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Abstract

The Linac Coherent Light Source (LCLS) is the world’s first x-ray free
electron laser. It is a scientific user facility operated by the SLAC National
Accelerator Laboratory, at Stanford, for the U.S. Department of Energy.
As beam time at LCLS is extremely valuable and limited, experimental
efficiency — getting the most high quality data in the least time — is
critical. Our overall project employs cognitive engineering methodologies
with the goal of improving experimental efficiency and increasing scien-
tific productivity at LCLS by refining experimental interfaces and work-
flows, simplifying tasks, reducing errors, and improving operator safety
and stress. Here we describe a multi-agent, multi-scale computational
cognitive interaction model of instrument operations at LCLS. Our model
simulates aspects of human cognition at multiple cognitive and temporal
scales, ranging from seconds to hours, and among agents playing mul-
tiple roles, including instrument operator, real time data analyst, and
experiment manager. The model can roughly predict impacts stemming
from proposed changes to operational interfaces and workflows. Example
results demonstrate the model’s potential in guiding modifications to im-
prove operational efficiency. We discuss the implications of our effort for
cognitive engineering in complex experimental settings, and outline fu-
ture directions for research. The model is open source and supplementary
videos provide extensive detail.
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1 Introduction

LCLS, the Linac Coherent Light Source, located at the SLAC National Accelera-
tor Laboratory, is a world-leading x-ray source, hosting hundreds of high energy
x-ray experiments annually. These experiments probe fundamental physics as
well as the nano-scale, high speed physics underlying fields as diverse as biology,
chemistry, and materials science.1 LCLS beam time is a limited resource that
must be efficiently utilized. Our goal is to apply cognitive engineering methods
to optimize LCLS user interfaces (UIs) and workflows, that is the way that sci-
entists and engineers gather information, reason, and take action with regard
to the system.

Cognitive Engineering is a methodology tailored to analyze and improve
“human-in-the-loop” settings — those where humans interact with complex
engineered systems.2,3 The method combines qualitative and quantitative ex-
periments, mathematical analysis, and computer simulations, with the goals of
improving efficiency by making tasks simpler and less error prone, improving
participants’ safety, and reducing their stress.

By creating a computational cognitive model of some aspects of the UI and
workflow of LCLS operations we can predict the impact of proposed changes
before they are actually implemented. This approach is not unique to LCLS.
Just as cognitive engineering applies broadly, computational modeling is equally
broadly applicable. However, modeling is more important in cases such as LCLS
because of the unique challenge posed by scientific user facilities. Due to its
complexity, cost, and limited beam time, it is not feasible to run typical human-
factors experiments, nor to create a “flight simulator”, at LCLS. Moreover,
LCLS experiments present an ever-changing panoply of experiments, nearly all
of which are at least somewhat unique, and so do not have the stable regularity
of, say, aviation or power plant operations. Computational modeling should be
especially helpful in such settings as changes can be explored without running
live human experiments.3

In this paper we describe the LCLS setting, and a computational model that
can make rough predictions about the impact of proposed changes to interfaces
and workflows. A unique feature of our model is that it integrates simulations at
multiple scales, and models aspects of individual cognition, teamwork, planning,
and decision-making both in-the-moment and across multiple data-taking runs
(measurements). Although the model represents these only roughly, it is able to
make sensible predictions regarding the impact of a range of proposed changes.
Because of the cost and limited availability of beam time, even rough predictions
may be useful in increasing the efficiency of LCLS operations.

We begin with a rich description of the LCLS setting so that the reader can
understand the rationale behind the model’s design. Next we describe the model
and demonstrate its basic capabilities, concluding with future opportunities for
this approach. The model is open source.4 Demos and code walk-throughs, are
provided in three supplementary videos.5
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2 Setting: The Machine and Instruments

The LCLS system involves an enormous number of physical and software compo-
nents, operated by multiple teams of scientists and engineers. The 2 kilometer-
long linear accelerator (hereafter “linac”) and a 200 meter long magnetic “undu-
lator” form an x-ray free electron laser (XFEL), often referred to together as “the
machine”. The machine produces 120 extremely bright 50 femtosecond x-ray
pulses every second, referred to as “the beam”. After propagating through var-
ious diagnostics and beam shaping optics, the beam arrives at an “instrument”
whose purpose is to collect data about what happens when the beam interacts
with materials of interest, generally called “targets” or “samples”. (The target
is a sample that is actually in the beam.) There are several of these room-sized
instruments, although only one is usually involved in a particular experiment.6

The machine and instruments are operated from separate control rooms.
The control room operating the machine is called the Accelerator Control Room
(ACR). Each instrument has its own Instrument Control Room (ICR, Figure
1), located near its hutch at the target-end of the system. Here we are mostly
concerned with activities in the local control room of a specific instrument,
called CXI, which is specialized for x-ray crystallography.7

Figure 1: Typical view of an Instrument Control Room. (Photo by the authors)
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2 abstractly depicts the layout of subsystems involved in SLAC/LCLS oper-
ations, and their typical interactions (see also Ritter, 20228).

Figure 2: The machine (linac + XFEL) delivers x-ray pulses to an instrument
where the x-rays strike a target producing data which is processed by an analytic
pipeline. The system is operated through a close and continuous collaboration
between scientists and engineers in the ACR and ICR who play various roles.

LCLS experiments depend upon the x-ray beam created in the machine,
which is “handed off” to the instrument. Because the success of the experiment
depends upon creation of x-ray pulses with the desired characteristics at the
machine end, a constant interaction takes place between the instrument opera-
tors in the ICR, and the machine operators in the ACR. As the ACR and the
ICR are about a 15 minute walk, or a 3 minute drive, from one another, this in-
teraction takes place mostly by phone or through screen sharing. In the present
work we make the unrealistic simplification that beam delivery — the machine
end of the process — is unproblematic, and focus entirely on operations at the
instrument end of the system.
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3 Experiments and Measurements

An “experiment” is a contiguous period, usually 3-5 days, during which users
are actively engaged with the system. Figure 3 shows a typical schedule for one
month at LCLS. The teams using the beam are color coded by hutch (red is
CXI). Grey blocks represent scheduled downtime, e.g., for maintenance.

Figure 3: An example LCLS schedule.9 Reprinted with permission from SLAC.

Experiments have many sub-steps. We are primarily concerned with “mea-
surements” — contiguous periods during which the x-ray beam is intended to be
striking a target or series of targets, and the team is actively taking data. There
are usually many dozens of measurements made over the several-day period of
an experiment, generally making up the bulk of an experiment. Measurements
can range from a few seconds (if something goes wrong or is only being briefly
tested), to many minutes, as multiple samples are cycled into the path of the
beam. As time is the most limiting resource, the time that measurements take
will be of central concern in our model.

Most LCLS experiments utilize a variety of types of samples (aka. targets
when in the beam), including “dummy” targets, used to align and calibrate the
instrument, “control” targets that have known properties, and “critical” targets,
the samples for which the experiment is designed to gather new data. Because
the critical samples are often costly and of limited availability, the experiment
is planned to maximize high quality data (data with high signal-to-noise ratio,
SNR) collected on these. Although an enormous amount of careful planning
goes into experiment design before the experimental team arrives at SLAC,
unplanned issues always arise, so the team engages in continuous, on-site, real-
time decision-making to maximize the collection of high quality data on critical
samples. These concepts will appear as “Performance Quality” and “Target
Error” in the model (§6.5).

The primary decisions to be made are how long a given measurement should
continue, and in what order different samples should undergo measurement.
Because beam time is limited, gathering data on critical samples must begin as
soon as possible. However, because issues often arise during the experiment’s
initial beam time, it is sensible to use dummy or control targets until it is clear
that the instrument is stably producing high SNR data. As the experiment nears
the end of its allocated beam time, the team may wish to get as much data as
possible on critical samples, even if the system is not producing high quality
data, and especially if the experiment did not go as planned, for example, due
to linac down time. These trade-offs define the top layer of our model (§6.4).
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4 Experimental Teams and Virtual Roles

The scientific productivity of LCLS depends on highly complex human-machine
choreography enacted by combinations of internal and external scientists and
engineers who we call “experimental teams”.10 Although there is extensive
planning for each experiment, the entire team usually only comes physically
together for the few days during which measurements are being taken at LCLS.
Team members often have diverse backgrounds (biologists, chemists, physicists,
engineers, etc.), and diverse experience ranging from students who are at LCLS
for the first time, to full-time LCLS staff such as the “instrument scientists” who
develop and usually operate the instruments. We have observed experiments
with as few as one, and as many as ten or more people in an ICR during a running
measurement. There are also, commonly, remote participants, interacting by
phone or web technologies.

4.1 Operator, Analyst, and Experiment Manager

The success of an experiment rides on the team’s ability to rapidly develop an
effective team workflow in order to conduct as many measurements as possible
with high SNR on important samples. We identify three “virtual roles” (Figure
2) which are always represented, regardless of the number of separate people
involved in an experiment: The Instrument Operator, the Real Time Data
Analyst, and the Experiment Manager.

The Instrument Operator actively controls the instrument. They are
usually an individual, and are almost always seated at the screens displaying
the status of, and permitting control of the hundreds of instrument settings, such
as motor positions and valve and shutter settings (e.g., Figure 4). In making
decisions the operator relies on information coming directly from primary data
processing, as well as from the other team members and the ACR.

The Real Time Data Analyst analyzes the data flowing from the instru-
ment into the data pipeline using tools such as the AMI (Analysis Monitoring
Interface,11 Figure 5). We call this “Secondary Data Processing”, and its pri-
mary function is to estimate SNR of current targets and report this to the
experiment manager.

The Experiment Manager is responsible for overall execution of the ex-
periment. Although each experiment starts out with a specific experiment plan,
dynamic (“opportunistic”) re-planning almost always takes place based upon
many factors.13 The experiment manager uses the information from the op-
erator and data analyst to monitor the plan and adjust it as needed. The
important decisions here are usually whether to continue or abort the current
measurement, and what sample to measure next.
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Figure 4: A typical control window. Most of the depicted controls are motor
controls like those in our model. In addition to using the left and right buttons
(e.g., X+ X- Y+ Y-), the motor position can be changed by directly entering
a new value in the text box. For each such control there is almost always a
command-line equivalent. Which type of interaction is used in a particular
setting depends on many factors, but especially the preferences of the operator.
(Photo by the authors)
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Figure 5: Real time AMI plots.12 Reprinted with permission from SLAC.

These three roles are often shared in complex ways across any number of
individuals. For example, the instrument operator might also be the data an-
alyst, and either of these might also be the experiment manager. With the
exception of the instrument operator, the people filling the other two roles are
sometimes involved by phone or screen sharing. How these roles are distributed
has implications for the efficiency of communication and cognition. Our model
assumes that each role is occupied by a separate individual, and we assume that
the participants are highly expert in their roles.

Once the instrument is prepared and a target is in place, the instrument and
machine operators work together to align the beam to reach the sample in the
desired manner. They ensure that data is being taken correctly by the instru-
ment, and that the various downstream data pipelines are working as intended.
All of this involves hundreds of physical and computational adjustments. Once
this setup is completed the experiment itself can begin. What follows is the
series of measurements that comprise the bulk of the experiment, and which are
our primary focus.
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5 Cognitive Aspects of LCLS Experiment
Operations

LCLS operations are an ideal setting to understand team-based, real-time,
problem-solving, characterized by complex opportunistic interplay of numer-
ous inter-related goals and the physical and cognitive activities that the team
deploys to reach these goals.14,15

In acting towards their goals the team utilizes “resources”, the most impor-
tant of which are actions and their affordances (together, “afforded actions”).16

One can think of an afforded action as one that can be accomplished through
manipulation of some sort of control, for example moving a mirror by virtue
of stepping a motor, which is afforded by the motor controls (e.g., Figure 4).
Afforded actions can include those related to “information resources”, that is
displays, graphics and cameras (e.g., Figure 5), auditory signals, paper docu-
ments, electronic logs, and even tactile feedback from which a participant may
gather information. (These “afford” the “action” of obtaining certain types
of information.) Of course, information resources often require their users to
take action in order to obtain the desired information, and information can be
communicated as well as received. To highlight one interesting example, Post-
Its are quite commonly stuck to various parts of instruments, controls, and
screens to facilitate the remembering and efficient communication of important
information. And an important resource/artifact that affords both information-
gathering and control actions is the experiment plan itself, which can be queried
regarding predicted times, and acted upon (controlled) by modification.

People can also be thought of as offering affordances. For example, the
instrument operator’s expertise affords the experiment manager actions such
as getting data and terminating the measurement, and the expertise of the
linac operators in the ACR affords actions as complex as requesting various
adjustments to the beam, or as simple as finding out when the machine is likely
to return from unexpected down-time.

Finally, two important non-physical resources, time and attention, play a
critical role in this setting, as they do in almost all problem-solving settings.
The operating team must attend and respond to a very large number of infor-
mation resources in order for a measurement to succeed. There are often dozens
of windows open across numerous screens, including personal laptops. The op-
erator interacts with these partly “demandantly”17 — for example responding
to alarms — and partly proactively, that is, with the intention of making a
change that is not in response to an alarm. Both time and attention play a
large role in our present model, and will reappear as “Functional Operability”
and “Functional Acuity” (not respectively) in the discussion of the model in
section 6.2.
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5.1 The Central Decisions: What to Measure, in What
Order, and for How Long

Once the instrument is producing high SNR data on dummy or control sam-
ples, the heart of the experiment can begin by taking measurements from critical
samples — those from which real data is desired. As mentioned above, each ex-
periment is planned in great detail, yet if enough problems arise the team might
run out of beam time or critical samples. Importantly, because of the amount
of data involved, and the limited time available to gather and analyze it, final
(tertiary) data analysis usually cannot be accomplished in real time. Therefore,
the team can only roughly tell, through secondary data analysis, whether they
are gathering satisfactory data on the current sample. Thus the decisions of
what to measure when, and for how long are the experiment manager’s most
critical decisions. These are made, of course, in consultation with the rest of
the team, often including the machine operators in the ACR.

One would think that it would make the most sense to carry out measure-
ments on the more important sample as early as possible because if problems
arise that lead to lower SNR, one can use more time to take more data on crit-
ical samples. However, there may be limited sample material, especially of the
most important samples, and early problems are likely to have been resolved,
improving SNR. These considerations vie in the opposite direction, suggesting
that if things are not working well, but it is still early in the overall experiment
period, it may be better to hold back precious critical samples hoping that the
problems resolve. But how long should one wait? And if the data is marginal,
and getting worse, should one continue a measurement to wring as much out
of the current sample as possible, or abort it and move on to more important
samples, given an impending hard stop? And once the ongoing measurement is
completed, which of the remaining samples should be measured next? Perhaps
a previous less-than-satisfactory measurement should be repeated?

Because of the complexity and importance of making these decisions as cor-
rectly as possible, we focus on these in our model.

6 A Multi-Scale Cognitive Interaction Model of
LCLS Instrument Operations

Our goal is to predict the potential impacts of UI and workflow changes in
the most impactful aspects of LCLS operations. Because of the difficulty of
carrying out direct user studies, or of employing a “flight simulator” approach
in the LCLS setting, we chose to create a computer simulation (model) of some
of the most important human-in-the-loop aspects of experiment operations, in
particular of the phenomena relevant to the core decisions of when and whether
to continue or abort a measurement. Our goal is to use this model to predict
the direction and rough shape of changes in experiment efficiency likely to result
from changes in instrument interfaces, controls, and procedures.

In what follows we discuss the central concepts represented in our model.
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The three video supplements provide much more detail.5 The first is a concep-
tual overview, the second demonstrates the model, including discussion of the
results depicted in Figures 7-9, and the third reviews the code, which is available
on github.4

6.1 Multi-Agent, Multi-Scale

Real LCLS experimental decision-making takes place in a very complex setting
where many extrinsic factors are involved, such as which samples are available,
what the value is of those samples, the stability and performance of all aspects
of the system, how far through the experiment they are, and how much time the
remaining high-value samples are likely to take, as well as large-scale factors such
as machine down-time and the requirement that team members occasionally
sleep. Our model, of course, represents a highly simplified version of these
factors.

We explicitly model the three primary agents: The Operator is directly in
control of the instrument. The Real Time Data Analyst determines when the
data is good enough to stop the run, and provides updates to the Experiment
Manager who is responsible for the overall control of the experiment and com-
municates with the entire team to understand the state of the experiment and
to make decisions that improve the quality of the data and the efficiency with
which that data is generated. These roles implicitly create three temporal scales,
as depicted in Figure 6.

Phenomena at the Micro-Cognitive scale relate to the details of con-
trols and displays. Here we see the reasoning, decision-making, and skilled
performance that we collectively call “peak chasing”. The primary infor-
mation inputs to peak chasing involve a cognitive parameter called “Func-
tional Acuity” (FA), and parameters related to the ability to respond
to changes efficiently, which we collectively call “Functional Operability”
(FO).

Phenomena at theMeso-Cognitive scale involve reasoning and decision-
making related to whether to continue or abort the current measurement.

Phenomena at theMacro-Cognitive scale involve reasoning and decision-
making related to the course of the experiment, especially regarding how
long to gather data on a given sample, and in what order samples should
be run.
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Figure 6: Information flow and inter-scale interaction during LCLS operations.
“Micro” reasoning and action is local in time, relating to the moment-to-moment
stability of the system required to get any data at all as well as high quality data;
“Meso” relates to a larger time scale, over multiple data points; and “Macro”
is at the scale of the entire experiment, over multiple measurements.
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6.2 Micro-Cognitive: Peak Chasing, Functional Acuity,
and Functional Operability

In the micro-cognitive domain we model an abstract task that we call “peak
chasing”, a common type of optimization task, akin to balancing a broom on
one’s hand. At LCLS peak chasing involves actuating instrument controls to
try to optimize measurement SNR. There are hundreds — perhaps thousands
— of parameters that control the linac→XFEL→instrument system. In some
cases the “peak” being “chased” is literally a peak in a histogram or similar
graph, or a single value on a display. Sometimes it is a statistic reported by the
Real Time Data Analyst. And sometimes the “peak” is more subtle, such as a
“correct looking” display. In our model the peak being chased is the alignment
of two values, which one can think of as representing the horizontal position of
a stream of liquid versus the horizontal position of the beam. The quality of
the data (SNR) collected depends upon how close the beam is to the stream.
The liquid undergoes a one-dimensional random walk. The instrument operator
must first notice that the beam and stream are not aligned, and then move the
beam left (X-) or right (X+) to “chase” the stream.

The operator’s ability to carry out this task is controlled by two abstract
parameters (that is, implemented by one or more specific model parameters):
Functional Acuity (FA) and Functional Operability (FO). FA is the operator’s
(or, more generally, the team’s) ability to recognize the need to take an action.
FO is their ability to actually take the appropriate action — more precisely, how
long it takes to take the appropriate action (controlled by the Noticing Delay
(ND) parameter, among others). These are directly related to the important
resources of time and attention discussed in section 5.

The term “functional” emphasizes that these are not purely cognitive con-
cepts, but are functions of the interaction between individual cognition, team
communications, and technical displays and controls. Functional Acuity and
Functional Operability have a temporal as well as informational component.
For example, in addition to a parameter that controls how far the beam and
stream have to be before the operator can notice that an action must be taken
(literally the acuity), the noticing delay slows the operator’s response. Also, if
the operator has to change which button is being pressed, e.g., to switch the
direction a motor is being stepped, a cost is incurred based on the distance from
the current button to the new one.

Both Functional Acuity and Functional Operability can be thought of as
UI-related parameters. However, differences in Functional Acuity arise from
the interaction between cognition and the display characteristics of the instru-
ment UI, whereas differences in Functional Operability arise from the interaction
between cognition and the control characteristics of the instrument UI. Whereas
changes to the displays or controls would usually affect only one or the other of
these, more general interventions, such as the operator’s alertness, experience
with the system, or changes in the operating protocols, could affect either or
both of these parameters, as well as other aspects of the model, such as error
rates.
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6.3 Meso-Cognitive: When to End a Measurement

As previously noted, when to end a measurement, that is when to stop taking
data on a particular sample, is among the most important decisions made by
the team. In reality, many considerations go into this decision, including the
stability of the beam, the apparent quality of the data per secondary data
processing, the quality of the data that has been obtained so far, the amount
of time remaining in the day or entire run, how much sample remains, and
considerations relating to the overall experiment such as the importance of the
sample, and possibly tertiary data analysis that may have been completed and
can provide complete analysis of previous measurements. At this scale our
model considers only the current rate of improvement in SNR, and the beam
time remaining.

6.4 Macro-Cognitive: Sample Planning and Re-Planning

The dynamic environment of an LCLS experiment is markedly different from
puzzle-like problem-solving where one usually has the luxury of time and a
small set of possible actions. We previously likened the measurement process
as akin to balancing a broom stick on one’s hand, but it is made even more
complicated by the nature of the novel physics being studied at LCLS, and by
a constant barrage of tiny (and sometimes large) problems, requiring real-time
re-planning.13 While some adjustments, like shortening a measurement if one is
obtaining all the needed high-quality data, are relatively straightforward, others,
such as extending a measurement, or even bringing in additional materials from
off-site if necessary, can be more challenging given the strictly limited time
frame. In our model, the only information used to make these decisions is the
information available regarding how well the measurements have been going
so far, how much beam time remains, and the number and quality of samples
remaining to test.

6.5 Measurement Error and Performance Quality of
Samples

Central to the model (and, of course, to the real LCLS setting) is the quality of
the data being gathered — SNR (§3). How SNR is defined depends upon the
details of the kind of data being gathered. Regardless, it always involves some
version of the standard error, i.e., the standard deviation of the data divided by
the square root of the number of data points. Therefore, we simply use standard
error as a stand-in for SNR, and model the goal of a given measurement as being
to reach a particular target standard error, which we call “Target Error” (TE),
and which is 0.001 by default.

Samples in our model only differ from one another in terms of a single
parameter, called “Performance Quality” (PQ), related to the types of samples
(§3). A sample’s PQ represents how easy it is to get data from this sample,
based upon either prior experiments, for example in a synchrotron, or theoretical
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calculation. Higher PQ samples will produce higher quality data, that is, they
will reach TE with fewer data events than samples with lower PQ.

Counter-intuitively, more important samples have lower PQ. The reason that
lower PQ samples are considered more important is that if it was easy to get
data from a given sample (high PQ) then one would have done so already, or
one would be sure of their theoretical prediction. Thus, it is less important to
get high quality data at LCLS from samples that have high PQ. Moreover, the
quantity of low PQ (more important) samples on hand is also often limited —
again, if samples were unlimited one would have been able to get adequate data
on these in a less time-constrained setting such as a synchrotron. One does not
want to be wasting rare and important low PQ samples, especially early in the
experiment, when the SNR is low for extrinsic reasons, such as overall system
instability or operator inexperience with this particular experiment. Therefore,
one generally will want to run high PQ (less important) samples early on until
one has high confidence in the data coming from the instrument. Put another
way, high PQ (less important) samples are those for which you essentially know
what data you are likely to get, whereas low PQ (more important) samples are
ones that are harder to get data from in either (or both) of theoretical modeling
or previous studies (e.g., in a synchrotron). The whole reason for coming to
LCLS and running on the XFEL is that it is hard to get data on the low PQ
(more important) samples.

6.6 Error Adjustment and Cutoff Time

At LCLS, where both time and samples are limited, it may be difficult to reach
the desired Target Error (TE). As discussed above, one wants to run low im-
portance, high PQ, samples early, during instrument stabilization, and more
important, low PQ, samples later, but not so late that the team will run out
of beam time. Although real experiment managers might dynamically decide
the order in which to measure samples, in the present paper we always model
samples as run in High-PQ (less important)→Low-PQ (more important) order.
The simulated experiment manager in our model can decide what TE to reach
for, and when to cut off a given measurement. The model can also be con-
strained regarding the total beam time (“Cutoff-Time”), where “True” (yes)
means that the experiment will be stopped after an allotted time, and may
be allowed to adjust the TE (“Adjust-Error”), where “True” (yes) allows the
experiment manager to change the TE. In the most realistic case Cutoff-Time
and Adjust-Error are both True. In this case the team may adaptively decide
to shoot for a higher or lower TE, depending upon how the measurements are
going and the amount of time remaining, but at the end of their allotted time
the experiment is halted.
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7 Example Results

In this section we describe some example results obtained from our model that
demonstrate various ways that it could be used to investigate changes in the
user interfaces or workflows of LCLS instrument-side experiments. These are
discussed in more detail in the second of the three supplementary videos. In
each case the vertical axis records the number of events (data points) required
to reach the Target Error (default=0.001), over Performance Quality (PQ on
the horizontal axis). As mentioned just above, all simulation runs presented
here start with the lower importance, higher PQ samples, and proceed to the
higher importance, lower PQ samples, that is reading right to left on the graphs
below.

The simulation results in Figure 7-Left scan three values of Functional Acuity
(FA), with Adjust-Error=False and Cutoff-time=False, thus allowing the team
to remain as long as necessary to reach the default Target Error (TE) of 0.001.
Unsurprisingly, it requires less data to reach TE 0.001 as PQ increases (right
to left), and as FA improves (becomes smaller), so that the operator notices
that the beam and stream are not aligned at smaller distances of misalignment
and can respond more quickly. The results depicted in Figure 7-Right locks FA
at 0.1 (the best performing value from 7-Left), and compares Noticing Delays
(NDs). In this case, Adjust-Error=True and Cutoff-time=True, which is the
most realistic case: The team is kicked off the machine at a fixed time, but they
are allowed to adjust TE to try to get some data on all samples. At first glance
Noticing Delay makes no apparent difference; All the values are more or less the
same. However, as PQ increases, the amount of data gathered appears to be
smaller at both high and low PQ, but higher at mid values of PQ. This happens
because the simulated experiment manager observes that they are going to run
out of time with the default TE, and adjusts the TE upward so that some data
is obtained for even the last/most important/lowest PQ samples, although they
eventually run out of time anyway. More flexible re-planning would improve the
data quality for these most important (lowest PQ) samples.
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Figure 7: Left: Varying Functional Acuity (FA = [0.1, 0.5, 1.0]) with Adjust-
Error=False and Cutoff-time=False. Lower FA corresponds to noticing finer
misalignments, thus requiring fewer samples to reach TE. Runs start at high
Performance Quality (PQ) and go to progressively lower PQs — that is, from
lower importance samples to higher, or right to left. With Adjust-Error=False
and Cutoff-time=False the experiment is allowed to run to reach TE=0.001
because the beam time never expires. Right: Fixed FA = 0.1, varying Notic-
ing Delay (ND = [1, 5, 10]) with Adjust-Error=True and Cutoff-time=True.
Higher ND corresponds to slower response to misalignments. ND has much less
differential effect at these levels (cf. Figs. 8-9). With Adjust-Error=True and
Cutoff-time=True some data is gathered on all samples even though the team’s
beam time expires (cf. Figure 9 left), although not as much data as if they are
allowed to continue, as on the left.
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Figures 8-9 depict four explorations with the model, scanning Noticing Delay
(ND) at three values, across all combinations of the conditions Adjust-Error
and Cutoff Time (Stop). The goal of the team in all cases is to achieve a good
(low) error rate within the allotted time. As above, TE is initially 0.001 (the
default). With Adjust-Error=False this never changes. However, with Adjust-
Error=True the experiment manager will adjust the TE based on the time
remaining and the observed performance per unit Performance Quality (PQ) to
this point. (These algorithms are reviewed in the supplementary videos.) All of
the present runs go from higher to lower PQ, that is right to left.

The first (rightmost) sample TE will always be 0.001, reagrdless of the
value of Adjust-Error. When the team is able to adjust the error rate (Adjust-
Error=True, right of Figures 8-9), the second through last (fifth) sample’s TE
can be adjusted to try to stay within the given time. When the time is strictly
limited Cutoff-time(Stop)=True (Figure 9) the team is eventually kicked off the
machine. The most realistic condition, is Figure 9-Right: Adjust-Error=True,
Stop=True, and one can see by comparing the amount of data gathered on the
last two (leftmost) sample runs between the left and right of Figure 9, that when
the team is allowed to adjust the error target (9-Right), they gather some, al-
though not very much, data on the last two (leftmost) critical samples, whereas
if they cannot adjust error (left side of both figures), but are strictly time-limited
(Figure 9-Left) essentially no data is gathered on the last two (leftmost) critical
samples because the experiment is forced to end short of time. For comparison
Figure 8, with no time limitation (Stop=False), is an unrealistic situation but
tells us how much data needs to be collected to reach a given TE. Figure 8-Left
(Adjust-Error=False, Stop=False) tells us how long it will take to reach TE =
0.001, whereas the 8-Right (Adjust-Error=True, Stop=False) tells us how long
it will take to reach an adjusted TE. The effect of ND is more pronounced in
Figure 8 because they run significantly longer than those in Figure 9. These
results are also discussed in the second supplementary video.
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Figure 8: Cutoff Time (Stop) = True across Noticing Delay (ND) = [1, 5, 10]
and Adjust-Error = [False, True].
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Figure 9: Cutoff Time (Stop) = False across Noticing Delay (ND) = [1, 5, 10]
and Adjust-Error = [False, True].

8 Discussion

The model described in this paper is the culmination of several years of observa-
tional research at LCLS, during which our team interacted with numerous LCLS
staff and external scientists. As we became regular observers during experiment
operations, and sat in on experiment planning and engineering meetings, we
were sometimes looked-to to provide guidance regarding control and display de-
sign decisions. Usually we demurred, having only qualitative data, and so weak
confidence in our ability to provide useful guidance. The impetus for develop-
ing the model described in this paper was to put such guidance on a firmer,
quantitative footing.

Although the importance of complex team cognition is widely recognized,
and has been studied in detail in many settings (e.g., the notable studies of
naval and aircraft operations by Hutchins and coworkers18,19), most computa-
tional cognitive models focus on individual cognition. Among the nearly 900
publications listed in the ACT-R publication repository,20 only 11 are tagged
with “Communication, Negotiation, and Group Decision Making”, and these
usually model very simple settings (e.g., Matessa, 200121). Another line of
work (e.g., Goldstone and Janssen, 200522) has pursued multi-agent models
with many nearly identical simple agents, often with the ability to learn. That
work focuses on the evolution or self-organization of differentiated agents and/or
complex communities. Complex teamwork has been computationally modeled in
business and military settings (e.g., Cooke and Myers, 2009,23 Ball et al, 201024)
but far more rarely in scientific settings. Whereas scientific teamwork has been
studied (e.g., Traweek, 198810) and scientific reasoning computationally modeled
(e.g., Shrager and Langley, 199025) we have not found computational models
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of scientific teamwork designed to simultaneously capture both individual cog-
nition and collaboration. Not only does our model attempt to capture these
complexities in the unique setting of a scientific user facility, but also captures
aspects of planning and opportunistic re-planning specific to LCLS.

Scientific user facilities, such as LCLS, are particularly cognitively interesting
and difficult precisely because they are on the cutting edge of both science and
human performance. There are, by definition, no perfect simulators for state-
of-the-art science; If there were, one would not need real instruments! And
although the instrument scientists are expert at their instruments, they are
not expert at each new experiment. Moreover, they are usually working with
external users who have widely varying skills, knowledge, and experience, and
with state-of-the-art instruments that are operating at the bleeding edge of
measurement capability and stability.

Even though our current model is only a rough analog to the highly complex
LCLS setting, it produces sensible results across a variety of parameter ranges,
and provides insight into how these various factors and scales of cognition in-
teract to impact the efficiency of experimental operations at LCLS. Improving
Functional Acuity (FA), which can arise from UI and workflow changes, can
produce faster response to beam misalignments, leading to increased overall
experimental efficiency. In contrast, improved Noticing Delay (ND) produces
less significant impacts on efficiency, except in unusual operating regimes, for
example when there is no time limit. We also investigated quality and dura-
tion trade-offs by adjusting whether the Target Error (our stand in for SNR)
is dynamic or fixed, and by imposing cutoff times, or allowing runs to continue
indefinitely. Unsurprisingly, fixed target error requirements produce higher fi-
delity given unlimited time. Allowing the Target Error to adapt yields better
time management, producing higher overall signal on important samples in the
more realistic condition where measurements are truncated by limited beam
time.

These observations showcase how operational efficiency depends substan-
tially on factors related to the human–machine interface such as Functional
Acuity, its operation such as Functional Operability, and cognitive factors such
as attentiveness, amount of experience, and fatigue (represented by Noticing
Delay and other parameters). Enhancing these aspects of the LCLS setting —
by training, redesign of controls and displays, and workflow changes — could
substantially increase scientific productivity.

Our model merely scratches the surface of the potential of model-based cog-
nitive engineering efforts as applied to scientific user facilities such as LCLS.
Although we have described only a handful of computational experiments with
the model, it is capable of simulating a much wider range of parameters. More-
over, relatively simple extensions could easily broaden its scope to model specific
displays, controls, and workflows, demonstrating how changes in these might im-
pact efficiency at all scales. The model should also be extended to capture more
inter- and intra-team communications. Elaborations such as those would also
permit the model to be validated with respect to detailed measurements of in-
dividual and team behavior. Most importantly, and perhaps most difficult to
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implement, models of learning at all scales should be introduced in order to cap-
ture short term individual learning such as the instrument scientists becoming
familiar with each new experiment; social learning such as the team learning to
work together; and longer term learning such as expanded staff training.

As science probes ever more deeply into the complexities of nature, large
scale, beyond-the-state-of-the-art efforts like those at LCLS, and other scien-
tific user facilities, are rapidly increasing in importance. These facilities are in
constant flux at every scale. Efforts such as ours that attempt to model the
system at multiple scales should be helpful in increasing the efficiency of the
science carried out at these sites by helping to optimize the human-in-the-loop
workflows that will be a significant component of the operations of scientific
user facilities for the foreseeable future.

22

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:
10

.10
63

/5.
02

39
30

2



9 Supplementary Material

Three supplementary videos5 provide much more detail on all of the above. The
first is a conceptual overview. The second demonstrates the model, including
discussion of the results depicted in Figures 7-9. The third reviews the algo-
rithms and code, including walk-throughs of important code segments. The
code is open source and available on github.4
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