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ABSTRACT: We introduce an extension to an architecture-independent tool (VISTA) for creating displays of cognitive
model behavior, the Categorical Data Display (CaDaDis). Our display offers several views of categorical data. It
includes a standard Pert Chart showing tasks by category (or resource), a Nonstandard Pert Chart that shows the
temporal dependencies, and a Gantt chart that helps show occurrences of agent events along a time line. Perhaps most
usefully, it can display categorical and numeric data generated by models as they run. CaDaDis can be used by different
cognitive architectures because it has a general interface and creates its displays based on structured messages across a
network socket. Its use is illustrated with three, domain-distinct Soar and ACT-R models.

1. Introduction

Textual traces from cognitive models are often considered
unhelpful by observers trying to understand them, and these
traces are essentially unintelligible to non-programmers.
Modelers and subject matter experts want to know the
structure of models as well as how they work [1, 2]. One
approach that has been relatively well received is to provide
a graphic representation of model’s internal processing and
behavior. Where this has been done, observers have at least
thought they understood the models more, and in some
cases have seen and learned new things about their models.

We present a general tool for displaying categorical data
generated by cognitive models and Al agents. It can be
used by multiple agent and cognitive architectures to
display their internal processing. It is based on a no-cost
toolkit and implemented in a widely used programming
language and should help many models to be understood.
The display tool is designed to support the reuse that
Newell [3] referred to in his book, in this case by helping
models be understood and by being used itself in multiple
applications.

We start by describing several displays that have inspired
us and provide lessons for our design. We provide example

displays created quickly to work with Soar and ACT-R.
These displays helped us understand the models we did
not write ourselves, and show the types of knowledge that
can be gleaned from models using categorical displays of
their internal processing. We hope that the reader ends
up inspired to create such displays for their model, and
that they use our system, CaDaDis.

2. Review of Previous Systems

A wide range of graphical displays have been used by
cognitive models. Not every model and not every
cognitive architecture has had one, but the displays that
have been available appear to help explain models. We
examine here several of the displays to show the
processing within cognitive models to frame a set of
lessons for the design of our tool.

2.1 CPM-GOMS

Gray, John, and Atwood [4] created a task analysis in
CPM-GOMS (Critical Path Method/Cognitive-
Perceptual-Motor GOMS) for a new and old telephone
workstation. They used a modified Pert Chart to
represent the sub-tasks and their dependencies. The tasks
were aligned by the type of resource they used (voice-
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input, visual-input, cognition, and motor output). The
modified Pert Chart gave a critical path analysis that
allowed estimating the total task time. The displays were
created by hand in Microsoft Project, and represented the
GOMS model's predictions and interaction.

The displays, while not fully released because they included
proprietary data, were used in presentations and papers to
explain the process of the model's development, to illustrate
the behavior, to debug the models, and to compute the time
per task on the new and old workstations (the new
workstation was millions of dollars more expensive when
the users' task time was included). While the displays were
useful, creation of the displays by hand was time
consuming and slightly error-prone.

This work illustrated several of the uses of model displays,
including the creation and debugging of the model, as well
as the important role such displays can play in presenting
the model to a variety of audiences. A general display for
cognitive models should help with creating models, help
with debugging models, and provide displays that can be
included in papers and presentations to help explain the
models, including conference tutorials.

2.2 APEX

APEX [5] is a tool to evaluate interfaces. It has been
extended to have its models and predictions implement the
CPM-GOMS architecture [6]. It automatically generates
pictorial representations of the actions and their
dependencies. These displays have been used extensively
in tutorials [7].

APEX showed that automatic displays of the PERT charts
could be created, and provided partial answers to the
interface needs, including scrolling displays for models
with more actions than can fit in a simple display window.
This display has been successful enough that a version of it
has been included in the ACT-R architecture.

2.3 The DSI and the TSI

The Developmental Soar Interface (DSI) was created to
support model creation, debugging, and presentations in
Soar 4 [8]. It provided a graphical trace for any Soar model
of the problem spaces, states, and operators and their
emergent temporal structure. A display of the active states
and operators and their problem spaces were used to create
a video [9] about Soar. More advanced displays of the
operators were used to show which actions matched with
human data. These displays showed the cyclical nature of a
Soar model [10], and also where learning occurred within a
task [11]. An example is shown in Figure 2.1.
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Figure 2.1 Example operator trace from the DSI, a plot
generated in S-Plus (Taken from Ritter and Bibby [11]).

Loading and running several models in the DSI showed
that Soar models did not have the control structure that
had been expoused in Newell's book [3], that of search
within problem spaces — the models typically did search
across problem spaces, or did little search at all [8, 12].

The Tcl/Tk Soar Interface (TSI) [13] provides multiple
views of the working memory and decision processes of a
Soar agent, including a semi-graphical trace of the goal
stack and the operators in a Soar model. Like the DSI, it
works with all models, is a great aid for teaching, and is
useful for novice Soar programmers. Its displays,
however, have not often been used in presentations,
perhaps because they are mainly textual and are
somewhat dense graphically.

Both of these systems provide further examples that
graphical displays of the models and of their behavior can
be helpful to a wide range of users. They also both show
that displays can be independent of models.

2.4 Connectionist Modeling Tools

The connectionist model community initially had rather
poor interfaces that would print out all of the nodes each
epoch (e.g., the early PDP toolkits). But the users could
at least see the processing of their model. The graphic
displays that came later (e.g., the PDP++ toolkit, [14])
were no doubt a major contributor to the ease of use and
uptake of this type of model. Later displays, with their
color and nice design even created at times, we suggest, a
sense of enjoyment in modeling that has not often been
experienced with symbolic models. The availability of



displays in this area has to be acknowledged as a partial
contributor to their popularity and wide use.

2.5 Display Tools and Communication Media Between
Models and Displays

Early displays of models were typically implemented
within the same process as the models themselves. The
DSI, for example, and APEX, we believe, use this
approach. Some users have complained because model
displays take time away from the processor running the
model, slowing it down [12]. This approach is also less
useful where models have been created in systems that do
not provide good, fast, easy to use, portable approaches to
creating displays and interfaces. Increasingly, Java and
Tcl/Tk have been used to create interfaces for models that
run in separate processes or on separate machines. These
systems have demonstrated that there is value in separating
the display from the running model, and the latest versions
of the socket utilities have proved more reliable, portable,
and easy to use than previous versions [15]. Thus, model
displays need a way to create displays and a way for models
to communicate with the displays.

Earlier work exploring how to create model displays [13]
concluded that it would be difficult to create a completely
universal model display. A general interface could be
created, but additional displays would likely be required,
and a useful approach would be to provide a toolkit and
examples that could be customized.

2.6 General Graphic Tools

If only one small display is needed and reuse is not possible
nor desired, Remote Method Invocation (RMI) [16] and the
Model-View-Controller (MVC) architecture provided by
Swing [17] are simpler. Using RMI would require the
agent to know how to parse Java messages, and new
displays will have to be created. This approach of single
displays does not provide a general design or particularly
reusable code, and thus does not provide support for
accumulating a set of useful displays for models.

2.7 Suggestions for Categorical Data Displays

These display tools reviewed here suggest that including a
graphical display of model behavior has several uses,
including developing the model, debugging the model,
explaining the models to novice programmers as well as
interested non-programmers, and providing further insights
into the models even for their developers.

Many of the displays reviewed here could be supported by a
categorical data display, that is, a display that has time as its
X-axis and categories as its Y-axis. These displays would

go some way to helping answer the process questions that
users ask of models [1, 2].

The most complex objects being displayed are in the
CPM-GOMS displays, where Pert- and Gantt-type
objects were used, with names, start times, end times, and
durations. Many other displays could use simpler
graphical objects. With these lessons in mind, we created
a general graphical tracing system for cognitive models.

3. Design

We have created a general tool for displaying categorical
data generated by cognitive models. The system is
implemented in Java and VISTA (which we explain
below). We provide a general rational for the design
first, and then explain in order of increasing complexity
the displays that can be created.

3.1 The Use of Java and VISTA

We chose to create these displays in Java because it is
portable and increasingly used to create displays for
cognitive models (e.g., ACT-R's new interface, and
JACK's eye and hand: [18]). We used the Visualization
Toolkit for Agents toolkit (VISTA) [19] because it
supports creating displays and a variety of
communication channels between the display and
cognitive models. VISTA is supported and freely
available from Soar Technology, and some of us also
used a VISTA tutorial web site (acs.ist.psu.edu/vista) to
learn VISTA.

VISTA facilitates the creation of agent visualization
applications. This toolkit provides an infrastructure for
communication between agents and VISTA enabled
applications. Using this communication channel, agents
can convey changes to their internal state to a listening
VISTA enabled application, which then updates its
display to reflect these changes. The VISTA toolkit also
provides the ability to record and playback agent activity
[20]. Importantly it includes useful Java objects and
methods for creating displays of cognitive models
(including the ability to parse and deparse objects
communicated), as well as a series of examples that can
be modified and reused. Using VISTA as the
infrastructure for communication between a cognitive
architecture and a visualization tool eliminates a
significant amount of development time and effort.
VISTA proves to be well designed, easy to use, and
stable.

VISTA also provides classes to represent some of the
major categories of objects based on an analysis of agent
systems, including goals, models of other agents, events,



time, and so on, along with corresponding sample display
methods. These objects are not directly available in Swing
or other Java packages. Also, VISTA's connection manager
(via SoarComm) offers some remote discovery capabilities,
communication utilities, and usability additions that have
often been built to support model/interface
communications.

3.2 CaDaDis Design

A VISTA window displays the objects traced in the Pert or
Gantt view. All views are generated in parallel and a view
menu allows the user to toggle between views. Advanced
options will be added as this project continues.

Each view consists of a scrollable canvas for graphical
objects. Objects represent actions of the agent and are
specified as labeled rectangles. The objects each consist of
a unique id, an associated code (operator name, etc.), start
and end times for execution duration, and an optional list of
constraints. Currently, a default value of 50 ms is being
used for Soar objects in the Gantt view. This is our
assessed time for a decision cycle in the model’s run.
Constraints are displayed as lines between rectangles. They
represent dependencies for the target action. If constraints
are not specified, a default line can be drawn from the
previous action’s rectangle.

A useful design guideline when developing distributed
systems is to keep the interface between the client and the
server simple. It is important to realize that exposing the
visualization client’s objects and their methods can tightly
couple the client and the cognitive architecture. For
complex displays, this level of dependency can be
necessary and beneficial, and VISTA supports such
complex displays. However, if the designer is not careful
strong dependencies can make the system difficult to
maintain, and, for simple displays, provide no added
benefit. As a result, when designing CaDaDis the classes
exposed to the cognitive architecture were minimized.

Our only public datatype is a CaDaDis Object
(CDDObject). It can be used to represent any event in the
execution of the model whether it is the firing of an
operator or the entrance into a new problem space or state.
The generality afforded by this implementation provides
flexibility to the users of this tool.

3.3 Simple Charts

A simple version of the information can be plotted. This
may require adding a bit of code, but would be quite helpful
to chart Soar operators in order for a model. Figure 3.1
shows a CaDaDis display of operator firings for the
Waterjug demo included with the Soar 8 distribution. The
model has four operators (seen on the left as codes) and
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Figure 3.1 A display of a Soar model (Waterjug) with a
categorical display of the operators as they are executed.

each point on the right side represents the firing of the
corresponding operator. Creating this display required
CaDaDis and an included Soar-Tcl interface file. This
file contains generic Soar rules used to generate data such
as states and operators from any Soar model.

3.4 Pert Charts

A Pert Chart is a display used to do task analysis. It is
used to estimate the time to completion for a particular
task [21]. Based on dependencies of actions, subtasks
can be started earlier if they are independent. Therefore,
the end result of the Pert Chart is the realization of the
critical path of a task—what is the sequence of actions to
complete a task in the least amount of time?

There are two variations on the Pert Chart in CaDaDis.
The first is the Standard Pert Chart implementation. The
Standard Pert Chart is a simple drawing canvas that
contains a set of rectangles representing tasks and arrows
representing dependencies between tasks. The standard
view is shown in Figure 3.2. Once the model has
completed, the view can adjust to show the critical path.

The other is based on John’s CPM/GOMS Pert Chart, a
Nonstandard Pert Chart, where codes are located on the
left-hand side of the window. Objects are drawn in the
row of their category. An example is shown in Figure
3.3, it has two drawing canvases. The left canvas is used
to hold the codes. The right canvas contains the
rectangles and dependency lines.
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Figure 3.2 A Standard Pert conceptualization.
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Figure 3.3 A Nonstandard Pert conceptualization.
3.5 Gantt Chart

A Gantt Chart (Figure 3.4) uses a time line to show
execution time for a particular action. The codes are on the
left side as tasks in the Nonstandard Pert Chart and
rectangles are on the right canvas. The size of the rectangle
is based on time of execution with respect to the time line.

3.6 Interface Commands

These displays provide enough functionality that users will
want to take advantage of their features, but will need
support to do so. Table 3.1 lists several of the
manipulations users can perform to their displays.

3.7 CaDaDis Messages

VISTA provides built-in data objects. They are the Goal,
which can be used to represent a model’s goal, and the
Milestone, which is an event that a model has completed.
The Goal object uses a string to represent the goal’s name.
The Milestone object uses a string for the milestone name
and a float for the time the milestone was reached. For the
purposes of CaDaDis, goals and milestones are still too
specific. A super object (CDDODbject) was created as a peer
to VISTA’s built-in data objects. It encompasses all of the
functionality of a Goal or a Milestone while providing more
options supporting other data possibilities.
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Figure 3.4 A Gantt Chart conceptualization.

Table 3.1 Interface actions that will be (*) or are
supported in the display.

e Rescale x and y, and the objects *

e Choose fields to display (i.e., hide some fields to
create abstract display, or to highlight the
remaining fields) *

e  Print the figure

e Save the figure to file, both as a jpeg and
semantically

e Change the type of display and provide a best-
effort display under the new type

e Provide information about CaDaDis and the type
of display

e  Provide help functions*

e Set display options, such as autoscroll and absorb
new codes (or generate an error)

VISTA objects, like our CDDObject, are created with
messages passed on behalf of the model. The format for
a CDDObject message is shown in Table 3.2. This
message has optional parts (shown in parentheses) that
alter the types of messages created. The message creates
a new data object unique id, with tag as its common
name and code as the action type, and a start start time
and end end time. The optional min-start and min-end
times are used to determine the model’s critical path.
The constraint-list, when provided, determines how
action dependencies are drawn.

Table 3.2 CaDaDis messages for object creation.

root create CDDObject

unique_id
code

T

S S tag

S

F start (F min-start)
F

(

end (F min-end)
S constraint list)

4. Example Uses

We present three examples to illustrate CaDaDis. The
first example displays operator applications. It uses an
example Soar model in the Nonstandard Pert View,
which is easy to create, the operator names are placed in
the left pane and large or small boxes are drawn along the
line corresponding to the operator that fires in the right
pane. Presented in all the figures are scaled-down
versions of the Nonstandard Pert. As a default, depen-
dencies are specified as the box representing the last
operator or production that fired. A portion of this display
is shown in Figure 4.1.
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Figure 4.1 Unsolvable 8 puzzle display.

The displays of behavior in the 8-puzzle showed that
cyclical behavior can arise in several ways, and that when it
is visible those cycles can help understand and troubleshoot
models. The 8-puzzle had an initial configuration that was
unsolvable. The configuration provided us with a desired
behavior. This would have been less apparent in a trace,
but the unstable and cyclical pattern of an unsolvable tile
configuration was visible in the display. We also found that
the direction of moves display (not shown, but N, S, E, and
W were the categories), was not useful. This suggests that
multiple displays may be required to highlight a model's
behavior.

The second example comes from a run of dTank
(acs.ist.psu.edu/dTank). dTank is an environment that
allows models to play in a simple tank game. In this
example, the CaDaDis displays the accessing operators of a
simple Soar dTank model. Once again, dependencies are
specified as the previously entered state.

Our dTank trace (Figure 4.2) comes from a basic tank
agent. This display contains the portion of the run where
the model has just found an opponent to attack. The
horizontal portion of the trace represents the idle period of
the tank waiting for something to come into view. The first
set of spikes show the recognition of the opponent. The
waiting period is waiting for more perceptions to come in.
The decision to attack is made and shown with the
subsequent spikes in the trace. This is a nice illustration of
agent behavior in the dTank environment.
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Figure 4.2 A selection an agent trace in dTank.

CaDaDis can be used by multiple cognitive architectures
thanks to the architecture independence of VISTA. The
final example is from a model written in ACT-R. It
simply pulls production names from the model as they
fire. The instance of a production firing is represented by
a dot in the graph. The ACT-R model traced in Figure
4.3 is a Serial Subtraction model being revised by
Andrew Reifers [22]. The model starts with a four-digit
number and continually subtracts seven. This behavior is
naturally cyclical as shown below. The productions
consist of checking for the need to borrow, the act of
borrowing, and simple subtraction. This portion of the
trace illustrates some cycles where the subtraction was
simple but ends with a need to borrow from the hundreds
position, hence the downward spike. This display uses
CaDaDis and a lisp file addition to ACT-R (now included
with CaDaDis).

5. Conclusions

In addition to providing a useful tool for understanding
cognitive models and providing a documented and
reusable display in VISTA, creating CaDaDis provides
several lessons for cognitive modeling and behavior
representation. These lessons can be grouped into
lessons about our CaDaDis system and the models
examined, about VISTA as a tool, and for this process.
We take them up in turn.

5.1 Lessons about CaDaDis

Preliminary results show that CaDaDis is successful in
showing model behavior. It can create unique displays
showing information with more clarity than textual
traces. It provides nice displays of model activity in two
different cognitive architectures. Furthermore, it can
prove useful in debugging cognitive models by analyzing
rule usage, whether certain operators fire, and so on.
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Figure 4.3 Portion of ACT-R Serial Subtraction Model.



The CaDaDis displays included here have become easy to
create because creating new displays can be done by
modifying previous examples. The displays work with
multiple architectures and provide multiple views. They
need to be expanded to include more of the functionality in
Table 3.1.

To realize their potential, they need to be reused by others.
To this end we have put these displays on the VISTA
tutorial web site (acs.ist.psu.edu/vista). The displays here
created in CaDaDis suggest that the ability to help models
explain their behavior can be significantly enhanced with
CaDaDis and the VISTA toolkit.

For many applications of VISTA, CaDaDis can serve as a
library, providing much of the additional graphics systems
will need. For systems that need more complex graphics, or
that need to modify the displays we have created, the source
code for the graphic displays that make up CaDaDis have
been designed to be extended and are documented
(acs.ist.psu.edu/CaDaDis). We thus find that we will need
libraries of graphical displays for cognitive models as much
as we need libraries of model components. It may be
possible, however, that interfaces are more reusable.

5.2 Lessons about VISTA

We found that Vista needed to be extended to suit this
project. The source code and manual were available, so we
saw how to do this. VISTA does provide a base library for
2d-drawing that can be taken advantage of. However, in
the example application included in the VISTA distribution,
there were no classes related to the specific categorical
display objects required for CaDaDis.

The creation of CaDaDis also provides a chance to reflect
on the VISTA toolkit as it is used externally. We found
that VISTA requires some overhead to learn and to create
displays, but provides a worthwhile framework for creating
these displays and provides a productive approach to reuse.

In summary, VISTA is a well-designed, easy to use, and
very powerful tool. Its use can reduce the development
time of agent visualization tools and allow the developer to
concentrate on the domain specifics of the application—as
opposed to the communication infrastructure.

5.3 Reuse in Cognitive Models and Agents

The reuse of these displays with ACT-R and Soar suggest
that the first major reuse of cognitive modeling and agent
behavior may be in interface design and not in the
knowledge. This might not be that surprising, given that
the interface code looks more like the code that gets reused
now. Interfaces make up about 50% of most systems [23].
If this is true, which we believe it can be for cognitive

models and agents using CaDaDis and VISTA, this is a
very worthwhile result.
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