
A Preliminary ACT-R Compiler in Herbal

Jaehyon Paik (jaehyon.paik@psu.edu)
Department of Industrial and Manufacturing Engineering

The Pennsylvania State University, University Park, PA 16802 USA

Jong W. Kim (jongkim@psu.edu)
Frank E. Ritter (frank.ritter@psu.edu)

College of Information Science and Technology
The Pennsylvania State University, University Park, PA 16802 USA

Herbal (Haynes, Cohen, & Ritter, 2009) represents human
behavior based on the Problem Space Computational Model
(Newell, Yost, Laird, Rosenbloom, & Altmann, 1991). The
PSCM is a theory of cognition that defines human behavior
as movement through problem spaces using operators. To
represent models, Herbal uses XML as basis forms of high-
level language, and Herbal compiles them into low-level
rule-based representations that execute within a cognitive
architecture, Soar, and intelligent agent architecture, Jess.
Users can create them with a GUI or directly in XML.

Herbal is implemented as an Eclipse plug-in, which
provides a popular graphical development environment. It
uses Eclipse’s powerful functions for creating and
maintaining agents, so it enables model creators to make
models more easily.

We have started to create an ACT-R compiler in Herbal
because of these features. Although several easy to use
frameworks exists to develop ACT-R models, such as ACT-
Simple (Salvucci & Lee, 2003), and G2A (St. Amant &
Ritter, 2004), they cannot represent more than KLM-GOMS
or GOMS models.

Matching the Herbal Components with ACT-R
Components

We developed the ACT-R compiler based on the Jess
compiler, because the Jess compiler compiles into
declarative knowledge and procedural knowledge, and its
output has a Lisp-like syntax similar to ACT-R. The current
version of Herbal has 6 basic components, Agent, Problem
Space, Operator, Condition, Action, and Type. These can all
be mapped onto ACT-R components as shown in Table 1,
which includes their Jess correspondences as well.

Table 1: Herbal components and their implementation in

Jess and ACT-R.

Herbal Jess ACT-R
Agent Agent Model

Problem Space Defmodule Slot of Goal buffer
Operator Defrule Production
Condition Condition of defrule Condition of rule

Action Action of defrule Action of rule
Type

- Field
Deftemplete

- Slot
Chunk-type

- Slot

We added an additional component, called Declarative
Memory, in the Herbal environment. With this component,
users can represent hierarchical or sequential tasks in an
ACT-R model easily. The Declarative Memory consists of 6
components: library, element name, parent name, first child
name, next sibling name, and action name. Through these
components, users can layout their whole task hierarchically
or sequentially, and the relations among tasks are shown in a
tree form in the bottom of the user interface. Based on these
relationships, the productions are made by ACT-R compiler.

To explore the flexibility of this high-level compiler
approach, we added a user expertise compiler flag to Herbal.
It leads to compiling either a novice or an expert user
model. The expert model does not retrieve declarative
memory items when it executes subtasks. However, the
novice model retrieves declarative memory items to move to
the next task step according to the goal hierarchy in
declarative memory. Figure 1 shows the difference between
Expert and Novice model.

Figure 1: The Structure of the Expert and Novice model.

Experiment
We use a simple dialing number task to show a simple
model. This task is decomposed into a set of hierarchical
subtasks to dial each component and then the numbers in
each component. It consists of four subtasks: Long Distance
Code, Area Code, Exchange, and Extension. Each subtask
has its own subtasks (the buttons to press), and all of these
subtasks are related with other tasks and subtasks as a
parent, child, or sibling.

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

466

We chose to dial 1 (814) 865–4455, so the Long Distance
has a subtask, press-1, and the Area Code has subtasks,
press-8, press-1, and press-4. The Exchange and Extension
have similar subtasks. So, the total number of tasks is 11
leaf nodes, 4 sub nodes, and one task node, and these tasks
are stored as 16 declarative memory type nodes in the
Herbal environment.

Using the ACT-R compiler with the user expertise
compiler flags, we generated expert and novice models. The
expert model produces the next task without retrieving a
declarative memory using 17 rules and 16 chunks, however,
the novice model retrieves a declarative memory to produce
the next task using 8 rules and 16 chunks.

We simulated 10 trials per model to get mean prediction
times. The default ACT-R parameters were used (these are
carried in the compiler). The expert model’s predicted
times, shown in Table 2, did not have any variance with the
ACT-R default values, however, there exist differences
among the trials in the novice model. In addition to the
ACT-R cognitive modules’ times, we added keystroke times
(typing random letter) to each model to get total predicted
time (we do not yet use ACT-R/PM for motor output).

For comparison, this task was analyzed using the KLM-
GOMS theory (Card, Moran, & Newell, 1983). For the
keystroke operator, we use the same time of “typing random
letter”, 0.50 s. The number of keystrokes is 11. Thus, the
total time spent in key stroking is 5.5 s (as used above). For
each mental operator, we use the default preparation time
(TM) of 1.35 s. A user mentally prepares what numbers to
press, what to retrieve from memory, and what to do for the
next step. In this task, a mental preparation for each subtask
was counted: Long Distance Code, Area Code, Exchange,
and Extension. Thus, the total time spent in mental
preparation is 5.4 s. Therefore, the total execution time from
the KLM is 10.9 s (Texecute = TK +TM = 5.5 + 5.4). Table 2
shows above result with respect to prediction time, and the
number of rule firings.

Table 2: The mean, standard deviations of prediction

time, and the number of rule firings in each model, and
KLM model for the simple dialing number task (N=10).

 KLM Novice Expert
Mean 10.9 s 13.48 s 6.35 s

SD 0 s 0.79 s 0 s
Rule firings - 20 16

The Herbal/ACT-R novice model is a bit slow compared

to the KLM predictions, as it should be. The Herbal/ACT-R
expert model is a bit fast. It is the case, that the Herbal
ACT-R compiler makes different predictions across the
expert and novice models, and it may be the case that
subjects when they perform this task are best represented by
a model between these two extremes, or by a distribution of
user models, as John (1996) proposed .

Discussion and Conclusion
We started to develop an ACT-R compiler and declarative
memory component in the Herbal environment. This
compiler takes knowledge represented as a PSCM model in
Herbal, and in addition to compiling it in Soar and in Jess,
compiles it into ACT-R. This compilation process was
tested and appears to show some promise for creating more
sophisticated models more easily.

We added a declarative memory pane for representing
hierarchical task analyses. This representation is not
currently pretty, but allows users to represent tasks in a
GOMS-like language. As part of this component, we
included a way (a compiler flag) to generate both novice
and expert models from the same knowledge set. The novice
model accesses the declarative memory elements to generate
behavior. The expert model is compiled so that the rules
apply directly and keep the state on the goal. (This compiler
flag is not yet used by the Soar or Jess compilers.)

The model of simple dialing number task was compared
with a GOMS model with respect to predicted time. The
GOMS model’s prediction time is located between our
expert and novice model. The novice model of this task
fired 20 rules, and the expert model fired 16. If a task has
more hierarchical levels in it, the number of rule firings
between these two model types will be more different.
Because this task has a hierarchical structure (3 levels),
there was a noticeable difference.

References
Card, S. K., Moran, T. P., & Newell, A. (1983). The

psychology of human-computer interaction.
Hillsdale, NJ: Lawrence Erlbaum.

Haynes, S. R., Cohen, M. A., & Ritter, F. E. (2009). A
design for explaining intelligent agents.
International Journal of Human-Computer Studies,
67(1), 99-110.

John, B. E. (1996). TYPIST: A theory of performance in
skilled typing. Human-Computer Interaction,
11(4), 321-355.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., &
Altmann, E. (1991). Formulating the problem
space computational model. In R. F. Rashid (Ed.),
Carnegie Mellon Computer Science: A 25-Year
commemorative (pp. 255-293). Reading, MA:
ACM-Press (Addison-Wesley).

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In
Human Factors in Computing Systems: CHI 2003
Conference Proceedings, 265-272. ACM: New
York, NY.

St. Amant, R., & Ritter, F. E. (2004). Automated GOMS to
ACT-R model generation. In Proceedings of the
International Conference on Cognitive Modeling,
26-31. Erlbaum: Mahwah, NJ.

Proceedings of ICCM - 2009 - Ninth International Conference on Cognitive Modeling

467

