering 
controls (Wu, et al., 2023). 

The introduction of the ‘my-short-keypress' function 
represents a more human-like driving behavior that makes 
it easier for the model to differentiate yellow from white 
road lines. Instead of relying solely on continuous 
steering inputs, the model now makes brief, corrective 
adjustments when steering left. 

Testing the model revealed that the bus could now be 
driven for the entire 360-mile distance. So far, the model 
has been able to achieve one point after driving for 18 
hours and 30 minutes at an average speed of 20 miles per. 

While this is lower than the busses top speed of 45 miles 
per hour, future adjustments and enhancements to the 
model’s visual cue recognition will naturally make the 
bus drive faster, since the model always move forward 
after successfully steering left. 

Discussion  
The aim of this study was to employ ACT-R 7 and its 
architecture of interaction to successfully complete a 
demanding cognitive modeling task. The model runs for an 
average of 18 and a half hours, with slower versions running 
more than 24 hours. 

Instead of changing the model’s procedural 
framework or adding unnecessary functions to VisiTor, 
addressing the problem through a human-centered lens 
provides valuable insights for autonomous vehicle design 
from computational cognitive perspectives.  

The implementation of dual-reference visual tracking 
and adaptive error handling mechanisms offers a blueprint 
for autonomous vehicle perception systems. Current 
autonomous vehicle algorithms suffer from poor visibility 
conditions and low light environments. Our model shows 
one way in which this may happen and additionally 
demonstrates how cognitive architectures can maintain 
reliable performance while adapting to environmental 
changes. 

Conclusions 

Contribution 
CogDriver makes a leap forward in developing an 

autonomous driving cognitive model. Adding human 
behaviors to the model through cognitive architecture is 
achieved by adding behavioral error making and learning 
improvements to the ACT-R model. This is demonstrated 
by the model’s maintained 18 hour driving record and 
was achieved by adding human-like driving knowledge 
representations, error handling mechanisms, and new 
visual cues. This improvement showcases the capability 
to establish human behavioral models by examining 
human perception, action loops, and fallback procedures.  

These contributions advance both autonomous 
driving research and cognitive modeling, showing how 
incorporating human factors and psychological insights 
can improve the performance and reliability of 
autonomous systems, particularly in challenging 
conditions that have traditionally been difficult for 
cognitive models to handle. 

Limitations and future work 
However, the model’s performance during the 

transition to nighttime conditions reveals limitations. 
While successfully navigating most nighttime conditions, 
the model encounters difficulties when yellow and white 
road lines are indistinguishable around 8 hours into the 



day-night cycle. While circumventing this problem by 
driving the bus in the correct lane solves this, further 
development in the spatial memory system of the model 
would aid edge cases in which the bus is too far to the left 
side of the road 

There are still limitations with the central modules in 
this environment. These limitations include the lack of 
consideration for physiological factors such as fatigue or 
decreasing correction rates over time. In a study by 
Schwartz et al. (2020), it was suggested that incorporating 
physiology with ACT-R could make the model more 
realistic. We agree with this point and add that future work 
should test the compound effects of fatigue and learning 
rate on the model (Wu, et al., 2023). 

This platform, ACT-R + VisiTor playing Drive the 
Bus provides an excellent platform for studying the 
interaction of vision, attention, errors, and fatigue. It is a 
more naturalistic task than the PsychoMotor Vigilance task 
(PVT, Dinges & Powell, 1985).  We can now go and insert 
an existing fatigue model (Gunzelmann, Gross, Gluck, & 
Dinges, 2009), and examine fatigued driving (e.g., 
Gunzelmann, Moore, Salvucci, & Gluck, 2011), visual 
attention, the need for micuration, and modeling the details 
of interaction. 

We could gain understanding about how long-term 
and repetitive physical activities, like driving a bus for an 
extended period, affect human performance. It remains to 
be seen if this task is more like the PVT or like motor 
control (Bolkhovsky, Ritter, Chon, Qin, 2018). This task 
would also allow us to determine whether psychological 
factors could potentially harm or the increasing of learning 
rate due to the practice would enhance driving skills. We 
could also introduce additional variables, such as caffeine 
consumption, to examine their combined impact. 
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