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Herbal (Haynes, Cohen, & Ritter, 2009) represents human 
behavior based on the Problem Space Computational Model 
(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). The 
PSCM is a theory of cognition that defines human behavior 
as movement through problem spaces using operators. To 
represent models, Herbal uses XML as basis forms of high-
level language, and Herbal compiles them into low-level 
rule-based representations that execute within a cognitive 
architecture, Soar, and intelligent agent architecture, Jess. 
Users can create them with a GUI or directly in XML.  

Herbal is implemented as an Eclipse plug-in, which 
provides a popular graphical development environment. It 
uses Eclipse’s powerful functions for creating and 
maintaining agents, so it enables model creators to make 
models more easily. 

We have started to create an ACT-R compiler in Herbal 
because of these features. Although several easy to use 
frameworks exists to develop ACT-R models, such as ACT-
Simple (Salvucci & Lee, 2003), and G2A (St. Amant & 
Ritter, 2004), they cannot represent more than KLM-GOMS 
or GOMS models. 

Matching the Herbal Components with ACT-R 
Components 

We developed the ACT-R compiler based on the Jess 
compiler, because the Jess compiler compiles into 
declarative knowledge and procedural knowledge, and its 
output has a Lisp-like syntax similar to ACT-R. The current 
version of Herbal has 6 basic components, Agent, Problem 
Space, Operator, Condition, Action, and Type. These can all 
be mapped onto ACT-R components as shown in Table 1, 
which includes their Jess correspondences as well.   

 
Table 1: Herbal components and their implementation in 

Jess and ACT-R. 
 

Herbal Jess ACT-R 
Agent Agent Model 

Problem Space Defmodule Slot of Goal buffer 
Operator Defrule Production 
Condition Condition of defrule Condition of rule 

Action Action of defrule Action of rule 
Type 

- Field 
Deftemplete 

- Slot 
Chunk-type 

- Slot 

We added an additional component, called Declarative 
Memory, in the Herbal environment. With this component, 
users can represent hierarchical or sequential tasks in an 
ACT-R model easily. The Declarative Memory consists of 6 
components: library, element name, parent name, first child 
name, next sibling name, and action name. Through these 
components, users can layout their whole task hierarchically 
or sequentially, and the relations among tasks are shown in a 
tree form in the bottom of the user interface. Based on these 
relationships, the productions are made by ACT-R compiler.  

To explore the flexibility of this high-level compiler 
approach, we added a user expertise compiler flag to Herbal. 
It leads to compiling either a novice or an expert user 
model. The expert model does not retrieve declarative 
memory items when it executes subtasks. However, the 
novice model retrieves declarative memory items to move to 
the next task step according to the goal hierarchy in 
declarative memory. Figure 1 shows the difference between 
Expert and Novice model.  

 

 
 

Figure 1: The Structure of the Expert and Novice model. 

Experiment 
We use a simple dialing number task to show a simple 
model. This task is decomposed into a set of hierarchical 
subtasks to dial each component and then the numbers in 
each component. It consists of four subtasks: Long Distance 
Code, Area Code, Exchange, and Extension. Each subtask 
has its own subtasks (the buttons to press), and all of these 
subtasks are related with other tasks and subtasks as a 
parent, child, or sibling.  

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

466



We chose to dial 1 (814) 865–4455, so the Long Distance 
has a subtask, press-1, and the Area Code has subtasks, 
press-8, press-1, and press-4. The Exchange and Extension 
have similar subtasks. So, the total number of tasks is 11 
leaf nodes, 4 sub nodes, and one task node, and these tasks 
are stored as 16 declarative memory type nodes in the 
Herbal environment. 

Using the ACT-R compiler with the user expertise 
compiler flags, we generated expert and novice models. The 
expert model produces the next task without retrieving a 
declarative memory using 17 rules and 16 chunks, however, 
the novice model retrieves a declarative memory to produce 
the next task using 8 rules and 16 chunks.  

We simulated 10 trials per model to get mean prediction 
times. The default ACT-R parameters were used (these are 
carried in the compiler). The expert model’s predicted 
times, shown in Table 2, did not have any variance with the 
ACT-R default values, however, there exist differences 
among the trials in the novice model.  In addition to the 
ACT-R cognitive modules’ times, we added keystroke times  
(typing random letter) to each model to get total predicted 
time (we do not yet use ACT-R/PM for motor output).  

For comparison, this task was analyzed using the KLM-
GOMS theory (Card, Moran, & Newell, 1983). For the 
keystroke operator, we use the same time of “typing random 
letter”, 0.50 s. The number of keystrokes is 11. Thus, the 
total time spent in key stroking is 5.5 s (as used above). For 
each mental operator, we use the default preparation time 
(TM) of 1.35 s. A user mentally prepares what numbers to 
press, what to retrieve from memory, and what to do for the 
next step. In this task, a mental preparation for each subtask 
was counted: Long Distance Code, Area Code, Exchange, 
and Extension. Thus, the total time spent in mental 
preparation is 5.4 s. Therefore, the total execution time from 
the KLM is 10.9 s (Texecute = TK +TM = 5.5 + 5.4). Table 2 
shows above result with respect to prediction time, and the 
number of rule firings. 

 
Table 2: The mean, standard deviations of prediction 

time, and the number of rule firings in each model, and 
KLM model for the simple dialing number task (N=10). 
 

 KLM Novice Expert 
Mean 10.9 s 13.48 s 6.35 s 

SD 0 s 0.79 s 0 s 
Rule firings - 20 16 

 
The Herbal/ACT-R novice model is a bit slow compared 

to the KLM predictions, as it should be.  The Herbal/ACT-R 
expert model is a bit fast.  It is the case, that the Herbal 
ACT-R compiler makes different predictions across the 
expert and novice models, and it may be the case that 
subjects when they perform this task are best represented by 
a model between these two extremes, or by a distribution of 
user models, as John (1996) proposed . 

Discussion and Conclusion 
We started to develop an ACT-R compiler and declarative 
memory component in the Herbal environment. This 
compiler takes knowledge represented as a PSCM model in 
Herbal, and in addition to compiling it in Soar and in Jess, 
compiles it into ACT-R.  This compilation process was 
tested and appears to show some promise for creating more 
sophisticated models more easily.   

We added a declarative memory pane for representing 
hierarchical task analyses. This representation is not 
currently pretty, but allows users to represent tasks in a 
GOMS-like language. As part of this component, we 
included a way (a compiler flag) to generate both novice 
and expert models from the same knowledge set. The novice 
model accesses the declarative memory elements to generate 
behavior. The expert model is compiled so that the rules 
apply directly and keep the state on the goal.  (This compiler 
flag is not yet used by the Soar or Jess compilers.)    

The model of simple dialing number task was compared 
with a GOMS model with respect to predicted time. The 
GOMS model’s prediction time is located between our 
expert and novice model. The novice model of this task 
fired 20 rules, and the expert model fired 16. If a task has 
more hierarchical levels in it, the number of rule firings 
between these two model types will be more different. 
Because this task has a hierarchical structure (3 levels), 
there was a noticeable difference.    
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