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Abstract  

We present a model of serial subtraction, a task 
where subjects repeatedly subtract a 1- or 2-digit 
number from a 4-digit number. The model per-
forms 4 min. blocks of these subtractions like 
subjects do. The current model replicates part of 
the pace and % correct for group data. Because 
performance on this task varies widely between 

subjects, we explore what it means to match the 
data distribution. We find that our model repre-
sents individual subjects better than group means.  
We can start to model a distribution of perform-
ance and illustrate some of what this approach 
will entail.  

Introduction 

Serial subtraction, repeatedly subtracting a 1- or 

2-digit number from a 4 digit number is part of 

the Trier Social Stressor Task (TSST, Kirsch-

baum, Pirke, & Hellhammer, 1993).  This is an 

interesting task for two reasons.  One reason is 
that it has been used over 100 times in published 

articles to study the effects of stress on physiol-

ogy (e.g., Kudlielka, Buske-Kirschbaum, Hell-

hammer, & Kirschbaum, 2004; Nater et al., 

2006; Taylor et al., 2006; Tomaka, Blascovich, 

Kelsey, & Leitten, 1993). It is a cognitive task 

used to cause stress, but we don’t know how it’s 

performed—there is only one report on how well 

it is performed (Tomaka, Blascovich, Kelsey, & 

Leitten, 1993), and this report only provides data 

on one 4-min. block. 

The second reason it is interesting is that sub-
traction is an interesting task in its own right and 

as a component task to many other tasks. It in-

volves many cognitive mechanisms making it a 

good task to study cognition, not just the biobe-

havioral effects of laboratory stress.  Real world 

tasks that use subtraction include air traffic con-

trol, navigation, and piloting the wide range of 

vehicles that use angular directions.   

It would be useful to have a cognitively plau-

sible model of performance of subtraction.  This 

model would serve as an explanation and sum-
mary of task performance, helping to summarize 

regularities, and a model would also be the 

starting point of a theory of how cognition 

changes with stress.  Because the task requires 
not only executive control and memory but inter-

action with the verbal system as well, a model 

will be able to quantify the constraints that these 

subsystems of cognition impose on the task. 

These requirements suggest that the model be 

constructed on an embodied cognitive architec-

ture (Anderson, in press). 

Previous work with an earlier model has 

shown that the general pattern of high level re-

sults (i.e., number of attempts per 4-min. block 

and percent correct) with serial subtraction can 

be predicted (Ritter, Reifers, Klein, Quigley, & 
Schoelles, 2004), and we have used this 

approach to describe how popular theories of 

stress could influence performance on this task 

(Ritter, Reifers, Schoelles, & Klein, 2007).  The 

next steps, presented here, are to create more de-

tailed predictions of performance and compare 

these predictions to more detailed subtraction 

performance data than has been previously pre-

sented.   

The remainder of this paper presents a serial 

subtraction experiment, the architecture and 
model, subtraction data, and a comparison of the 

model with human data.  The model’s predic-

tions match the individual data fairly well, and 

provide lessons for understanding how serial 

subtraction is performed. The model-data com-

parison also makes suggestions for the further 

development of cognitive architectures.  

The Serial Subtraction Experimental Data 

As part of a larger project on the biobehavioral 

effects of stress in men and women, serial sub-

traction was administered as part of the TSST. 

Several aspects of serial subtraction performance 

were recorded.  We present several of them here 

as an initial summary of performance on serial 

subtraction.  They are taken from a more com-
plete report (Ritter, Bennett, & Klein, 2006).   
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Subjects 

Thirty-six healthy women and 20 men, 18-30 

years of age (µ=21.1) were recruited to partici-

pate in a study examining hormonal responses to 

stress.  

Method 

All subjects participated in the same protocol, 

which consisted of a baseline rest period, the 

TSST challenge period (approximately 30 min.), 

and a recovery period.   

Following informed consent and a baseline 

rest period, participants were asked to complete 
the TSST which consisted of: (a) preparing a 

3.5-min. speech on a personal failure, which they 

were told would be recorded for later observa-

tion, and then (b) completing two blocks of serial 

subtraction across a 15-min. period.  The first 

subtraction set required counting backwards 

from a 4-digit number by 7’s; the second set re-

quired counting backwards by 13’s.  

Subjects’ serial subtraction answers were cor-

rected against a list of answers from the starting 

4-digit number.  When an incorrect answer was 
given, the subject was told to “Start over at <the 

last correct number>”.  At 2 min. into each 4-

min. session, subjects were told that “2-minutes 

remain, you need to hurry up”.  

Performance on the first block of 7’s and first 

block of 13’s were recorded on the experi-

menter’s scoring sheets.  Part way through the 

study a mark to indicate where the 2-min. warn-

ing occurred was added to measure pace of the 

subtractions.  Subjects were paid $30 for their 

time at the end of the study. 

Results 

All 56 subjects completed the task. Table 1 

shows the subtraction rates. Overall performance 

was generally accurate.  The proportion correct 

was not different across problem types 

(t(56)=1.7, ns).  

Table 1. Serial subtraction performance on 4-min. 

blocks of 7’s and 13’s, means, (SD), and [ranges]. 

   (N=56) 7’s 13’s 

Attempts 47.0 (17.1) [8-106] 36.3 (15.1) [9-78] 
%Correct 82% (14) [43-100] 78% (17) [31-100] 

 

These results are fairly comparable to Tomaka 

et al.’s (1993) data of 61 attempts per block of 

7’s for their subjects that saw the task as 
challenging and 46 for their subjects who saw 

the task as threatening.  While we do not know 

the variance in Tomaka’s data, we can compare 

it to this data assuming that the variance in each 

case is equivalent.  If we do so, for number of 

attempts and number correct there is not a reli-

able difference between this data and Tomaka et 

al.’s (1994) threatened condition t(36)<1, 

however, there is a reliable difference between 
this data and his challenged condition t(36) > 4, 

p<0.05.  There is also a reliable difference for 

proportion correct, with Tomaka’s subjects being 

correct more often (91% and 92% correct, 

respectively).   

A wide range of performance is found.  Figure 

1 shows that for the first block of 7’s the number 

of attempts ranged from 8 to 106 attempts, and 

the number correct and error rates had similar 

variance.  The second block, the 13’s, had similar 

variance.  The range of these scores suggests 

more individual variability than implied by 
Tomaka et al.’s values or the means in Table 1.   

Error rates by sub-blocks were computed for 

subjects where the scoring sheet was marked 

with the location of the 2-min. warning.  These 

scores are shown in Table 2.  Line 3 in the table 

shows that subjects made many more errors in 

the second half of the experiment than in the first 

half (e.g., 6% of the 7’s errors were in the first 

half, 94% in the second).  This trend appeared to 

be consistent across problem types:  On the 7’s 

problems, 33 of the 34 subjects increased their 
errors in the second sub-block; on the 13’s, 30 

subjects increased their errors.   

 
Figure 1.  Histogram of attempts and errors for 

the 7’s block.   

Table 2.  Serial subtraction performance before 

and after the 2-min. warning. 

  7’s   13’s  

(N=34) Pre-2-

min. 

Post-2-

min. 

Pre-2-

min. 

Post-2-

min. 

Errors  0.94 (1.3)  6.65 (3.7)  1.15 (1.9)  6.58 (4.1) 
Min/max  0/5   1/20  0/8  1/26 
Error %   6 (12)  94   13 (21)  87 
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These errors could have occurred either be-

cause of fatigue, the cumulative effects of stress, 

memory effects such as proactive interference, or 

perhaps due to the interruption.  Or, it could be 

due to a combination of these effects.  This effect 

is not surprising, in that many theories of stress 
predict that one starts out good and gets worse as 

time progresses (Ritter et al., 2007).  More fine-

grained human data, which we are preparing 

from another study, will be required to see where 

and how the increase in errors occurs.   

Summary of Study 

The data from this study extend the details of 

how serial subtraction is performed.  We provide 

further details on this task, including means, 

SDs, and ranges on subtraction attempts, correct 

subtractions, and errors by sub-block.  This study 

also provided data on another problem size 

(13’s).  The 13’s problems appear to be slightly 

more difficult than the 7’s, which might be 

expected (13’s problems have about 38% more 

simple subtractions, and this ratio here is 30%).   

The results confirm the rate of subtractions by 

7’s for 4-min. blocks previously found, but the 
rates found here are slightly slower than Tomaka 

et al. (1993, exp. 2) found.  There may be several 

reasons for the lower number of subtractions per 

4-min. block here than in the Tomaka et al. 

study.  The subjects in this study may have been 

in a more threatening condition.  While Tomaka 

et al.’s subjects were connected to an EKG, 

subjects in this study were connected to a blood 

pressure machine, had an indwelling catheter in 

their arm, and their subtraction attempts were 

preceded by a talk to a video camera on “an 
embarrassing incident.”  Tomaka’s subjects had 

a longer and more relaxing break between 

sessions than did these subjects (5 min. rest vs. a 

word problem set that took about 4 min.).  

The results show a trend to increasing errors 

with time.  Nearly all subjects made most of their 

errors in the second half of the tasks.  While we 

cannot see exactly where the errors occurred, it 

does appear that either the warning or the time 

on task eventually leads to errors.  

The Serial Subtraction Model 

ACT-R 6.0 (Anderson et al., 2004) is a useful 

architecture to model this task for three reasons: 

(a) It provides a subsymbolic level to implement 

changes in processing; (b) it permits the parallel 
execution of the verbal system with the control 

and memory systems, which appears to be im-

portant for this task; and (c) ACT-R has been 

used for other models of addition and subtraction 

developed by other researchers. Therefore, the 

representation of integers and mathematical rules 

can be transferred from these to other math 

models. 

Overview of ACT-R 

ACT-R is a two layer modular architecture based 

on the production system framework. One layer 

contains symbolic representations and has a 

serial flow in that only one production can fire at 

a time. The second layer is a sub-symbolic layer 

with numeric quantities as representations that 

are the result of computations performed as if 

they were executed in parallel.  

Figure 2 shows ACT-R’s modular architecture. 

The ACT-R modules communicate through buff-

ers, which can hold a single copy of a declarative 
memory chunk. The default set of modules can 

be partitioned into Perceptual, Motor, Control, 

Memory and Representation Modules. The 

model presented in this paper exercises the 

Declarative, Procedural, Goal, Imaginal, and 

Speech modules. This section describes the 

details of these modules at the level necessary 

for understanding our model.  

 

Figure 2.  The ACT-R 6 Architecture. 

The Declarative Module and the Retrieval 

buffer make up the declarative memory process. 

Declarative Memory contains chunks that are 

typed slot-value objects representing facts. At 

the sub-symbolic level chunks have a numerical 

activation value, which quantifies memory 

operations. Activation in this model is 
determined by the recency and frequency of use 

of the chunk plus a component that reflects 

retrieval system noise. Productions request the 

retrieval of the chunk from Declarative Memory 

that has the highest activation among all chunks 

that match a specified retrieval pattern above a 

retrieval threshold. Activation represents the 

degree to which the chunks have been learned 

and decays over time. Chunks are either created 
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initially or are created during processing. For 

initially created chunks, the activation can be set 

as if the chunk had been created at some date in 

the past and had been previously used. Chunks 

created during processing are created with a 

specified base level of activation.   
The Procedural Module contains Procedural 

Memory that consists of condition-action rules 

(productions). The productions represent proce-

dural knowledge. At each cycle, the conditional 

constraints specified in the productions are 

matched against the contents of the buffers. All 

matching productions are entered into the 

Conflict Set. The production to execute is deter-

mined at the sub-symbolic level by calculating a 

utility value for each matched production. The 

production with the highest utility is executed, 

which consists of performing the operations 
specified in its actions.  

The Imaginal Module buffer implements a 

problem representation capability. In the Serial 

Subtraction Model the Imaginal Buffer holds the 

current 4-digit number being operated on (i.e., 

the minuend) and the subtrahend.  The Goal 

module and goal buffer implement control of 

task execution by manipulation of a state slot. 

The Speech Module and Buffer speak the re-

sult of each subtraction. The rate of speech is a 

parameter that specifies the rate in seconds per 
syllable. 

The model 

Our model of serial subtraction described starts 

with a main goal to perform a subtraction and a 

borrow goal to perform the borrow operation 

when needed.  Both types of goal chunks contain 
a state slot, the current column indicator, and the 

current subtrahend (i.e., the number being sub-

tracted).  The current problem is maintained in 

the Imaginal Buffer. This buffer is updated as the 

subtraction is being performed.  

The model starts out with an integer minuend  

(i.e., the number being subtracted from) of 4-

digits. All numbers in the model are chunks of 

type integer with a slot that holds the number. 

The model also contains subtraction and addition 

fact chunks whose slots are the integer chunks 
described above. This representation of the inte-

gers and arithmetic facts has been used in many 

ACT-R arithmetic models and therefore is a 

good example of reuse. 

The model outputs the answer by speaking the 

4-digit result. It has two strategies for answering. 

The calc-and-speak strategy speaks the result in 

parallel with the calculation of the answer. That 

is, if the current problem is subtract 7 from 8195 

the model would have the speech module speak 

“eighty one” while the operation of subtracting 

chunk seven from chunk five was being 

performed. The other strategy is a basic strategy 

where the answer is spoken only after the entire 
subtraction has been performed.  All results here 

are obtained using the calc-and-speak strategy. 

The model determines if a borrow operation is 

required by trying to retrieve a comparison fact 

that has two slots, a greater slot containing the 

minuend and a lesser slot containing the subtra-

hend. If the fact is successfully retrieved then no 

borrow is necessary, otherwise a borrow subgoal 

is created and executed. 

Borrowing is performed by retrieving the addi-

tion fact that represents adding ten to the minu-

end.  The subtraction fact with the larger minuend 
is retrieved. The model then moves right one 

column by retrieving a next-column fact using 

the current column value as the cue. If this 

retrieval fails then there are no more columns so 

the borrow subgoal returns back to the main task 

goal. If there is a next column and its value is not 

zero then one is subtracted from it by retrieval of 

a subtraction fact. If the value was 0 then the 

problem is rewritten in the Imaginal Buffer with 

a 9 and the model moves to the next column and 

repeats the steps discussed above, returning to 
the main task when there are no more columns.  

If the answer is incorrect, the problem is reset to 

the last correct answer. 

In the main task when the subtraction is com-

plete, the problem is rewritten in the Imaginal 

buffer and the model speaks the answer using 

one of the speaking strategies.  

There appear to be three important parameters 

for this model.  The rate that the model speaks is 

controlled by the syllables-per-second parameter 

(SYL). The retrieval time is controlled by the 

base level constant (BLC) and decay parameters. 
The error rate for retrievals in this model is due 

to the activation noise parameter (ANS). In 

collecting the model data these parameters 

(except the decay parameter) were varied to pro-

duce outcomes discussed in the results section.  

The Model and Data: Matching the 

Range of Human Performance 

The model’s average performance with values of 

SYL=0.15 s/syllable (ACT-R default), ANS=0.1, 

and BLC=1 (ACT-R default) was 77 attempts 

with 83% correct, with no values below 68 

attempts. This does not match the distribution of 

human data.  Thus, we started to search for 
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parameter values and parameter value sets to 

match our subjects’ performance.   

Figure 3 shows a summary of a parameter 

sweep on these parameters (ANS: 0.01 to 0.71 

by 0.035, SYL: 0.01 to 0.68 by 0.035, and BLC: 

1 to 1.95 by 0.05, 1 run/value, 8,000 total runs).  
The plot shows, for ranges of parameter values, 

how many runs (across the sets of other 

parameter values) were within the range of 

subject performance for number of attempts and 

% correct. The lines on the left are for SYL and 

ANS. These lines show that very fast speaking 

rates are too fast, but otherwise there appear to 

be a relatively wide range of acceptable values.  

The other line shows that as ANS increases, the 

percentage of runs that are within the range of 

human performance increases as well, and then 

drops off.  The line to the far right is for BLC.  It 
shows that BLC=1.6 (and 1.85) led to a local 

maximum number of runs that were within our 

subject range. (The percentages of useful model 

runs in Figure 3 appear to be somewhat low 

because, for example, the point at 1.5=BLC 

contains all the values for SYL and ANS, 

including quite poor combinations.) 

Table 3 and Figure 4 thus show the distribu-

tion of performance with the peaks of the pa-

rameters tested in Figure 3 (SYL=0.15, 

ANS=0.38, BLC=1.6 and 1.85). These two 
distributions have more runs that are within the 

range of performance by the subjects (which is 

shown in Figure 3), but the resulting 

distributions of performance shown in Figure 4 

are less like the subjects’ performance than the 

default parameters.   

Figure 4 suggests that a distribution of 

parameters is likely to be more representative of 

the range of subject performance.  The settings 

of the model shown in Figure 4 appear to match 

individual subjects (or small sets of subjects) 

much better than they match the whole 
distribution.  We believe this is because the 

subjects have different speaking rates, different 

resources (e.g., working memory and 

knowledge), different appraisals of the task (and 

thus different noise and anxiety settings), or 

other differences we have not yet explored. 

Table 3.  Performance by the model on 4-min. 

blocks of 7’s and 13’s, with SD and ranges for 

SYL=0.15, ANS=0.38, and BLC=1.85). 

(N=100) 7’s 13’s 
Attempts 58.3 (2.2) [56-68] 44.3 (1.95) [39-50] 
%Correct 65.7 (21.5) [2-84] 85.3 (13.1) [27-98] 

 

 
Figure 3. Summary of performance within the 

range of subject performance (for attempts and % 

correct) for 7’s problems. (Each point is 400 runs.)  

Figure 4.  Distribution of attempts (errors not 

shown) for the 7’s problems for the model with 

better settings and the human data distribution.   

Discussion and Conclusion 

The default settings for ACT-R lead the model’s 

performance to match only part of the human 

data.  Examining performance with a wider 

range of parameter settings suggests that individ-

ual differences are what give rise to the distri-

bution that is observed. This is an interesting 

result, as it suggests ACT-R 6 produces peaked 
distributions of performance for each setting of 

parameters.  This indicates that we may be able 

to fit to the average subject, but to fit the sub-

jects’ distribution we will have to use a set of 

parameter settings—the fit is not likely to be a 

single number, but will be matching of the 

distribution of individual differences.  

Implications for Serial Subtraction 

The analysis here confirm that utterance rate, 

noise, and base level activation are important in 

this task. In particular, the development of output 

mechanisms (speech rate) for architectures is 

important but somewhat unexplored.  
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There are a few further measures that would be 

useful for characterizing behavior on serial sub-

traction. For example, it would be interesting to 

know how the pace of subtractions, not just 

errors, changes over time.  Do subjects get faster 

or slower over time? The error rate could in-
crease because they are performing more sub-

tractions, or it could be that they are performing 

them more poorly over time.  Similarly, it would 

be interesting to know what errors subjects are 

making.  Are they misretrieving the sub-answers, 

or are they forgetting to carry or to decrement?  

How does vocalizing while you are doing 

subtractions interfere with serial subtraction?  

We are working on these questions. 

Implications for Architectures 

This model and comparison show that distribu-

tion of response times and performance variables 

provide an additional useful, free, inexpensive, 

and strong constraint—on individuals and on 

population predictions. 

The model was designed to exploit the inte-

grated cognitive systems approach that lies at the 

core of ACT-R 6. The model performing the 
whole task including speaking illustrates this 

theoretical stance that is an important topic in 

current cognitive architecture research (Gray, 

2007).  Finally, we are also closer to a position to 

apply a set of theories of stress implemented as 

overlays to ACT-R (Ritter et al., 2007) to a 

sample data set to test the theories of stress on a 

task with detailed human data. 
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