University of Nottingham
ICL Institute of Information Technology

Mechanisms for Routinely Tying Cognitive Models
to Interactive Simulations

Roberto L. Ong
MSc Information Technology specialized in
Intelligent Knowledge-Based Systems

Supervisor

Dr. Frank E. Ritter

Submitted September, 1994, in partial fulfillment of the conditions for the
award of the degree of MSc in Information Technology.

"My love is oft-times low,
My joy still ebbs and flows;
But peace with Him remains the same,
No change Jehovah knows.

I change, He changes not;
God's Christ can never die;
His love, not mine, the resting-place,
His truth, not mine, the tie."

To my parents
who taught me the ways of life
and made me what i am...

Contents

ACKNOWLEDGEMENTS

ABSTRACT

1. INTRODUCTION

1.1 Soar-Simulation Relationships
1.2 Task Objectives and Requirements
L3Paper Preview,

2. SYSTEM TOOL REQUIREMENTS

2.1 Simulation Languages o
2.2 Cognitive Modelling Tools
2.3 Soar-Simulation Communication Channels

3. EXISTING SYSTEMS FOR ROUTINELY TYING
COGNITIVE MODELS TO SIMULATIONS

3.1 Stopwatch
328imTime

4.0 SOAR-GARNET — Nott-a-bad System

41 ATC Simulation i
42Lispeye/handcode
43TheSoarModel
44 8SoarCeye-codeoviiiiiii
45UNIX Sockets

452LispSocketCode
453 SoarSocketCode

S. A SAMPLE RUN

51ThelOPattern,
5.2 The Daydream Pattern
53TheRest
54TheFix

6. ANALYSIS OF THE MODEL DURING A
SAMPLE RUN

6.1 Choices Analysisc.c i,
6.2 Time-in-slot Analysis oo,

..........

..........

.........

.........

.........

.........

.........

.........

ii

10
10
13
18

21
21
23
25
27

29
29
33
34
41
41
42
43
43
44

46
48
49
51
52

7. DEMONSTRATION OF UTILITY AND
LESSONS LEARNED

7.10ur Simple ATC Task
7.2 ToN— A complex blocks worldtask

8. THE ROAD AHEAD

9. CONCLUDING REMARKS
REFERENCES

A. ATC —README

B. ATC-Soar — README

C. MONGSU — README

D. A Sample Run

D.1 Sample Run 1 (Wed Sep 14 13:21:031994)
D.2 Sample Run 2 (Thu Sep 15 13:01:561994)

E. Air Traffic Control (ATC) Simulation Package

E.1 ATC-Garnetlisp,
E2ATCnlisp
E3 ATCHilesload

F. The ATC Soar Model

G. Mertz-Ong-Nerb-Gary Socket Utility (MONGSU)

G.1std-soar-socket.C
G.2soar-socket.c
G3socketlisp
Gdstdiodisp

..........

..........

..........

.........

60
60
62

64

66

68

70

74

76

81
81
97

117
117
126
130

131

140

......... 140
......... 145

158

ACKNOWLEDGEMENTS

I began doing this project after a series of marathon discussions with Dr. Frank E. Ritter. Through
that short period of time, he took me in as his supervisee. From that time on, sheer long hours of
hard work was poured into this project to bring forth what I think is quality and worthwhile work.

I would like to send my deepest and sincere gratitude to Dr. Frank E. Ritter, for his
patience, encouragement, numerous advice, and never-ending support throughout the duration
of this project. For the numerous meetings we had about work and career advices. For all the
help, the humour, the yelling that I sometimes needed and most impbrtantly, for bringing out the
best I could possibly be. Frank, what can I say - I take my hat off. Thank you for being a mentor
and friend.

To the members of the Cognitive Modelling Unit, Sarah Nichols, Josef Nerb, and Martin
Kindsmueller, that was formed during this summer from which I am a part of, thank you for the
friendship, the laughter and the companionship. Particular mention is made to Josef for his
valuable assistance in Soar and Lisp and for teaching me new things.

To the Psychology Department for providing me with the necessary accounts, software,
and assistance - thank you,

I am also grateful to my friends, for all their support and encouragement. In particular to
Irene Low, for the humour, the friendship, and for believing in me. And to my special friend,
Felicia Teo, thank you for the friendship, the laughter and the inspiration you have given me that
I couldn't think of having without,

Finally, to my friends and family back home, though far away yet they make me feel at

home. I - THANK YOU.

ABSTRACT

Creating simulations has been hard; creating cognitive models (i.e., Soar models) is equally hard.
The interface that would make the two processes talk to each other is also difficult. Several
projects have developed systems (or mechanisms) for tying cognitive models to simulations. But
these projects fell short in several ways, and they are not powerful enough to be used for

interactive real-time tasks.

This project presents a tool and mechanism for routinely tying a Soar model to an
interactive simulation. We looked at how to create an environment that allowed both Soar models
and subjects to talk to an interactive simulation (e.g., Air Traffic Control). The integration of both
the Soar model and the simulation is realized through an interprocess communication (IPC)
mechanism in UNIX called sockets. The generality, robustness, and the lack of need to modify
sockets is what allows the process to be made routine. But the manual, supplying code for Soar
and code for Garnet, which is the whole system, is what will make it routine. Thus, it would allow
Intelligent Knowledge-Based Systems (IKBSs) to be routinely hooked up to simulations —

similar to providing a routine way to get to camp.

The results of doing this project will illustrate the following things: (a) an ATC simulation
that displays planes, beacons, and other objects; (b) a Soar model that performs the basic ATC
task; (c) an improved socket utility ready for routine use, used by both the ATC simulation and
another Soar model; (d) the different methods of interpreting a Soar model doing the ATC task;

and (e) new ways of doing Input/Output in Soar.

1. INTRODUCTION

How do humans interact with the real world? It is a process that starts when a human subject first
interacts with a real-world task, for example, landing an airplane. He tries to learn how to
interpret data (e.g., gauges, compass, and so on) and task instructions. He then applies this
knowledge to land planes safely and successfully. Over time, with constant interaction with the
task, the subject acquires knowledge to easily land planes. This routine procedure of interacting
with the task is particularly important to cognitive modelling. Cognitive models try to model
human behaviour. Thus, to interact with the world like human subjects do, they must acquire
procedures that make routine interaction with the world easy. Yet, how does one routinely tie a

cognitive model to an interactive task like landing airplanes?

As a start, researchers in recent years have been developing systems (or mechanisms) that
allowed Soar models to routinely interact with simulations of real-time tasks that both subjects
and model can use. Systems like Stopwatch (Rogers, 1994), SimTime (Nelson, 1994), and New-
Soar-IO (Pelton, 1994) have offered a way to routinely tie a Soar model to a simulation. They are
applications ranging from timing behaviour in Soar to interacting with the external world through
simple input/output routines. But with their limitations of just being able to perform simple tasks
(New-Soar-10) and not interacting with a real-time task at all (Stopwatch and SimTime), a new
approach must be explored and developed to resolve these limitations. This new system should
have the ability to create, (a) a simulation of a real-time interactive task that requires real-time
decision making, (b) a Soar model that interacts and learns like a human subject, and (c) a
communication (or interface mechanism) channel that is robust, stable and general. The

communication channel would provide the mechanism that routinely ties a Soar model to a

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

simulation. It must be expandable and powerful enough to illustrate the benefits of routinely tying

cognitive models to simulations.

This project explores the possibility of using this routine approach to Simulation (by Soar)
tie with a model of human behaviour in an interactive real-time (RT) task — an Air Traffic Control
(ATC) simulation. It will be attempting to model the ATC task by creating a simulation, a Soar

model,' and allowing them talk to each other.>

1Soar is an example system for cognitive modelling, which will be discussed further in Chapter 2. A certain
familiarity is assumed.

For brevity in writing, the use of the word simulation will refer to the simulation of the world, the model will
refer to the Soar model, the interface to the communication medium between the model and the simulation, and the
system to refer to the entire system being developed in this project.

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

1.1 Soar-Simulation Relationships

Figure 1 shows the three possible relationships between a Soar model and a simulation: (a) as a
knowledge-analysis tool, (b) as an interacting performance model, and (c) as an embedded user

model.

(@) (b) ()
For Interactive, Embedded
Knowledge- real-time user model
analysis model or assistant
Subject Subject Subject

y v
Y) 4
Interactive Interactive Interactive
World World World
N Soar
World
Soar
Soar

Figure 1. Possible relationships between Soar and a simulation.

The distinctions primarily arise from the way the Soar model interacts with the world. In
Figure 1a, two simulations must be created, one for the subject being modelled and one for the
model. This kind of relationship is desirable when the subject's world is difficult to model
realistically or the subjects have already been run. The problem arise in the increased amount of
work to be done (i.e., creating two simulations) and in making the two simulations equivalent.
For Figure la to be implemented properly, every effort should be made to keep the two
simulations equivalent, for example, presenting the same view of the world, providing the same
operations, and ensuring that the operations provide the same result (Ritter & Major, 1994). In

3

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

Figure 1b, a situation occurs where the model interacts with the same simulation the subject does.
In addition to reducing the number of simulations that must be implemented, this ensures that both
model and subject see the same world, and provides a rapid feedback loop for developing the
model. This approach is particularly important, and a necessary step, if one is to go a step further
in creating the situation in Figure 1c. Figure 1c depicts a situation where the model can be used
to support the user. This can occur by using the model to choose likely operators to present or
highlight, or more likely to allow the model to directly provide assistance to the user by
performing sub-tasks. Over time, these approaches will suggest where the interface could be made

easier for the subject.

In many cases, the utility and effectiveness of each of these approaches will be dictated
on how successfully they are implemented and used. This project provides an opportunity to

investigate just how far one could go in implementing one of these approaches, namely 1(b).

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

1.2 Task Objectives and Requirements

The project explores the possibility of modelling human problem solving that involves extensive
interaction with the outside world. The task is to create the system shown in Figure 2, an
interactive, real-time model consisting of three parts, (a) the interactive world, (b) the Soar model
of the subject, and (c) an interface between the Soar model and the simulation that is reusable and

easy to use.

Subject
A

4 /
Interactive
World

4 y Interface
Soar model
of subject

Figure 2. Interactive Performance Model.

The main goal of this undertaking is to implement the above system in an Air Traffic
Control (ATC) simulation task as illustrated in Figure 3. The implementation is broken down into
three parts, the ATC simulation (on the left), the Soar model (on the right), and the interface (at

the bottom).

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Introduction

Display

subject
planes <>

Garnet
ATC Simulation
\ PS to do ATC
N LISP Soar
eye/hand code C-eye code
Lisp Sockets Soar Sockets
UNIX Sockets

Figure 3. System implementation.

The ATC simulation is the interactive world that this project simulates. It does the

handling of incoming planes, landing planes, overflights, and other things covered under a grossly

simplified ATC task. This task differs from a real ATC task in several important ways (Nolan,

1990): (a) real ATC uses paper flight strips to keep track of planes' altitudes, heading, and

estimates of crossing points in time and space, (b) real ATC uses sectors and zones, (c) real ATC

handles planes through voice commands, and a host of other ways. The big displays one often

expects, like those found in control towers in movies, are used as static, current display, while the

flight strips are illustrated as plane information about what and where things are going to happen.

In this task, there will only (initially) be the display, which will be rather dynamic. Table 1

summarize the requirements needed for the creation of the simulation.

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

The simulation's actions must be recorded.

»
> The simulation must update itself approximately every 200 ms (5Hz).
> The subject and the model should see the same thing. This implies a theory of

visual processing.

> All controls must be manipulable by model and by a subject.

> A visual display for two types of users, subjects and analysts.

The Soar model is a simple cognitive model that would (initially) be for testing. This
model will act as a client (in a UNIX client-server model) and will initiate conversation
proceedings with the simulation (this conversation will serve as the medium from which all
learning will take place). It can issue commands to the simulation, for example, 'send-scope-info',
and in turn receive data from the simulation depending on the command issued (here, information
of all planes seen in the radar scope). The incoming data are interpreted, manipulated, and then
deposited on the top state as working memory elements (WMEs) to facilitate learniﬁg. The
objective of making this model simple is to be able to establish the link between the Soar model

and simulation, and provide routine interaction between them.

The interface is the communication link between the simulation and the Soar model. It is
the mechanism that provides the most basic communication channel that would link the simulation

and the model, and allow two-way communication between them.

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

We started with a socket utility from Mertz (1994). We then modified and adapted this
code, so that it could truly be used as a utility for use in the ATC task and other similar tasks with
little (or no) modifications. As a result, this work was generalized and cleaned-up enough so that
it could be done routinely. This allowed Intelligent Knowledge-Based Systems (IKBSs) to be
hooked up to simulations. Moreover, this work would provide a way to explore a less developed
area of Artificial .Intelligence (Al) and Psychology, and will offer a way for intelligent agents to
have a place to play and learn. In addition, it will also serve as a foundation from which to build

systems that model human behaviour in all aspects of doing interactive RT tasks.

In many cases, simulation tasks are likely to change over time. The exact parameters of
the simulation are not well specified, and will only be found by building it. The Soar model will
also influence task development. Once the system has been created and initially tested, it may
suggest ways to modify the simulation, either to explore additional behaviour, or as a way to
explore the effect of the world on how the task is solved. Moreover, complexity can be added to
the simulation for it to acquire real-time ATC task, and to the Soar model for more complex

learning that rivals that of real ATC experts.

In summary, the project's objectives are the following: (a) to extend our understanding of
the nature of tying cognitive models to simulations; (b) to provide a general interface between
simulations and Soar models; (c) to explore tools for modelling real-time cognitive behaviour by

building a simple Soar model of the task; and (d) to learn new ways of doing and interpreting I/O

for Soar models.

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Introduction

1.3 Paper Preview

This paper starts by laying out parameters for the tools required in building the system. Existing
tools are referenced from a technical report by Ritter and Major (1994)° emphasizing the tools
chosen for this project with respect to their strengths and weaknesses in comparison to the other
tools reviewed in the report. A review of existing systems (that offer a way of routinely tying
cognitive models to simulations) then follows describing each of them and providing a summary
of their usage. This will also include the lessons that these systems provide and the limitations they
have concerning the objectives and requirements layed out for this project. Succeeding chapters
discuss, (a) the implementation of the system, (b) a description of how the Soar model runs
through a sample run, (c) the analysis of the Soar model, and (d) the usage of the interface
mechanism provided by this project and by others. These chapters describe what each part of the
system is doing, and how each part is implemented. A description of a sample run (including an
analysis) makes it clearer how the task is performed. Also included in these chapters is a
discussion of how the interface mechanism has been used by other tasks, stating the degree of

generality that this interface provides and additional enhancements that were found to be needed.

Penultimately, we look at the road ahead and take a glimpse of where the project is
headed. This direction would illustrate what this project can achieve in actually modelling human
behaviour in an ATC task. Finally, the concluding remarks summarize the achievements, failures,

and recommendations from this project.

>This technical report reviews tools and tool requirements for developing simulations for Soar to play with.
It covers discussions on simulation languages, development environments for Soar, and communication channels for
developing an Air Traffic Control (ATC) task and the Tower of Nottingham (ToN) task to provide routine interaction
between simulation and Scar model.

2. SYSTEM TOOL REQUIREMENTS

Tools form the basic requirement in the performance of any task. They provide valuable assistance
to bring a task to a completion within the allotted time and at the right specifications. It is
therefore important that one select the right tools (or building blocks in this case). Choosing the
right tools mean correct approach to the task leading to its faster completion. Choosing the wrong
tools mean doing the task wrongly, sometimes prolonging its completion and in the worst case

doing the task all over.

This project like any other task requires that tool requirements be layed out before work
is started. Each part of the task, (a) the simulation, (b) the model, and (c) the interface
necessitates requirements be specified as the basis of selecting tools. The technical report by Ritter
and Major (1994) provides a detailed review of existing tools and requirements specifically for
doing this project (and similar projects). This report is summarized here without further reference.
The tools used and described here are taken from it. The following sections give a description of

the requirements for each part of the task and a summary of the tools used.

2.1 Simulation Languages

Simulation languages come in different varieties, they may be standard programming languages
or special languages and toolkits built solely for creating simulations and interfaces. Thus, the
choice of the simulation language should be based on compliance with our requirements and
specifications. Table 2 summarize the simulation language requirements needed in building the

ATC simulation (the simulation).

10

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

II Table 2. Simulation Language Requirements.
» It should provide visual interface for the subjects and model to use.

» It must update itself approximately every 200 ms (5Hz).

» It should provide real-time information as the task will be dependent on this to carry out

real-time decisions.

» It can talk to a Soar model. This will enable both the simulation and Soar model to talk

and pass data to each other.

» It should be easy to learn so that many can use it to build simulations for IKBSs to play

with,

» It must be cheap or Free.

Garnet

Garnet* (Myers et al., 1993) is a user interface development environment for Common Lisp and
X11 or Macintosh. It calls itself a "graphical user interface management system," but in reality
it can be treated as an object-oriented graphical interface toolkit and building system. Garnet is
a large scale system containing many features and parts that help you create graphical, interactive
user interfaces. Some of these features’ include, (a) a custom-oriented programming system that
uses a prototype-instance model, (b) automatic constraint maintenance, and (c) a built-in, high-

level input event handling.

*GARNET is an acronym for Generating an Amalgam of Real-time, Novel Editors and Toolkits.

SGamet-FAQ (Myers, 1994) gives a detailed overview of Garnet features, hardware requirements, and
frequently asked questions.

11

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

Garnet is the preferred simulation language because it could meet the requirements in
Table 2. The simulation will need to run on what is natural for the model (UNIX for Soar) and
what is natural for the subject (this will be a system that can provide good timing, such as the
Macintosh or PC). The fact that Garnet is written in Lisp (such that learning the language will be
easy because of this author's familiarity with Lisp and with most Al researchers' familiarity) gives

advantages of the many features in Lisp, including speed of developing code.

Garnet provides users with an object-oriented programming environment that makes use
of objects, gadgets, interactors, and packages.® It works as a prototype-instance model that
allows graphical objects to be created by instantiating an object or group of objects (e.g.,
aggregadgets). For example, to create a representation of a prototype plane, an aggregadget must
be created consisting of two small circles and a text tag (i.e., the representation of a plane used
in this system). After the prototype has been created, you just need to create instances of that
aggregadget to create more planes, say 10, 20 or more. And to make the planes move, an
interactor is created and attached to the aggregadget. Interactors are Garnet tools used for
creating user interfaces. They allow specific actions (e.g., change an object's position) to Be done
in respond to user actions, such as a button press or a mouse click. In our case, an animator
interactor (further discussed in Chapter 4) is used. This interactor (as used in our simulation)
makes its associated plane to move continuously across the radar scope. Thus, it makes building
user interfaces easy. This feature and many others make Garnet a good tool to use (especially if

one knows Lisp), and one that is easily implemented.

®The Garnet Reference Manual Version 2.2 (Myers et al., 1993) provides a complete description of Garnet,
its features, and usage.

12

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

Other simulation languages like cT, SUIT and GALAXY are alternate tools that can be
used in this task. cT is a Pascal-like language that includes a visual display and simple user-
interface components. It is a low-level language that gives an advantage of easily programming
it. Also, the same code (including the displays) can be run from UNIX machines to Macintoshes
to PCs (i.e., it is quite portable). However, this language when used to create simulations needs
a lot of coding (therefore unsuitable) because it is relatively a low-level language and supports no
structures. SUIT is a C-based system that promises to be easy to use. If a Lisp-based system ends
up being scrapped, this system would be a logical choice. GALAXY, the last of theses
alternatives, appears to be a very useful system (based on its features and reviews), but for reasons
of cost, it will not be used. These alternatives and many others could be used instead of Garnet,
but availability, and being familiar with Common Lisp makes Garnet the best choice. In fact, the
choice of the simulation language is a trade-off among; speed of coding, familiarity with the
language, and the features provided. If all ends up being the same, their availability and cost will

be the deciding factor.

2.2 Cognitive Modelling Tools

Two prominent cognitive modelling tools are Anderson's ACT-R and Newell et al.'s Soar. Both
architectures provide production-learning capabilities and hierarchical goal structures as integral
parts of the theory. Both allow us to model the process of analogical reasoning. And importantly,
both allow us to build models containing only knowledge that could, at least in principle, be

learned using mechanisms described within the respective theory.

13

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

For this project, Soar will be used because of available resources (software and people
who know and can teach Soar), and the existence of a Soar community that provides assistance
with regards to modelling. However, a good extension for this project would be to devise a way

of porting the system to ACT-R.

Soar and (SDE)

Allan Newell (1992) calls Soar, "an exemplar of the unified theories of cognition, a cognitive
architecture, which is realized as a software system." Waldrop (1988a) says, "it is a computer
program that can learn from experience— and that may also explain the basic mechanisms of
thought." In fact, Soar is a theory implemented into a language, that seems to provide a general

model of human thought.”

According to Newell (1992), unified theories of cognition are single sets of mechanisms
that cover all of cognition — problem solving, decision making, routine action, memory, learning,
skill, perception, motor activity, language, motivation, emotion, imagining, dreaming,
daydreaming, and so on (Newell, 1992). In Newell's view, Soar is the prototype of how
researchers should devise theories of human cognition that encompass reasoning, learning,
perception, motor control, cognitive development, emotion, and perhaps even such ineffable
qualities as awareness, all within a single coherent framework. "Even if the mind has parts,
modules, components, or whatever, they all mesh up together to produce behaviour (Waldrop,

1988a)," Newell says. "It is one mind that minds them all (Waldrop, 1988a p 27)."

7Waldrop (1988a, 1988D) gives a very good introduction to Soar and the Unified Theory of Cognition (UTC).
These two articles as well as Newell (1992) are strongly suggested for reading for anyone to get acquainted with Soar

and UTCs.
14

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

The computer program known as Soar is basically a program that learns while solving
problems — any kind of problem if given the knowledge. It is a problem-solving architecture
taking the form of a hierarchical set of problem spaces, the cognitive arena where all mental
activity being devoted to a given task takes place. A problem space in turn consists of a set of
states, which describe the situation at any given moment, and a set of operators, which describe
how the problem-solver can change the situation from one state to another. When for some
reason, the process of applying operators to states cannot directly proceed, Soar recognizes an
impasse, and sets up a subgoal with its own problem space whose aim is to resolve the impasse
and allow processing to resume in the original space. In chess, for example, the problem space
would be "a chess game," a state would consist of a specific configuration of pieces on the chess
board, and an operator would consist of a legal move, such as "Knight to King-4." The task of
the problem-solver is to search a sequence of operators that will take it from a given initial state
(say, with the pieces lined up for the start of the chess game) to a given solution state (the
opponent's king in checkmate). More generally, says Newell, Soar fulfils a basic requirement of
any intelligent system: its reasoning is directed in pursuit of its goals, a reasoning that occurs in

human problem solving,

The knowledge in Soar is realized (or implemented) in a "production system" architecture.
The idea here is to encode each bit of knowledge as a condition-action rule of the form, "IF this
is the case, THEN do that." At every elaboration cycle,® these production rules fire when their
conditions are met. All firing rules then express opinions such as "operator Q1 (take your

opponent's queen) is better than operator Q2 (take your opponent's pawn)," or "operator Q7

¥The Soar manual (Laird et al., 1993) provides a detailed introduction to the innards of Soar and its features.

15

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

(sacrifice your bishop) is best." in the form of preferences. These preferences are then evaluated
and the operator with the best preference (in this case operator Q7) is applied. (these are, of

course, naive rules for chess.)

One distinctive feature of Soar is its learning mechanism called chunking. The basic idea
of chunking is simple: whenever Soar resolves an impasse, it remembers how. More precisely,
Soar encodes the results of its problem-solving as a new condition-action rule a "chunk" — and
then stores it away in memory where it operates like any other rule. Its conditions are the relevant
contents of working memory at the time the impasse arose; its action is the new solution. The next
time it encounters a similar impasse, it can leap directly to the solution without repeating the
intervening steps. And thus Soar can spontaneously pass from the slow, painful, trial-and-error
problem-solving characteristics of a novice, to the near-instantaneous insight characteristic of an
expert. It does not have to be programmed with expertise, because it learns expertise. In terms
of human problem solving— chunking gives an accurate methodology on how human tackles a
problem. When they encounter a problem along the way, they devise steps to solve it and then
stores it in their brain. The next time they encounter the same problem, they just remember the
solution and apply it without going through the trouble of devising the steps themselves. Figure

4 illustrates the idea of chunking.

16

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

Problem
Solving

e
impasse

Problem resolve
Solving impasse

Figure 4. Chunking— Learning from experience. When Soar
reaches an impasse in its problem-solving— that is, when it does
not know what to do next— it automatically sets up a subgoal to
resolve the impasse. When it succeeds, it goes back to where it
left off and simultaneously encodes a new "chunk" of knowledge
that will keep it from ever having to suffer that particular impasse
again [adapted from Waldrop, 1988a].

Finally, Soar release version 6° and later having been written in C provides facilities for
supporting routine interaction to the outside world. These facilities allow a programmer to go into
the innards of the Soar program and create necessary commands and functions to provide routine
interaction to the outside world.'® Moreover, with Soar Development Environment (SDE)"

accompanying Soar development, it allows easier and faster coding.

%Soar version 5 (and below) having been written in Lisp had little (or no) problem with regards to interacting
with the world. But for version 6 (and later) we now need a way for Soar to interact routinely.

The Soar manual (Laird et al., 1993) gives a detailed description of Soar's I/O interface. It includes features
that lets the user add basic C code, I/O commands and interface routines.

1The SDE README file (Hucka, 1994) gives a detailed description of the features of SDE.
17

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

2.3 Soar-Simulation Communication Channels

Interprocess communication (IPC) concerns the mechanism by which independent processes
communicate with each other. This communication medium provides the interface necessary for
a simulation to talk to a model, and is particularly important if it is to be provided as a mechanism

(and utility) that routinely tied the model and simulation together.

As the Soar model (the model) runs, it must provide the simulation with task commands
and receive inputs from the task simulation (the simulation). The amount of information in the
ATC task passed (initially) between the model and simulation are not likely to be large. At
present, the input from the simulation solely represents the result of visual scanning of the
simulator's display, but a more ambitious goal is to incorporate a verbal input (which is not part
of the project reported here). Table 3 provides a summary of the requirements for the choice of
a communication medium.

Table 3. Interprocess Communication Requirements.

It has the capability to see and log data.

It must be flexible to handle any kind of data and modifiable.

It is robust and stable.

It could communicate processes across machines within a network. This will provide

portability of the entire system.

It must be easy to build and use.
Table 4 provides a summary (taken from Ritter and Major, 1994) of the features of various
communication mediums. The choice of the medium is dependent on compliance of the

requirements above and below. In the ATC task, sockets were chosen.

18

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations

System Tool Requirements

Plain Files Bad Good Bad OK
Sockets Good OK OK Good
GNU-Emacs Processes | OK OK Good Maybe Bad
Joint Compilation V. Good Bad OK V. Good
Apple Events Good Bad Bad OK
Table 4. Features of various communication channels.
Sockets

Sockets are an IPC mechanism that allows processes to talk to each other across different
machines. It is this across-network capability that makes them useful. For example, the rlogin
utility, which allows a user on one machine to log into a remote host, is implemented using

sockets.

Process communication via sockets is based on the UNIX client-server model. One
process, known as a server process, creates a socket whose name is known by other client
processes. It listens for incoming requests for connection from the client processes. Thé client
processes then talk to the server process via a connection to its named socket. To do this, a client
process first creates an unnamed socket and requests that it be connected to the server's named
socket. Depending on the availability of connection set by the server process, a successful
connection returns one file descriptor to the client and one to the server, both of which can be
used for reading and writing. Once a socket connection is made, processes can start their

conversation. Figure 5 shows an illustration of a socket connection.

19

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations System Tool Requirements

1. Server creates a " "

named socket @ Name

2. Client creates an unnamed "Name" @
socket and requests a

connection =

3. Client makes a connection.
Server retains original
named socket.

Lompieied
connection

Figure 5. The socket connection [adapted from Glass, 1993].

Sockets are similar to files in how processes read and write to them, but they do not have
disk space allocated to them. They provide a stable, and robust communication link between the
model and the simulation across machines in the network. They also provide a mechanism that
can routinely tie a model to a simulation. Other communication mediums do exist (see Ritter and
Major, 1994), but they're not good enough to sat.isfy the criteria in Table 4. Choosing sockets as
the medium is just a question of implementing a mechanism that provides a robust, flexible and
stable way of communicati;m with a good bandwidth, and one that complies with the requifements

in Table 3 and 4.

20

3. EXISTING SYSTEMS FOR ROUTINELY TYING
COGNITIVE MODELS TO SIMULATIONS

This section examines three systems that have been developed by researchers in their endeavour
to provide a mechanism that routinely tie a Soar model to interactive simulations. It gives an
overview of what these systems do and what generality they provide. After a description of these
systems: Stopwatch (Rogers, 1994), SimTime (Nelson, 1994), and New-Soar-10 (Pelton, 1994),
we present a summary on how these systems fair in terms of power, usage and providing routine

connections between models and simulations.

3.1 Stopwatch

Stopwatch, by Seth Rogers (1994), is a timer function that accurately times behaviour in Soar.
It is similar to a stopwatch (hence the name), in that a user must provide a length of time in
seconds (say, 5 seconds) and the system will count up until it reaches that time. All counting or
timing is done on a base time that is the current time of the operating system (i.e., the time
returned when gettimeofday is issued at the UNIX prompt). To activate Stopwatch, you must
propose and implement an operator called 'wait'. Then you must tell it how long should the timer

be by giving it an argument arg/ containing a float constant in seconds.

At the start of each elaboration cycle, the input function check_stopwatch, (a) creates
working memory elements'> (WMEs) on the top-state containing the input link, the timer-done

flag (set to NO, since no timing has been done), and the target-time (set to INACTIVE, timing

1’The ceation of WMEs is only done at the start of the first elaboration cycle or during an init-soar. This may
also be called the initialization stage of each program run.

21

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Existing Systems ...

has not started) and (b) checks to see if farget-time has been set to a number (i.e., not
INACTIVE) in which time the timer starts running. The output function start_stopwatch done
at the end of each elaboration cycle checks if an operator 'wait' has been proposed and
implemented. Once implemented, the value of argument arg/ is taken, added to the system time
(i.e., the seconds part return when gettimeofday is issued) and set as the target-time. Succeeding
elaboration cycies activate the timer until it reaches the farget-time when it is reset back to

INACTIVE state.

The timing is done by getting the seconds part of the time return by gettimeofday and
comparing it to the farget-time (stored as a global variable). When farget-time is exceeded, (a)
the timer-done flag is set to YES (i.e., timing has been done) and added as a WME, (b) the target-
time is set to INACTIVE, and (c) the whole process repeats. It should be noted that timing is
done in seconds. For example, if you want to know when x seconds have elapsed, you put a
structure like this on the top-state:

(S1 ~timer-link T1)

(T1 “command wait “argl x)

Then during every input cycle, Soar checks if the timer is done, and if it is, adds a WME like (01

~timer-done yes), where O1 is an input-link object.

The Stopwatch system is the kind of system that we create when we're just starting to
routinely tie cognitive models to simulations. It is a very simple system (as we shall see later) that
provides us with a tool that times behaviour on a specified length of real-time (in seconds). It is

robust and routine, but provides the smallest amount of interaction (almost non-existent).

22

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Existing Systems ..,

Although simple, it would definitely pass as a preliminary system and would count on our learning
experience to reach what we are trying to achieve in this project, but it needs to be extended to
do what we need. One possible extension is to add a feature that lets the user set the base
time/start time from which to start counting. But in the long run, Stopwatch would have to be

made more complex (not just a mere simulation of a timer/stopwatch) and interactions to the

outside world would have to be added.

3.2 SimTime

The SimTime'® system simulates the passage of real time (hence the name) as a function of the
cognitive behaviour of a Soar model. It allows you to monitor the time, tell how to increment the
time and how you want your system to use or respond to the passage of time. In order for
SimTime to monitor the time, you must tell it the initial time for your simulation in either of two
way. The simplest way to set the initial time is to use the command compiled into Soar 'simtime
set <num>', where <nmum> is an integer value in whatever units you wish to use (milliseconds is
traditional). In this case, you must explicitly reset the time when you wish to give it another value.
The other way is to place an initial time on the first line of an "event-list" file; in-this way, the time
will be set automatically when you perform an init-soar. After this first line, the event-list may
contain blank lines, comment lines (beginning with a semicolon), and event lines. The first column
of an event line indicates a time (in arbitrary units, usually ms). The second column indicates an
"event type", and must match to the name of an event type in your code. The remainder of each

line is passed as an argument to the C function that implements the event.

BThe SimTime user's guide (Nelson, 1994) provides a detailed description of SimTime, its command set,
installation procedures, and some useful notes on using the system.

23

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Existing Systems ...

The description of how SimTime should increment the time is given to SimTime as a
"timing-list". In this file, which is read in with a separate command, each operator may be given
an independent duration. Or, the special term "OPERATOR" may be used to specify a time for
all operators, regardless of their name. Alternatively the special terms "ELABORATION" and
"DECISION", if included, give a base time to be added for each elaboration cycle and decision
cycle, respectively. These methods may be employed in any combination,; their effects will be
additive. Negative operator durations are legal, but of questionable value, unless the

elaboration/decision mechanism is being used as well.

Finally, there are a few different ways in which the system may use the time value. By
issuing the command 'simtime wme on', a working memory element containing the current time
value will be deposited into the top-state of the running model. While this breaks the world/brain
barrier, it is a convenient way of using the time value to perform interesting processing within the
model, through elaboration productions for instance. A less controversial mechanism allows
external events to happen at specified times, which may also place information into working
memory. There are two options here. A powerful mechanism requires that you write your own
C code. You define event names which may appear in the event-list that is read in from a file.
Once these events are defined and tied to C functions that implement them, you can readily
change the series of events that happen during any given Soar run. However, if you don't want
to write C code, a less powerful but standard mechanism is to use the special events ADD-WME

and REMOVE-WME (defined in SimTime) to let you get something small running quickly.™*

The syntax for these commands and other commands in the command set of SimTime are all described in
the manual (Nelson, 1994).

24

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Existing Systems ...

SimTime as we say, is a notch up on the stopwatch system. It takes the timing capability
of Stopwatch, made it more flexible (e.g., you can set the start time, endtime) and complex to
measure the usage of time by a cognitive model. One simple example in its manuals shows a
cognitive model monitor the passage of time in WMEs, and respond appropriately to it. A more
complex example depicts a Soar model taking data from an event-list and a timing-list, together
with some user-defined event-names. Once these events are defined and tied to C functions that
implement them, you can readily change the series of events happening during any given Soar run.
Indeed, SimTime makes full use of the passage of real time, which is particularly important if the
cognitive behaviour you are modelling is time dependent. For example, in an ATC task wherein

a slight variance in time may cause or abort a catastrophic plane crash.

The SimTime system can make extensive interactions with the outside world (in this case,
the Soar model) only in a certain way, that is, if the outside world wishes. If the model is
programmed to use and respond to the passage of time, it may do so. Otherwise, it can just sit and
watch time pass, doing nothing. This obvious flaw could have been avoided if the outside world
is interactive and provides a reactive environment. Clearly, a system should be explored and

developed to provide interaction with an interactive task and New-Soar-10 (Pelton, 1994) is a

step in that direction.

3.3 New-Soar-10

New-Soar-I10 by Gary Pelton (1994) describes a set of mechanisms that enable a Soar user to
emulate the interaction their program would have with the external world without actually writing

Soar I/O code. It consists of tools and features that effectively captures some (maybe less)

25

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations Existing Systems ...

features of Stopwatch and SimTime, added modifications and build it as a foundation for Soar to
talk to the external world. It interacts with the external world by testing it, and depending on the
response changes the top state appropriately (i.e., establishing a two-way communication

interaction).

On the installation of the state in the top-context, New-Soar-IO adds an external-world
link and an (“input-cycle-number 0) to the external-world link. The external-world-wme
containing the external-world link gets deposited into the top-state with a unique id (in this case,
the id starts with the letter 'T'). Subsequent input cycles then remove the counter input-cycle-
number, add 1 to it, and add it back to the external-world. The external-world link can be used
by the Soar model to tie anything that has to do with the external world and the input-cycle-
number (i.e., a counter) as a clock mechanism that might be used to delay the response to actions
in the external world. An example of a delayed response is pulling back on the stick in an aircraft.

This doesn't immediately change your direction. Here, productions would later adjust the aircraft

WMEs.

On every subsequent output cycle, if a new intention is added, the old intention is removed
from the external-world (if it exists). A copy of the new intention is then added to the external-
world with the same structure and constants (as the original) but all identifiers have been replaced.
For example, if the top-state contains

(S1 *external-world I1 “intention 12)

(I1 "input-cycle-number 2 “intention 13)

(12 "go-home yes)

26

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Existing Systems ...

Adding a new intention gets rid of the old one (if it exists), and adds a new one to external-world.
(S1 “external-world I1 “intention 14)
(I1 “intention IS Ninput-cycle-number 3)

(I4 ~go-home no)

New-Soar-10 succeeded in providing a mechanism for routinely tying a Soar model to an
interactive simulation (in New-Soar-IO, the external world). It talks to the external world by
providing a clock mechanism and enabling it to emulate the interaction between model and
external world. This system is an easy way to start if all modelling done is jubst for simple tasks
(e.g., turning a light switch on and off). But when considering huge real-time interactive task, like
the ATC task, the disadvantages precludes its use. To start with, New-Soar-IO can only interact
with a simulation written in Soar which are very simple, temporary systems. And for all intent and
purposes, creating simulations in Soar is a mess because the production system was not intended
for general simulation, and there is no visual display. In order for a Soar model to play with a real-
time interactive simulation, the simulation must reside and be developed in its natural environment

(i.e., with the visual graphics and all) and just provide a mechanism of tying this two distinct

processes together.

3.4 Summary

The three systems presented provides an overview of the steps taken by researchers in their
endeavours to provide a mechanism to routinely tie a Soar model to an interactive simulation. As
noticeable, each system presented (and reviewed) increased in complexity and is a notch better

than the previous one. This stepped presentation was done to show the steps taken in scaling the

27

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Existing Systems ...

task of routinely tying cognitive models (i.e., Soar models) to interactive simulations. Indeed, each
of these systems provided valuable lessons that paved the way for the next generation of systems

to be explored and developed.

Illustrating these systems in analogy, first, the Stopwatch system provided timing
capabilities for Soar. Second, this timing capability was taken, made more flexible, and powerful
to create SimTime. Since all SimTime provides is essentially a one-way communication utility,
New-Soar-I0 was developed to solve this limitation. New-Soar-IO provided a clock mechanism
and a two-way interaction between model and world. One valuable lesson learned from all of
these is that to create systems that provide routine interactions between a Soar model and a
simulation, the Soar model and the simulation should reside on environments where they work
best and well suited, and just provide the mechanism that make the two talk. This means that the
model should live in Soar and the simulation (depending on the language) in a separate
environment. Moreover, the interface mechanism must be made general so that other simulations

might used it with little or no modifications.

Indeed, these systems are testaments that the mechanism for routinely tying a cognitive
model to interactive simulations is not far fetched. But these systems must be extended or a new
system developed if we are to model cognitive behaviour in a highly interactive task. Over time,
this new system by providing routine interaction would eventually allow us to develop models that

learn and think the way humans interact with the outside world.

28

4.0 SOAR-GARNET — Nott-a-bad System

The system implementation of this project is illustrated in Figure 6 (same as Figure 3). On the left
is the entire simulation,” on the right the Soar model, and the interface mechanism at the bottom

which links the two sides together.'® We discuss each box in turn.

Display

subject
planes <>

Garnet
ATC Simulation

\ PS to do ATC
. Lisp Soar

eye/hand code C-eye code

Lisp Sockets Soar Sockets

i

UNIX Sockets

Figure 6. System implementation,

4.1 ATC Simulation

The ATC simulation was implemented using Garnet objects and gadgets'’, such as menubars,

windows, text and interactors. Once implemented, these objects are used in Lisp functions to

15 Appendix A contains the release notes about the Soar-Garnet system implemented in this project. It gives
information on where this code is available and how to use it,

16 Appendix C contains the release notes about the interface mechanism used in this project. It provides
information on where this mechanism (called Mertz-Ong-Nerb-Gary Socket Utility MONGSUY]) is available, how to
use it, and other stuff.

7 Garnet objects and gadgets are tools provided by Garnet in creating simulations with user interface. The
Gamet manual by Myers et al. (1993) gives a complete description what these are and many more.

29

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

create routines that make up the ATC display and the simulation itself. For example, aggregadgets
(consisting of different objects put into one) were created for prototype objects of a radar scope,
a plane, and a beacon. Garnet functions were then defined to create components such as the
menubar (including functions for the menubar selection), the radar screen, the radar sweep, and
others' that make up the ATC display window (i.e., the console that displays all these

components),

Figure 7 shows what the ATC window looks like. It consists of a menubar and a radar-
scope that displays planes, beacons, and weather fragments all created using Garnet objects and
tools. It is through this window that human subjects interact with the simulation by using the
mouse to execute their desired action (e.g., show beacons). The menubar at the top, allows the
user to load a file (the plane database file), quit the simulation, display beacons, weather fragments
and other selections needed in an ATC simulation. At the moment, the beacons, weather
fragments, and sweep are just there to provide a real ATC-look, however, future extensions could
make use of these objects as obstacles for landing planes and other tasks. Since this is just a
simple simulation, this is just enough for our purpose. Other menu selections are proviaed but

contain no functions. These missing functions are provided because they will be needed in future

ATC simulations.

18 Appendix E.1 gives a detailed run through of the ATC-Garnet code. It summarizes how the code was
developed through the structure of the code.

30

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

_____ATCSimulation §

Plane Information

Legend:
() — Plane
-+ — Beacon

— Weather fragments

Figure 7. Nott-Air Traffic Control (ATC) simulation display window.

31

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

To illustrate, each selection in the menubar have corresponding function calls. These
functions include load-file, quit, show-beacon, show-weather, and others implemented in Lisp.
As an example, load-file when selected calls read-db-plane-file and opens a "plane.db" file. It
reads the file ("plane.db") containing the information about planes such as flight number, position
and altitude and use it to create generic plane prototypes and attached to it an animator interactor
that gives the look of real-planes constantly moving across the radar. These plane structures are

concatenated into a list and then placed in the global variable *LIST-OF-PLANES*.

The objective of the planes is to move toward the center of the scope, which represents
the airport. This movement was made possible by the animator interactor which calls a particular
function (that changes the x and y position) every 0.5 second.' The change in x and y coordinates
is determined by providing utility functions® that compute the distance between the center (the
airport) and the current position of the plane in x , y coordinates. Using this value and the velocity
of the plane (from the db file), the distance travelled by the plane in x and y every 0.5 second is

computed. This change in position is then used to determine the new position of the plane.

Aside from changing position and distances, the animator interactor also checks if a plane
has reached a specified distance form the airport. Once this distance is reached (say 20 miles), the
interactor calls a function that changes the visibility attribute of the plane making it disappear from

the radar scope. This approach allows us to show that a particular plane has already landed, which

1%0.5 second is the update frequency set in the animator interactor in which the function of changing the
position of the plane is called.

Utility functions provide functions that support the running of the simulation. It includes function that
compute the distance between plane and airport (called calculate-distance-from-airport), and other related functions.
The ATC-Garnet source code in Appendix E gives complete details of what there functions are.

32

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

is what planes are supposed to do in our simulation, All changes done within the animator
interactor as the planes continuously moves are all reflected on the *LIST-OF-PLANES* (such

as x and y position, and distance from the airport).

4.2 Lisp eye/hand code

The Lisp eye/hand code supports the functionalities required in doing the simple ATC task. It
provides functions related to viewing and manipulating the simulation such as looking through the
scope and landing a plane. The main routine defined there (in "ATC-fn.lisp") runs the Lisp socket
code and the simulation, and creates a parallel process that always accepts a client (if there isn't
one) and reads in data from the socket stream. The data are list structures that are parsed by Lisp
functions to extract command names, identification, and arguments passed in by the Soar model.
In a similar manner, outgoing data resulting from the command received by the simulation are
constructed into lists and passed back to Soar. Right now, the functions only include send-scope-

info, lower-plane-altitude, and land-the-plane.

The heart of this code was to create a process that does continuous Soar interaction. This
was made possible by writing a main routine that creates a socket, runs the simulation and creates
a separate Lisp process (called soar-read-loop-process) that reads incoming data (command, id
and arguments) continuously. For example, if incoming data looks something like:

(socketout-link (name send-scope-info) (id <id>)).

The above list is parsed, the command name and unique identification id extracted (arguments
are also extracted if they exist). This would result to the equivalent function, in this case, send-

scope-info (i.e., the function tied to command name 'send-scope-info') to be called. The function

33

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

send-scope-info gets the list of planes and their attributes from the global variable *LIST-OF-
PLANES* (a Garnet structure) and converts it into a list to be passed back to Soar.?! In addition,
the simulation also sends the list (done-external-operator <id>) to let Soar know which command
it issued has been done by Lisp. This scheme prevents conflicts from happening if multiple
commands are sent to the simulation at the same time for there's no other way of knowing which

commands got done and which are still pending.

The process of reading and evaluating data from the socket stream is a continuous
process. This process is only terminated when (a) the client is no longer connected, (b) a
shutdown-socket-stream command is issued in the Garnet prompt, or (c) in the worst case, the

Garnet simulation crashes.

4.3 The Soar Model

Turning to the right side of Figure 6, we see the Soar model and the Soar C eye-code. The Soar
model performs the basic functions that a real human ATC does (only simplified), such as looking
at the scope and issuing command instructions. In addition, it uses Soar's default rules? (or
knowledge) as part of its rule count (a total of 139) which are loaded together with the ATC Soar

model (this will prove to be important later). The basic algorithm used in this model is shown in

21'sc»;'nd-scope-info' is issued with no arguments as it only looks for planes in the scope. Other commands like
lower-plane-altitude' and 'land-the-plane' are issued with a flight number as argument (for the plane they want to lower
the altitude or land). The functions for performing these commands changes the attributes of the plane they are
addressing the command to which are then updated in the *LIST-OF-PLANES*,

22Chapter 7 of the Soar manual Version 6 (Laird et al., 1993) discusses how default knowledge (or rules)
influences Soar's performance of a task. These default rules number approximately 107 and are contained in a file
"default.soar”.

34

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ..,

Table 5 below (details of which are discussed when we examine a sample run). It must be clear
in here that Soar is not a procedural language, as such, the ATC Soar model itself is not
procedural. We only provide an approximate procedural representation (or algorithm) of the Soar

model to explain how the model works.

get-planes: look-scope
IF first look THEN set first-look flag and continue
do
[set looked and read flag and make plane-info current
propose operator for each plane
compare operators
focus on most important
IF there is something to do THEN do it: that is, apply operator
ELSE reset looked flag and
propose operator look-scope

]

until no more planes that are supposed to land or
no more existing planes

Table 5. Algorithm of the Soar model.

The above algorithm works as follows. On the installation of the top context (i.e.,
installation of goal, problem space, desired state, and initial states necessary in programming
Soar®), operator 'look-scope' gets proposed and implemented. This operator implementation
results to the command 'send-scope-info' to be sent to socketout-link together with arguments
(if any) and a unique identifier.** The first-look flag is set to take note of the very first

implementation of look-scope' (since there are still no data from the simulation at that point).

>The Soar manual by Laird et al. (1993) gives a detailed description of the rules and procedures in writing
Soar productions.

2"Any command issued has an accompanying unique identifier that tells Soar if the command it issued is
already done or not (as Lisp returns the command it does through its identifier).

35

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

Subsequent implementation of 'look-scope' ignores this flag (and the production that takes note

of this) having been set and just proceeds to the issuance of the command itself,

The implementation of any external operator always creates an operator no-change (OP
NC) impasse because the operator has not yet received data from the simulation. During this
impasse, an operétor called 'watching-command-process' (similar to the default ‘'wait' operator
in Soar) is selected and implemented several times until Soar has received a command
confirmation (i.e., the list (done-external-operator <id>)). After receiving this information, the
external operator terminates.

After the plane information has been read (the data returned from the simulation through
look-scope') and put into the top-state, a series of operator proposals and implementation occurs
depending on the state of the selected plane and its attributes. Below is a list of conditions that
lead to particular operators being selected for each plane.

[a] if (“control® under) and (“status land)
then operator 'there-are-planes' gets proposed since the particular plane is in the process of
landing.
This operator when implemented sets the looked flag to NO and the model looks again.
The above operator when simultaneously proposed with ‘'no-more-planes-to-land' is always

preferred. This ensures that the model does not terminate if there are still planes in the process

of landing.

*This attribute determines what particular stage is a plane in. Its value is either under (under our control),
descend (has already descended), handed (handed to the approach controller), or out (of our control).

*This attribute determines if a plane is going to land (which we need to take care of) or is just doing an over
flight (which we do not care at the moment). Its value is either /and or over.

36

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

[b] if ("control under), (“status land) and plane (“distance <= 200)
then operator 'lower-altitude' is proposed since the plane has reached the first approach fix.
If several planes satisfy the above condition, an operator is proposed for each plane and the
plane with the smallest distance from the airport is preferred. This operator when implemented
issues the command lower-plane-altitude' to the simulation that lowers the alfitude of the plane
to 5000 meters and change the control to descend.
[c] if (“control under), (“status land) and plane (“distance <= 80)
then operator 'land-plane' is propose since the plane has reached the final approach fix and
is ready to land.
If several planes satisfy this condition, an operator is proposed for each plane and the plane
with the smallest distance from the airport gets priority. This operator when implemented issues

the command ‘land-the-plane' and hands the control over to the approach controller,

If operators 'lower-altitude' and 'land-plane' are proposed at the same time, 'land-plane' is
preferred because it is more important to take care of landing planes (high risk) than lowering the
altitude of a plane that is still a distance away.
[d] if plane has (“control under), and (“status over)
then operator 'no-more-planes-to-land' which has three variants gets proposed. The three
variants allow the operator to be proposed (a) if the plane has already landed and handed over
to the approach controller, (b) if the plane is doing an overflight, or (c) no more planes exist
in the radar scope.
This operator when implemented sets the state to the desired state (i.e., “planes-to-land none),

which subsequently leads to termination.

37

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

Lastly, if the preferred operator in conditions [a] and [b] (which is always 'there-are-
planes’) gets proposed at the same time with the preferred operator between [c] and [d], the
chosen operator between [c] and [d] is always preferred. Otherwise (with either no more planes
to land or planes in intermediate stages) ATC-Soar just does nothing and looks again. All
commands issued for all conditions except condition [a] always proposes to look again after the
command is performed by setting a Jooked flag to NO that enables operator 'look-scope' to be
proposed again. This process repeats until the desired state is achieved — there are no more

planes to land.

Figure 8 and 9 shows two structural diagrams of the ATC Soar model. The main
distinction is the level of detail they describe the inner workings of the ATC Soar model. Figure
8 illustrates a minimal view of the model, which is what Soar experts normally create. This
diagram is quite vague especially for novices in Soar (and those who knows nothing about Soar)
as there is no clear illustration of the flow of how the model works. Figure 9 shows a more
detailed description of how the Soar model works. Through this illustration, it was able to show
in greater details how the model runs, which for novices provides a lot of help in understanding
it. But to consistently provide this kind of detail to all Soar models entails a lot of work, which
for Soar experts is a bit too much and a mess to create especially for large systems. Since there
are no standards in creating such diagrams for Soar models, its creation will just be based on the

model's size and the level of detail that the modeller wants its readers (and himself) to know.

38

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Soar-Garnet ...

Legend: ATC
ceen o|LS wcp
LS — look-scope S|LA TAP
LA —— lower-altitude NMP
LP — land-plane Lp L
WCP — watching-command-process
TAP — there-are-planes OP TIE
NMPTL — no-more-planes-to-land
Selection
o)
o
o
OP NC
(LS/LA/LP)
).
ATC
o
o)
o
WwCP

Figure 8. Minimal view of the ATC Soar model.

39

Soar-Garnet ...

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

epowr 120§ DIV 9y} JO WeIFRIp [eINONNS "¢ 4nS1g

DM sp-soeindg — 10

0 sfuego-oudmly — ONS
K JLV s8uego-ou Jojesad) — N dO
(pusday

<dOM

TORII3S Tonoapsg

10

(dn

ss3901d-puemmod

-Surgozem

dTVIUSTONdO

(d7) aued-pue|
(VD spune-zamo]
(S7) 2doas-yoo;

40

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

4.4 Soar C eye-code

One box below the ATC Soar model is the Soar C eye-code (which is actually part of the socket
code) that does the job of sending data (such as commands, ids and arguments) as a list from the
output link down the socket to the simulation. This C-code does the parsing procedure?”
automatically for incoming and outgoing data from Soar through sockefout-link. The parsing
procedure works by reading each incoming character and categorised if it is part of a symbol,
integer, float, constant, or a substructure (nested list). After categorisation, the extracted symbols,
integers, float-constants and/or substructure are deposited as WMEs in the top-state. At the other
end, any changes done to socketout-link results in the value of socketout-link (and its
substructure) to be formed into a list (using the same parser above) and then sent down the socket
to the simulation. This procedure is done continuously until such time that the goal (i.e., in our

case, to land all planes until there is none) is achieved or the link between the simulation and

model is terminated.
4.5 UNIX Sockets

The backbone of this entire system is the communication channel implemented in UNIX sockets.?
This interface mechanism is divided into the standard socket code, the Lisp socket code, and the
Soar socket code. The socket code was originally written by Joseph Mertz (1994) and was
modified, generalized and adapted by the author for use in and as part of this project. Table 6 lists

the modifications made to the initial socket code.

Twe only try to give an overview of how the Soar parser (written in C) works. For details of the parsing
procedure, please refer to Appendix G.2 ("soar-socket.c").

28Appf:ndix G provides the entire socket code (i.€., Mertz-Ong-Nerb-Gary Socket Utility MONGSU]) in Soar
and Lisp. This socket code is originally created by Joseph Mertz and Gary Pelton, and was modified, generalized and
adapted by the author and Josef Nerb, hence the name MONGSU,

41

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...
I

Table 6. Modifications to Mertz' socket code.

Added global variables to make functions more readable, understandable and general.
Modified error messages to make them more clear and constructive.
Documented statements for use in launching a process in Lisp.

Modified some functions for use in launching a process in Lisp.

Modified global variables of Soar to make the code compatible with Soar 6.2.3.

Modified existing command line commands (written by Mertz) in Soar to make it act as
a server.

Added new command line commands in Soar to make it act as a client.

Modified and added help for the new commands in Soar.

Added additional functions in Lisp for it to launch a soar-read-loop-process.

Added miscellaneous functions for testing the code before each release.

Created release notes for the code.

The whole idea behind these different parts of the socket source code is to implement the
communication protocol shown in Figure 10. The different parts of the entire socket code

comprise a portion to implement this protocol.

4.5.1 Standard Socket Code

The standard socket code ("std-soar-socket.c") defines the basic functions that support socket
communication. Functions like creating a socket (create_socket), binding (bind_socket), listening
(listen_socket), accepting (accept_socket) and connecting (connect_socket) are all defined as

separate routines to be used by any programming language that wants to use sockets (as long as

42

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

they can declare these functions as foreign functions like Lucid Lisp does). These functions are

used as standard functions for use in Lisp and Soar.

4.5.2 Lisp Socket Code

The Lisp socket code ("stdio.lisp" and "socket.lisp") provides low-level support in Lisp (in this
case Lucid). It uses the previous standard socket code (defined as foreign functions) to create a
function make-socket-stream that incorporates all necessary functions in order for Lisp (and the
Garnet simulation) to act as a server. These functions include the creation of a raw socket, binding
the socket and listening for incoming requests for a connection. Moreover, these functions
contains error checking facilities that doubly act as debugging tools, and testing facilities that can

test your Lisp and Soar code as either client or server.?’

4.5.3 Soar Socket Code

The Soar socket code uses the same standard socket functions as does the Lisp socket code. In
addition, it creates new Soar commands (i.e., command-line commands) that uses these functions
to support socket communication. These new commands include ‘init-socket-io', ‘init-socket-
server’, 'close-socket-io', 'shutdown-socket-io' and 'socket-output-link', all of which are defined
in the Soar socket code ("soar-socket.c"). These new Soar commands are accessible in Soar

through the command line (as they are compiled together with Soar) and through the on-line help.

 Appendix C shows the release notes for the socket code (MONGSU, 1994). It describes procedures on how
to obtain, install, use and test the code.

43

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

4.5.4 Soar-Simulation Communication Protocol

In our Soar-Garnet system, the simulation was made the server to service client Soar models.
Normally, one might make Soar models act as the server, not in this case however. The following
grounds support our choice, (a) in a real ATC task, the task itself is continuous while the human
subject (as the Soar model) interacts only when it wants to, (b) if the Soar model was made the
server, there could be a huge waste of time waiting for the simulation to connect because the
model can not run without a connection, which is not at all practical if you think of the way a real
ATC works, (c) the model is the more naturally viewed as a user of the simulation and not the

other way around, and (d) Soar can be easily turn on and off, while the simulation takes a lot of

n time to come up.

Soar Simulation

creates a socket,
run the simulation and

listen for connection

creates a socket

and connects to server .
accepts client and

T

creafe socket-stream

receive command

send commands <>
and receive data and send data
ok _ :
close socket 10 o
: - shutdown socket stream

| Figure 10. Steps in initiating and terminating the Soar-Simulation communication
! protocol.

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Soar-Garnet ...

Figure 10 shows the protocol followed by the Soar-Garnet system during a normal Soar-
simulation communication.®® As can be seen, when the simulation starts running it does the
initializations, the creation of a socket and a process that continuously listens (i.e., in a loop) for
incoming requests for connection (in this case only one connection is allowed at a time) to be
accepted, subsequently creating a socket stream (from which all data are sent and received). At
the moment, only one client is allowed to connect at a time. If multiple clients are desired such
as the system illustrated in Figure 11, all that is needed is to change the

DEFAULT_QUEUE_LENGTH?* to the number of connections desired.

ATC Simulation <€=y=3 Soar model 1
=g Soar model 2

=3 Soar model n

Figure 11. Multiple Soar-Garnet system.

Once the simulation has done his part of the communication interface, Soar then creates
a socket and connects to the server (the simulation). After the connection is successfiil,
conversation between the model and the simulation starts and goes on until the goal is achieved.
It must be noted that Soar always start the talking and the simulation just respond and goes on
with whatever it is doing (moving the planes continuously). If the goal is achieved, the process

can be repeated again, or the link can be closed (if preferred).

The subject can interact with the simulation without the need of a protocol.

3!This variable defined in "std-soar-socket.c" defines the number of clients that are allowed to connect to the
server.,

45

5. A SAMPLE RUN

To illustrate the implemented system, we take an example of landing two planes. The objective
is to land two planes shown in Table 7. There are actually two traces of sample runs in existence,
one with an error (Appendix D.1) and the other with the fix in place (Appendix D.2) For
reasons which shall be clear later, we will discuss the modified trace of the sample run in

Appendix D.1 (with error) which is illustrated in Figure 12. Concluding this chapter would be the

discussion on the fix that corrected the error.

Flight Number

Table 7. Database of planes for sample run.

The trace begins with the creation of the context-slots containing the goal G1, problem-
space P1 (ATC) and state S1 during the first two decision cycles. The desired state is to land
planes until (“planes-to-land none). This desired state is initially set to YES at the creation of the
top-state, which also includes (“first-look no), ("looked no), and (“current-planes none). On the
third decision cycle, operator 'look-scope' gets proposed, and a first-look flag is used to take note
of its first implementation. This implementation then results to the list (socketout-link (id
<constant-symbol>) (name send-scope-info)) to be sent to the simulation. Subsequent
implementation of 'look-scope' will ignore the first-look flag (and the production that does this),

that is, it wouldn't fire anymore and just proceed accordingly.

321 ATC.s0ar" contains the bug-free source code for the Soar model with the fix highlighted within.

46

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations A Sample Run

0: ==>
1:
2:
3:

write succe
4:
5:
6:
7:
199:;
200:

201:
202:
203
204:
219:
220:

221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:

Gl
Pl
sl
o1
ssful

O wnwa@

==>G 1
p:
S:

(atc)
(look—scope)
socket 3

G2 (operator no-change)
Pl (atc)
s1

0: 02 (watching-command-process)

O:
o: 07

Flight number p
Descending to 5000 meters.
write successful socket 3

==>G:
P:
S:
O:
O:
O: 08

write successful

==>G:
P:
S:
==>

02 (watching-command-process)
(lower-altitude)
r301 has reached First approach fix.

G3 (operator no-change)

Pl (atc)

s1

010 (watching-command-process)
010 (watching-command-process)
(look-scope)

socket 3

G4 (operator no-change)
Pl (atc)
sl
G: G5 (operator tie)
P4 (selection)
52
: 018 (evaluate-object 015 (lower-altitude))
=>G: G6 (operator no-change)
P: Pl (atc)
S: D3
O: C4 (lower-altitude)

I Oww

Flight number pr301 has reached First approach fix.
Descending to 5000 meters.

232:
233:
234:
235:
241:
242:

0O: 025

==>G: G7 (operator no-change)
P: Pl (atc)
S: D3
0: 023 (watching-command-process)
0: 023 (watching-command-process)
(there-are-planes)

There are planes to land.

243:

O: 028

(look-scope)

write successful socket 3

Figure 12. Modified trace of sample run in Appendix D.1.

47

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations A Sample Run

5.1 The 10 Pattern

During the fourth decision cycle, an operator no-change impasse occurs, resulting for a subgoal
G2 to be created with the same problem-space P1 and state S1 as the top-goal G1. This impasse
occurs because operator 'look-scope' has not yet terminated (i.e., no input-link has been received
and no confirmation from Lisp that the command has been done) resulting to 'watching-
command-process' to be selected a number of times.*® These so-called wait operators
(‘watching-command-process operators selected several times') are added because the IPC and
the simulation does not respond as quickly as a Soar decision cycle. Soar must wait for a

response.

The selection and subsequent implementation of 'watching-command-process' would
continue to persist until such time that an input link (i.e., the list of plane information) and a
confirmation list (done-external-operator <id>) gets passed back from Lisp and deposited on the
top-state. Consequently, operator 'look-scope' will be terminated and the plane information put
in current-planes. It must be noted here that this pattern of having an external operator
implemented,* a no-change impasse occurring on a OP NC subgoal, then a series of operators,
checks to see that the external operator has been terminated. This pattern often occurs throughout
the whole trace (and hence will be referred as 'the 10 Pattern'). In addition, operator 'look-

scope' will always be proposed and implemented if no other operator gets selected. Operator

31n the modified trace in Figure 12, the series of 'watching-command-process' operators are cut down
leaving just the start and ending implementation (in terms of decision cycles). To count the number of decision cycles
spent waiting, subtract the decision cycle number of the start from the end.

*These external operators have a distinct attribute Aexternal set to YES and they include 'look-scope’, 'lower-
altitude' and 'land-plane’.

48

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations A Sample Run

'look-scope' is the default operator that gets implemented when no other operator external or
otherwise is implemented. This is achieved by setting Jooked flag to NO after every operator
implementation, which then triggers the proposal of 'look-scope' and subsequent implementation.

The operator implementation of 'look-scope' resets back Jooked to YES.

After receiving data from the simulation sometime later (after 200 DCs), operator 'look-
scope' terminates. On decision cycle 200, operator 'lower-altitude' gets proposed and
implemented on plane with flight number PR301 (i.e., it has reached the first approach fix, thus
the printed message). This operator was proposed because PR301 has ("status land), (“control
under), and plane (“distance <= 200). The pattern of having an operator no-change impasse
occurs again similar to the IO Pattern until such time that 'lower-altitude' is terminated. If it
happens that multiple planes satisfy the conditions for proposing 'lower-altitude' (same with
'land-plane’, 'there-are-planes' and 'mo-more-planes-to-land1[2 and 3]'), operator 'lower-
altitude' will be proposed for each plane and the plane with the smallest distance from the airport

(i.e., attribute distance) is chosen and the operator 'lower-altitude™ is applied.

5.2 The Daydream Pattern

An interesting thing happens after the implementation of 'lower-altitude', followed by 'look-
scope' is the occurrence of an operator tie impasse in subgoal G5. We didn't actually know why
this happened initially, but through rigorous tracing we were able to find out. It seems that this

impasse occurred because, after the implementation of 'lower-altitude' (or the other external

35A detailed description of how the ATC Soar model works in general is given in Section 4.2,

49

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations A Sample Run

operator 'land-plane'), the data (i.e., the “altitude and “~control) modified by the simulation as
a result of the issued command (in this case, 'lower-plane-altitude') can not yet be seen until after
look-scope' is implemented and the new input-link received. As a result, after 'look-scope' was
implemented, 'lower-altitude' is again proposed (because the conditions are met as the old input-
link is still considered current) together with the 'watching-command-process' operator resulting
in the operator tie impasse. A random selection between these two operators (a default Soar
approach to resolving a tie impasse) allows 'lower-altitude' to be selected and evaluated resulting
to another operator no-change impasse on subgoal G6. The default response® to this OP NC
impasse is to recreate the context that led to the tie, and selectA the object being evaluated (‘lower-
altitude'). This object evaluation then leads to another operator no-change impasse presumably
after writing on the top state for IO, but in this case to the local state resulting to a series of
'watching-command-process' operators to be implemented (as this is the only applicable
operator left). These operators from the changing world persist until the new input-link and
command confirmation is received by Soar that terminates the entire series of subgoals because
it makes 'look-scope' most preferred (this pattern will now be referred to as 'the Daydream
Pattern” to distinguish it from 'the IO Pattern’). On the next decision cycle (decision cycle 242),
operator 'there-are-planes' gets implemented that signals that there are still planes in the process
of landing (and are intermediate stages in their landing process) and the cycle of looking should

continue. As a result of this, 'look-scope' is implemented and the IO Pattern is again manifested,*®
P g

36Section 7.3.2 of the Soar manual Version 6 (Laird et al, 1993) discusses the evaluation subgoal in relation
to the evaluate-object operator.

3"This Daydream Pattern does not occur in Appendix D.2 (because the fix is already in place), instead only
the IO Pattern is manifested all throughout the trace which is correct.

or every implementation of 'look-scope' except if preceded by other external operators ('lower-altitude'
and 'land-plane’) will result to the IO Pattern to be manifested.

50

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations A Sample Run

This entire process of happenings (which is an error) sort of tells something about the
inner workings of Soar. This was a very welcomed (benign) error because it told us that default
rules in Soar were getting more robust (allowing it to run), which traditionally would make it
crash upon stumbling to an error. Furthermore, on a theoretical point of view, it seems like 'look-
scope' was looking in some uncharted, imaginary space during the series of impasses in the
Daydream Pattern that was brought back to reality when 'there-are-planes' was implemented.
For a time, it looks the model was imagining (or daydreaming) and then something in the outside
world brought its attention back. If the occurrence of this Daydream Pattern is further
investigated and examined, it would certainly provide an interesting hypothesis on how we could

create and implement imagination in Soar.

5.3 The Rest®

The whole cycle of implementing 'look-scope' when planes are in intermediate stages of the
landing process would always result to 'there-are-planes' to be implemented. This would
constantly remind the model the there are still existing planes in the process of landing.
Noticeably, the rest of the trace continues in a manner of implementing the following scenarios,
(a) the implementation of 'look-scope' and 'there-are-planes’, (b) the implementation of either
'lower-altitude' or 'land-plane', and (c) the occurrences of the IO pattern and the Daydream
Pattern. So, after flight number PR301 has descended, CX901 followed suit. A series of 'look-
scope' and 'there-are-planes' gets implemented, then operator 'land-plane' is implemented on

PR301 (i.e., it has reached the final approach fix) with (“status land) (“control descend) and plane

39please refer to Appendix D.1 for the rest of the sample run.

51

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations A Sample Run

("distance >= 80). After a short while, CX901 also reached the final approach fix. And one final
'look-scope' suggests that both PR301 and CX901 have already been cleared for final approach
and have been handed over to the approach controller, resulting to 'no-more-planes2' (one of the
variants of 'no-ore-planes-to-land')to be proposed and implemented. The implementation of 'no-
more-planes-to-land2' results to planes-to-land to be set to NONE, thereby achieving the

desired state, and subsequently terminating the Soar program.

S.4 The Fix

In considering the error found in the sample run in Appendix D.1, a fix was added to the Soar
model that resulted to the correct output run on Appendix D.2. The fix was to add a production
rule which states that operator 'watching-command-process' is always better than any other
operator proposed simultaneously. This rule ensures that a new input link containing the modified
data will always be received first before other external operators can be proposed. As a

consequence, the Daydream Pattern is now removed retaining just the IO Pattern,

52

6. ANALYSIS OF THE MODEL DURING A
SAMPLE RUN

Taking the sample run in Appendix D.2 (the error-free sample run), we analyse how the Soar
model performs its ATC functions. In particular, we are interested how much time was spent in
performing the external operators 'look-scope', 'lower-altitude' and 'land-plane'. In addition, we
also want to determine the time spent waiting (i.e., operator 'watching-command-process'). In
doing this, we implement two methods of data analysis from the sample run. The choices analysis

and time-in-slot analysis.

These two methods are just two of many several methods that could be use to analyze
Soar data. They were chosen to interpret data and compare their analyses to determine which
tells how Soar works to a high level of degree in accuracy. In fact, there are actually no right or
wrong methods because each method interprets the data differently and tells a different story of
what is going on. Therefore, the choice of methods to be used is discretionary. Furthermore, it
must be noted that the length of the sample run in terms of the number of decision cycles can be
different even though the same number of planes and plane information are being used. - This is
due to the variability of the time the simulation takes to interact with the model, but a typical
number is about 1000 decision cycles. Thus, the results presented in these analyses are just

approximate of how the model behaves for this type of data.

6.1 Choices Analysis

In choices analysis, we count the number of operator applications of an external operator and

aggregate them. This allows each choice (i.e., each operator implementation) to be counted as a

53

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Analysis of the Model ...

distinct choice. Table 8 shows the numbers counted for the sample run in appendix D.2 and their

percentages based on the total number of decision cycles — 1056.
Operator No. of Operator Percentage (%)
Applications
look-scope 35 3.3
lower-altitude 2 0.2

land-plane 2 0.2

watching

miscellaneous

non-op selections

Total

Table 8. Choices analysis.

In Table 8 are the numbers for 'look-scope', lower-altitude', 'land-plane’, 'watching-
command-process', miscellaneous and non-operator selections. The miscellaneous category
covers all internal operators (e.g., 'there-are-planes'), while non-op selections includes the
creation of goals, problem-spaces and states. We are only interested in the application of external
operators that performs the ATC task and therefore do not care about these miscellaneous
operators and non-operator selections except for their contribution to the total number of decision

cycles in the sample run.

As seen from Table 8, operator 'watching-command-process' took the bulk of the total
number of operator applications (a total of 867) compared to the external operators which is just

a mere total of 39. These numbers results to percentages which when translated to a pie graph

54

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Analysis of the Model ...

(seen in Figure 13) prints a good picture of how the model works. Figure 13 illustrates these

percentages.

Choices Analysis

watching 82.1%

— land-plane 0.2% a

[[OORTSE0pT 37]

Figure 13. Pie graph of choices analysis.

Referring to the graph above, 82.1% of the time was spent on watching a command to be
process and a negligible 3.3% for 'look-scope' (and 0.2% each for 'lower-altitude' and 'land-
plane'). These figures suggest that human subjects also spend approximately 82% percent‘ of their
time watching for something to be processed (i.e., wait) while the direct issuance of instructions
or commands just takes a negligible amount. This is absurd of course, because a lot of the time
spent watching for a command to be processed was brought about by looking at the scope
(because there will be no watching:if there is no looking or no command was issued). So future

analysis should examine higher level operations that lead to the external command.

55

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Analysis of the Model ...

The analysis of having the watching be tied up to an external operator is not illustrated
here making the choices analysis to be a doubtful data interpreter (for this ATC task). A more

accurate method (as we shall soon see) would be the time-in-siot analysis.

6.2 Time-in-slot Analysis

In considering the time-in-slot method, we consider the length of time that an external operator
is performed. This means we count the number of decision cycles that the operator was in the
operator slot (i.e., implemented) to the time it got removed (i.e., terminated), which may include
operators to be implemented within this time. Now, taking another look at the sample run in
Appendix D.2, we could see that during the implementation of an external operator, 'watching-
command-process' gets implemented and terminated in series as a sub-operator to its higher-level
operator (e.g., 'look-scope'). Therefore, the number of decision cycles that took 'watching-
command-process' to be implemented must be added as part of 'look-scope' (or other external
operators) and not counted on its own. This is because the time that 'look-scope' was in the
operator slot included the amount of time for 'watching-command-process' to be implemented
and terminated in succession. Table 9 shows the computed number of decision cycles for each
operator (inclusive of the 'watching-command-process' embedded as a sub-implementation) and

their corresponding percentages to the total of 1056.

56

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Analysis of the Model ...

l Operator |

l No. of Decision Cycles I

' Percentaée (%) I

look-scope

837

79.3

lower-altitude

33

land-plane

miscellaneous

non-op selections

Total

Table 9. Time-in-slot analysis.

The computation of the numbers in Table 9 is a straightforward formula of adding the

number of decision cycles that an operator was implemented (normally 1) and the number of

sub-operators implemented within this implementation. Taking the sample run as an example, we

first take the number of decision cycles to implement 'look-scope' which is equal to 1 (decision

cycle 3) and add the number of decision cycles that 'watching-command-process' was

implemented as a result of implementing 'look-scope' which is 169 (decision cycle 7 to 175). This

total added with the other implementation of 'look-scope' gives a value of 837 decision cycles.*

The same thing is done for lower-altitude' and 'land-plane'. Figure 14 translates Table 9 to a pie

graph.

%As with the choices analysis, we only consider external operators and 'watching-command-process' in

computing the number of decision cycles that takes an external operator to be implemented.

57

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Analysis of the Model ...

Time-in-slot Analysis

look-scope 79.3%

non-op 2.9%

misc 11.3%
m land-plane 3.2%

Figure 14. Pie graph of time-in-slot analysis.

It is apparent in Figure 14 (and for this analysis) that the time spent in watching a
command to be processed was the consequence of waiting for external operators to be
implemented. It is also clear that a lot of time (79.3% to be exact) was spent looking at the scope
and monitoring the incoming planes. This interpretation gives a more accurate and precise picture
of how the ATC task is performed by human subjects. Clearly, a human controller speﬁds a lot
of time looking at the scope and included in this time is the amount of time he needs to wait for
data (e.g., through perception or serially examining physical data such as flight strips).

Now we can safely say that the time-in-slot method is a better measure of how the ATC
Soar model works. The reasons are (a) its interpretation of Soar data makes a more believable
approximation of its human counterpart, and (b) the operator selections implemented as a

consequent of a higher level operator being implemented was considered as part of the higher

level operator.

58

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Analysis of the Model ...

The results of these analyses points to two distinct problems. From a technical point of
view, the results imply that the Soar model (and Soar itself) is fast in terms of processing speed
compared to the simulation (in Garnet/Lisp) because of the need for 'watching-command-
process' operators to be implemented within the application of an external operator. But in a
theoretical point of view, any external operator that is implemented must cover all the watching
(or waiting) necessary until that operator is terminated without the need for other operators like
'watching-command-process' to be implemented. These problems when solved would give a
totally new and necessary outlook for the way systems of routinely tying a Soar model (in

particular) to interactive simulations will be developed.

59

7. DEMONSTRATION OF UTILITY AND
LESSONS LEARNED

The system created in this project has the unique quality of being able to provide a mechanism
(i.e., the Soar-Garnet interface) to routinely tie a Soar model to an interactive simulation (e.g.,
ATC). This chapter examines how the interface is used by the ATC task and the Tower of
Nottingham task, — a complex blocks world task modelled by Josef Nerb (1994). 1t illustrates
how this mechanism satisfies their needs, in what way could it be modified or upgraded to be
more useful and functional to their respective task. Also included is the generality that this

mechanism provides, so that other tasks would be able to used it with less modifications or better

yet none at all.

7.1 Our Simple ATC Task

The ATC task is to create a grossly simplified air traffic control simulation. The simulation would
handle planes under its controlled air space, land them (if it wants to land) and hand them over
to another controller. The situation here is that the Soar model does the job of handling planes
by issuing commands to the simulation and the simulation would respond to these commands
appropriately. Furthermore, the Soar model will be simple as well in order to provide a working

model that routinely ties the Soar model to the ATC simulation.
In this task, we created a loop function soar-read-loop-process that always checks for

data from an open socket stream and read that data (if there is). Essentially, there are two

processes that need to run in parallel, the simulation and the Soar read-loop process. To go about

60

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Demonstration of Utility ...

this, we took the reading process (soar-read-loop-process) and made it a background process
running in tandem with the Garnet process (the simulation) in the foreground. This approach
facilitated the main-routine to create a server socket, run the simulation while the soar-read-
loop-process listens for incoming requests for connection and reads in data from the client (the
Soar model) in a loop in itself. In addition, it provided a parsing procedure that works on data

structures familiar to both model and simulation — a list.

The list data structure used in this interface was just perfect for both Soar and
Garnet/Lisp. The simulation developed in Lisp works best with lists, while Soar has working
memory elements (WMEs), that is, a hierarchical list of data structures consisting of identifiers,
attributes and symbols. Moreover, the data being passed back and forth between the model and
the simulation are commands and plane data in list structures, which makes it convenient to have

a parsing procedure that is done automatically for incoming and outgoing data to and from Soar.

During testing, it was found out that Soar was fast in processing speed compared to the
simulation. Therefore, 'watching-command-process' operator was added to delay Soar while it
waited for data in response to the command issued to the simulation. This approach is not neat,
especially if waiting takes a long time where the 'watching-command-process' operator gets
proposed and implemented a number of times. This can lead to a long line of these operators

filling up your screen (which is annoying) suggesting that perception in this case takes too long.

Another problem is that data coming from the simulation gets piled up in the top-state as

garbage and stacks up Soar's memory (which can cause stack overflow) since a new input link

61

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Demonstration of Ulility ...

gets added to the top-state everytime incoming data is read. This problem is noticeable if the
running model has a lot of interaction with the simulation. Also there's no utility that automatically
removes old input-links if a new input-link is added in the top-state. If such a utility exists, then
there is no old input-links to worry about only the recent input-link, thus eliminating the problem
of stack overflow. In the long run, this capability of being able to remove old input-links must be
added to the socket utility (and made automatic) if we want to run Soar for extended periods.
Probably, human air traffic controllers just retain the most recent data (or the last 2 or 3), and not
the entire data from the start of task (because ATC is a continuous work). Memorization may

occur but this would explicitly copy inputs from the top state.

7.2 ToN— A complex blocks world task

This task is to build a tower out of blocks that fit together like simple puzzles pieces to create a
ziggurat (stepped pyramid). Two pieces fit together to create a half level; two half-levels make
a level; and five levels make the tower along with a capping piece. The task was created by Wood
(Wood, 1976 #542 cited in Ritter & Major, 1994), who has compiled an extensive set of
regularities of children's behaviour while solving it and while they were taught how to solve it by
teachers and other children.

The interface (MONGSU) provided a communication link similar to our ATC task. But
in this task, the data being passed is large due to the complexity of the world and the frequency
of the interactions between the Soar model and the simulation. Data needs to passed about which
hand (right and left) holds which block, which block to put with which block, which block create
a layer and so on, until the pyramid gets built. In fact, the usage of the socket utility is exactly the

same as the ATC task except for their world.

62

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Demonstration of Utility ...

Because this simulation passes more information, it was this task that lead to the discovery
that old input links are not being replaced by new ones. This situation is compounded when the
input-links are getting piled up in the top-state which led to stack overflow because of huge data
being accepted by the Soar model. It was therefore suggested that there should be a way to
replace old data structures of an input link automatically everytime a new input link is added to
the top-state. This facility is not yet provided by MONGSU (i.e., the interface), so old WMEs
must be explicitly removed and the new WMEs added on the top-state, otherwise it would cause

data overflow.

Another feature that should be added to the interface mechanism is the problem of waiting
for incoming data which is a big problem when Soar is communicating with Lisp. Soar is relatively
fast and Lisp and sockets (we noticed) is slow causing extensive waiting on the part of Soar.
Something could and should probably be done during this long period of waiting, — perhaps
further processing, reflecting, or clearing the desk. It may also simply be an effect of a time-
sharing system. The delay represents the minimum time slice that can be given to a processor. In

any case, it would be interesting to know what causes this sometimes considerable delay.

63

8. THE ROAD AHEAD

The system developed in this project (shown in Figure 6) illustrates what you can do once you
routinely tie a Soar model to an interactive simulation. The model was able do basic tasks such
as looking at the scope, lowering the altitude of a plane and landing a plane. It also demonstrated
the use of a robust interface mechanism that provided the link between the Soar model and the
ATC simulation via sockets. But we can imagine a higher level system implementation that does

a lot more. Figure 15 illustrates such a system.

Legend:

— example instantiated

subject
: D — implemented

| — tobebuilt

Display

UNIX Sockets

Figure 15. System Implementation — the road ahead.

The figure above is essentially our system implementation in Figure 6. Boxes in dotted-
grids are implemented as part of our example instantiation which is the ATC task while the plain
box (white in colour) is the implementation of a routine mechanism that provides interaction
between Soar model and simulation. The main distinction between our system (Figure 6) and the

system above (Figure 15) is in the way data is manipulated within the respective system — the

64

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations The Road Ahead

grey box. In Figure 6, low-level data manipulation gives a scenario wherein the data being
manipulated by the Soar model are pre-arranged or pre-fixed types of information passed to it by
the simulation, such as the plane information stored in a global variable. In other words, it only
allows data to be passed between the model and the simulation on a pre-fixed level without
spontaneity, which in our case are data gathered through perceptual knowledge. This approach
is desirable and a necessary prelude (especially for our system) to provide a system that routinely
ties a cognitive model to a simulation. It provides us with a fixed set of known manipulations and
objects to start with — similar to having a list of fixed questions and fixed answers known to
conversing parties. But a higher-level objective is to be able to model human behaviour interacting
with a new interface, or set of interfaces. In this case, the model should have a way of

manipulating the Garnet objects themselves, must be able to learn and look at any objects.

The high-level manipulation of data of the system in Figure 15 arises in the way the Soar
model manipulates objects in the ATC simulation. To start with, the Soar model should be able
to manipulate and modify the attributes of the planes without much intervention from the
simulation — similar to having fingers and claws on the Garnet objects (i.e., planes). It is n.ot clear
at the moment how big or important this system when implemented but a set of known
manipulations and objects (i.e., our implemented system) may be a good start. Furthermore, what
we are after in implementing this system is to develop task knowledge of performing air traffic
control task not just knowledge through perception. This would allow the new system to learn
new facts, new representations, strategies and operations, eventually enabling the Soar model to

explore anything it can see and get hold of in its world.

65

9. CONCLUDING REMARKS

This project presents a tool and mechanism that routinely ties a Soar model to an ATC simulation.
This was achieved by creating a simulation of an ATC task, a Soar model of the subject, and the
use of an interface mechanism that made the two communicate with each other. The ATC
simulation illustrated the model of a grossly simplified ATC task that was able to display planes,
beacons and other objects, while the Soar model was able to perform some basic ATC functions.
Through the sample runs, the Soar-Garnet system was able to show what benefits routine
interaction between the Soar model and the ATC simulation provides. These benefits include (a)
learning new ways of doing I/O with Soar by writing C code that creates new commands in Soar
to use sockets, (b) learning new ways of interpreting a Soar model, such as the choices and time-
in-slot analysis, (c) providing a socket-based mechanism that allowed Soar to play with a
simulation, and most importantly, (d) providing a model that starts to model human behaviour in

the ATC task.

Throughout this project, it was found out that interface mechanism using sockets
(adapted, modified, and made into a utility) is very robust, stable, general and routine. Clearly,
it was able to show the generality it provides across two applications (ATC task and ToN task)

with little or no modifications. Moreover, if used more often on other tasks, it should become

even easier to use.

Indeed, this is the beginning of something that could revolutionalize cognitive modelling
as a means of emulating human behaviour doing a real-time interactive task through making

interaction with the world routine. If that is the case, efforts should be made to address the

66

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Concluding Remarks

problems found in its usage, such as the problem of old WMEs piling up in Soar's memory
(causing stack overflow), and not being able to remove old WMEs by new WMEs. Moreover, the
socket utility should be used and tested across different applications to continuesly update and

modify it for it to be more general to substantiate results found in this project.

Finally, the work done here should be extended to achieve what we imagine is the ultimate
system in routinely tying cognitive models to interactive simulations (the system shown in Figure
15). This high-level system is just a glimpse away, and its importance would only be clear through
further examinations, investigations and development. This would eventually lead to a system that
could see, grab, and manipulate whatever objects exists in the world, and a way of providing
multiple worlds for the simulation to interact with. But essentially, what we've done here is to lay
the groundwork from which to build and further extend this kind of system and other similar
systems that learns from the world and that provide routine interaction between a Soar model and
a simulation. Over time, this approach would paved the way for bringing us a step closer in

emulating human behaviour doing interactive real-time tasks.

67

REFERENCES

Glass, G. (1993). UNIX for Programmers and Users: A Complete Guide. Englewood Cliffs:
Prentice-Hall, Inc.

Guthrie, Wade (1994). Platform Independent Graphical User Interface (PIGUI) Review.
Monthly posting Internet newsgroup: "comp.windows".

Hucka, M. (1994). Soar Developement Environment - Release 0.10. README file. Department
of Electrical Engineering and Computer Science — University of Michigan, Ann Arbor MI.
FTPable from centro.soar.cs.cmu.edu: "/afs/cs/project/soar/public/Soar6/sde-0.10.tar.Z".

Kernighan, B.W. and Ritchie, D.M. (1978). The C Programming Language. Englewood Cliffs:
Prentice-Hall, Inc.

Laird, J.E., Congdon, C.B., Altmann, E. and Doorenbos, R. (1993). Soar User's Manual: Version
6. Edition 1. Pittsburgh PA: Carnegie-Mellon University, School of Computer Science.

Martin, D., Prata, S. and Waite, M. (1984). C Primer Plus. Indianapolis: Howard W. Sams &
Co., Inc.

Myers, B.A. (1994). Garnet Toolkit Frequently Asked Questions. Periodic posting Internet
newsgroup: "comp.windows.garnet."

Myers, et al. (1993). The Garnet Reference Manuals Revised for Version 2.2. Pittsburgh PA:
Carnegie-Mellon University, School of Computer Science. (CMU-CS-90-117-R4)

Nelson, G. (1994). SimTime. Unpublished computer program. The Soar Group, School of
Computer Science — Carnegie-Mellon University, Pittsburgh PA. FTPable from
centro.soar.cs.cmu.edu: "/afs/cs/project/soar/public/Soar6/user-library/SimTime.tar.Z".

Newell, A. (1992). "Precis of Unified theories of cognition." Behavioral and Brain Sciences, 15,
425-437.

Nolan, M.S. (1990). Fundamentals of Air Traffic Control. Belmont CA: Wadsworth Publishing
Co., Inc.

Pelton, G. (1994). New-Soar-10. Unpublished computer program. The Soar Group, School of
Computer Science — Carnegie-Mellon University, Pittsburgh PA. FTPable from
centro.soar.cs.cmu.edu: "/afs/cs/project/soar/member/gap/soar6/new-soar-io/default-io.c".

Ritter, F.E. and Larkin, J.H. (1994). "Developing Process Models as Summaries of HCI Action
Sequences." Human-Computer Interaction (in press).

Ritter, F.E. and Major, N. (1994). "Developing Simulations for Soar to Play With." ESRC Centre
Jor Research and Development, Instruction and Training. Technical Report No. 18.

68

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations References

Rogers, S. (1994). Stopwatch. Unpublished computer program. Department of Electrical
Engineering and Computer Science — University of Michigan, Ann Arbor MI. FTPable from
flamingo.eecs.umich.edu: "/u/srogers/soar/soar6.2/stopwatch.c".

Steele, G.L., Jr. (1990). Common LISP: The Language. Second Edition. Bedford MA: Digital
Press Inc.

Waldrop, M.M. (1988a). "Toward a Unified Theory of Cognition." Science, 241, 27-29.

Waldrop, M.M. (1988b). "Soar: A Unified Theory of Cognition?" Science, 241, 296-298.

69

ATC — README

ATC Package
Air Traffic Control Simulation Package
Release 1.0

Roberto L. Ong
itxrlo@unicorn.nott.ac.uk
September 15, 1994

INTRODUCTION

This is release notes for a simple Air Traffic Control (ATC) task and a simple
Soar model to drive it, implemented in Garnet, Lisp, and Soar, tied together
with Unix sockets. It includes (a) how to obtain this code, (b) the structure
of the code, (c) a description of the contents of this package, (d) how to
set-up the ATC code, and (e) how to get help.

The ATC code illustrates the basic utility in routinely tying a Soar model to
an interactive simulation using a refined socket packaged called MONGSU
(Mertz-Ong-Nerb-Gary Socket Utility). It includes the Garnet simulation, the
Soar model, and the general socket code.

OBTAINING AND INSTALLING THE PACKAGE

The ATC code is available via anonymous ftp from host 128.243.40.7
(unicorn.ccc.nott.ac.uk, but many machines don't know it, so you may wish to
use the numbers) in the directory "/pub/lpzfr" (From within ftp only the part
of the tree rooted at /usr/ftp is visible).

If you would like help with using anonymous ftp, feel free to send me a
message and I will explain the procedure.

ATC CODE STRUCTURE

The ATC code structure is divided into three parts: the simulation, the model,

and the interface (i.e., sockets). Below is an illustration of the ATC code
structure.
The Simulation: The Model:
The Garnet ATC simulation PS to do ATC task
The Lisp helper functions Soar top-state attribute-value
(also called Lisp eye/hand code) (also called Soar C eye-code)

70

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix A

The Interface:
Lisp sockets Soar sockets
Standard sockets

CONTENTS OF THIS PACKAGE

The files included in this package are:

ATC-README
This file contains the release notes about the ATC source code. It describes

how to obtain, install and use the source code.

ATC-files.load
This file loads the necessary files to run the ATC simulation.

ATC~Garnet.lisp
This file contains the Garnet part of the ATC simulation code, It includes
the creation of objects, the functions to manipulate them, and the main

routine to run the simulation.

ATC-fn.lisp
The core of the communication link with Soar. It contains the functions that

carry out conversation proceedings with a Soar model. It also contains
functions that support data evaluation and creation. The main routine in this
file (a) launches a process that creates a socket and listens for incoming
requests for a connection, (b) runs the ATC simulation, and (c) evaluate data
coming from Soar (in this case, commands). Commands coming from Soar (in a
list) are evaluated and resulting data (also in lists) are sent back to Soar.

Database files:

These files contain databases of beacon and plane locations and other
attributes that are loaded as plane information for the ATC simulation. They
are quite simple. Follow the procedures below on how to add them.

plane.db

A sample file will look something like:
2 -

CX901 200 200 20000 5 under land

PR301 100 400 25000 6 under over

The first line contains the number of planes. Succeeding lines contain data
for each plane. The data for each row are:

flight-number x-position y-position altitude velocity control status

beacon.db
A sample file will look something like:

2
100 100
200 200

The first line contains the number of beacons. Succeeding lines contain the
x and y locations of each beacon.

71

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix A

HOW TO SET UP THE ATC CODE

This code runs with the latest version of Soar 6.2.3 (non-nnpscm), and with
Garnet 2.2 running in a Lisp Lucid image. The following set-up procedures can
be used to set it up at the Psychology department from within the University
of Nottingham. Other users will need modify it for their own site.

HOW TO SET UP THE LISP CODE
[0] start a garnet-lucid-image by
-> loading emacs and do M-x garnet, or
-> loading "/psyc/lang/garnet/2.2/garnet-lucid-image"
(Outside of Nottingham, you need to get a lisp image, get garnet, compile
garnet, load it, and make an image.)

[1] (load "/psyc/teaching/UG/otherug/itxro/garnet/ATC-files.load)

[2] Run the main-routine:
{(main-routine)

This call will printout the following lines below and start the ATC
simulation.

Created Socket with id 6
Created socket 6.
Bound socket 6 to port 1282
AAAR
Listening at socket 6
Listening at socket with id 6
#<Process Soar-read-loop-process 144148E>

*This port number is needed by Soar to set up a socket link to Lisp.

[3] To load planes, choose "File" from the menu-bar and select "Load-File".
This will load the plane database.

[4] When you finish, good UNIX hygiene suggests that you close the socket
stream with (shutdown-socket-stream)

NOTE: If something goes wrong, or an error occurs, you must REMEMBER to- close
the socket stream with

(shutdown~-socket-stream)

To restart the entire socket process, go to step [2].
Unless, your garnet-image crashes, go to step [0].

In either case, you then must restart Soar again.
(See the set-up procedure below)

HOW TO SET UP THE SOAR SOCKET CODE

[0] Start a Soar program by compiling Soar together with MONGSU.
Instructions on how to go about this can be found in the release notes
of MONGSU (Mertz-Ong-Nerb-Gary Socket Utility).

[1] Load Soar default rules.
[2] Load ATC.soar ("/psyc/teaching/UG/otherug/itxro/garnet/ATC.soar")

Instructions on how to obtain and run this code can be found in the
release notes of ATC-Soar.

72

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix A

[3] After Garnet is up and ATC code is loaded, type:
init-socket-io server-name port-number

this is a new Soar command created by MONGSU

’
; where:
] server-name is the server where garnet runs
HY port-number is the number return by the Lisp socket code

[4] you can now run the program
NOTE: REMEMBER to issue the command: close-socket-io

whenever you are finish using the sockets and want to terminate link
with Lisp/Garnet.

HOW TO GET HELP

If you require any assistance regarding this package, please drop an email to
<itxrlo@unicorn.nott.ac.uk>

Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
September 15, 1994 - University Park

73

ATC-Soar — README

ATC-Soar
Air Traffic Control Soar Model
Release 1.0

Roberto L. Ong

itxrlo@unicorn.nott.ac.uk
September 27, 1994

INTRODUCTION

This is release notes for a simple Air Traffic Control (ATC) Soar model that
drives the ATC simulation. It includes (a) how to obtain and run this code,
and (b) how to get help.

The ATC Soar model illustrates the basic (and simple) functions in doing the
ATC task. It includes the external operators 'look-scope', 'lower-altitude'
and 'land-plane' when implemented issues commands to the simulation to do
basic tasks such as looking at the scope and landing a plane. It also includes
a 'watching-command-process' operator that act as a wait and add delay to Soar
in order for it to receive data coming from the slow Simulation. In addition,
a bunch of other operators (non-external) also exist to support the
performance of this simple ATC task. It is extensible so that users can
modify and add rules to do more complex tasks, such as the detection of a
plane crash or near misses.

It must be noted that Soar's default rules are loaded and used by this model
as part of its total rule count (a total of 139).

OBTAINING AND RUNNING THE PACKAGE

The ATC Soar code 1is available via anonymous ftp from host 128.243.40.7
(unicorn.ccc.nott.ac.uk, but many machines don't know it, so you may wish to
use the numbers) in the directory "/pub/lpzfr" (From within ftp only the part
of the tree rooted at /usr/ftp is visible).

If you would like help with using anonymous ftp, feel free to send me
a message and I will explain the procedure.

HOW TO RUN THE ATC SOAR MODEL:

This code runs with the latest version of Soar 6.2.3 (non-nnpscm) with Mertz-
Ong-Nerb-Gary Socket Utility (MONGSU) compiled together. The following
procedures can be used to run this model at the Psychology department from
within the University of Nottingham. Other users will need modify it for

their own site.

74

g

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix B

(1]

(2]
[3]

[4]

Start a Soar program by

-> loading emacs and do M-X soar, or

-> loading "/psyc/teaching/UG/otherug/itxro/soar6.2.3/bin/non-nnpscm
/sund/soar"

(Outside of Nottingham, you need to get a Soar program 6.2.3 and MONGSU,

and compile it together.)

Load Soar default rules.

Load ATC.soar ("/psyc/teaching/UG/otherug/itxro/garnet/ATC.soar")
("ATC.soar" is the source code for the ATC Soar model.)

you can now run the program

(It is assumed here that a socket link has already been established with
the ATC simulation. If link does not yet exist, follow the procedures in
setting up the ATC simulation package from which this is a part of.)

TO GET HELP

If you require any assistance regarding this package, please drop an email to
<itxrlo@unicorn.nott.ac.uk>

Roberto L. Ong <itxrlo@Qunicorn.nott.ac.uk>
September 27, 1994 - University Park

75

MONGSU — README

MONGSU
Mertz-Ong-Nerb-Gary Socket Utility
Release 1.0

Roberto L. Ong
itxrlo@unicorn.nott.ac.uk
September 15, 1994

INTRODUCTION

This is a manual for the socket code that implements Soar and Lisp I/0O using
Unix sockets. It includes (a) how to obtain and install the package, (b) the
contents of this package, (c) the necessary changes to the makefile (for
compiling Soar) and hooks.c, and (d) where to get help.

This socket code provides the basic utilities needed for creating Socar I/O in
C and Lisp I/O in Common Lisp. It supports the direct and routine use of Unix
sockets by providing functions such as create socket, bind socket, etc. It
supports passing lists of structures to Soar that automatically end up in
working memory without writing additional C code, and defines additional
commands for Soar.

It is extensible, so that users can write their own C commands and functions,
for example, to allow a different parsing procedure of incoming and outgoing
data other than a list structure. It should make the use of sockets more
routine. It also works with systems besides lisp if they will pass down the
socket lists of WMEs, and accept lists in return.

OBTAINING AND INSTALLING THE PACKAGE

The Socket code is available via anonymous ftp from host 128.243.40.7
(unicorn.ccc.nott.ac.uk, but many machines don't know it, so you may wish to
use the numbers) in the directory "/pub/lpzfr" (From within ftp only the part
of the tree rooted at /usr/ftp is visible).

If you would like help with using anonymous ftp, feel free to send me a
message and I will explain the procedure.

To install the system:

[1] You must first have a Soar Release 6.2 (or later) in your home directory
(or some other directory in your system). Copy the necessary makefiles
to your "<soar-directory>".

76

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix C

(2] Then copy the Soar socket codes to your "<soar-directory>/user/src"

directory and the Lisp socket codes to your "<lisp-directory>". All
Soar socket codes have their filenames contain the word "soar", while
the Lisp codes have their filenames contain the extension ".lisp", so

there should be no trouble in determining them.

(3] Edit the makefile (in "<soar-directory>/make.body") to include the
necessary path to your <soar-directory>. You also have to put the
necessary changes to hooks.c in "<socar-directory>/src/hooks.c".

[4] Execute "make" in your "<socar-directory>". This will compile the Soar
socket code in .c files together with the modified hooks.c file.

N.B. You can copy "make.body" and "hooks.c" (modified for your convenience)
from the ftp directory.

[5] Load the "socket.lisp" and "stdio.lisp" from within Lisp (we use a Garnet
Lucid Image). You can now start calling the functions defined in these
files to start your communication.

The files included in the package are:

README

This file contains the release notes about the Mertz-Ong-Nerb-Gary Socket
Utility (MONGSU). It describes how to obtain, install and use the source
code.

make.body

This file contains the body of the makefile that will be used for Soar to be
compiled together with Soar socket code. It already exists in vyour
<soar-directory> (it comes with the Soar program), you Jjust have to

incorporate the necessary changes to it or use the one included in this
package.

hooks.c
This file contains the necessary changes in order for some C functions to be
called during specific time during compilation. It already exists in your

<soar-directory> (it comes with the Soar program), you just have to
incorporate the necessary changes to it or use the one included in this

package.

std-soar-socket.c
This file contains the basic open, listen, bind, etc routines for sockets.
It is used by both the Soar sockets and Lisp sockets (as std-soar-socket.o).

soar-socket.c
The core of the sockets code for Soar. It contains the necessary functions

for Soar to act as a client (in a UNIX client-server model), the input and
output functions, the additional commands, and the parsing routines. The
parsing routines parses incoming data (in lists) and build them as WMEs, while
WMEs are parse into lists for outgoing data.

I communicate with a Lisp process, so the following files are provided:

socket.lisp
This package contains the functions that create a socket for Lisp to act as

a server or a client. It supports Lucid, Allegro, and CMU-Lisp.

77

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix C

stdio.lisp
This file contains the utilities that support Lisp socket communication. It
includes read and write functions and other utilities. User-defined functions

supporing Lisp sockets are placed here.
There are also some small programs for doing socket testing.

clienttest.c clienttest.out
The source and the executable file provides a communication link with a Lisp
server (hence the name, clienttest) and tests it. Follow the testing

procedure below.

servertest.c servertest.out
The source and the executable file provides a communication link with a Lisp
client (hence the name, servertest) and tests it. Follow the testing

procedure below.

TESTING PROCEDURE

[1] Start-up a Lisp program.

N.B. It is advised that you used Lucid-4.1 because all source code were
tested using it. However, other Lisp program would suffice (if you
don't have Lucid) with perhaps some modifications to the code.

{2] Load the files "socket.lisp" and "stdio.lisp".

To test a Lisp server:

[3] Type: (set-up-socket-as-server)
This creates a socket as a server process.

(4] From a Unix prompt, type: clienttest.out server-name port-number
where:
server-name is the host name where your Lisp process is running.
port-number is the port number returned when you set up a
Lisp server process.

[5] (accept-client-and-make-socket-stream) accepts a request from a client
process (in this case, clienttest.out) and creates a socket-stream.

[6] (do-stuff) accepts a list structure defined in clienttest.c, evaluates
and prints it.

An output looks something like:
Received message: (+ 1 2)
Evaluated message: 3

Closed socket with id 6

Socket 6 closed.

Channel interface is shutdown.
nil

To test a Lisp client:

[3] From a Unix prompt, type: servertest.out
This creates a server process in Unix and returns a port-number.

78

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations Appendix C

[4] Type: (set-up-socket-as-client "server-name" port-number) on the Lisp
prompt. This creates a socket for the client process.
where:

"server-name" is the name of the host where your Lisp process
is running in quotes.
port-number is the number returned by running servertest.out.

[5] Type: (test-write)
This command writes some strings into the socket while the server process
in Unix receives and prints it out.

A sample output looks something like:
-->hello-there

-~->this-is—a-test

Ending connection

To test a Soar client to a Lisp server:

[3] Load Soar (6.2.3) with the necessary files loaded (see installation
procedure) .

[4] In Lisp, type: (set-up-socket-as-server)
This would return a port-number for use within Soar.

[3] In Soar, type: init-socket-io server-name port-number
where:
server-name is the host name where your Lisp process is running.
port-number is the port number returned when you set up a Lisp server
process.

[6] Type (accept-client-and-make-socket-stream) in Lisp to accept the Soar
client process and create a socket streamn.

[7] Load any program in Soar (e.g., you could load example programs included
in the Soar package).

[8] In Lisp, use "write-message" to send a list structure to Soar and
instantiate it on the top-state.

A sample command looks like:

(write-message ' (input-link hello))

This would create an attribute in the top-state (of your loaded Soar
program) named “input-link with value hello.

N.B. REMEMBER to (shutdown-socket-stream) when you finished running the Lisp
process and "close-socket-io" with the Soar process.

To test a Soar server to a Lisp client:

[3] Load Soar (6.2.3) with the necessary files loaded (see installation
procedure) .

[4] In Soar, type: init-socket-server
This will return a port number for used by the Lisp client.

(5] In Lisp, type: (set-up-socket-as-client "server-name" port-number)

[6] Load any program in Soar (e.g., you could load example programs included
in the Soar package).

79

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix C

[7] In Lisp, use "write-message™ to send a list structure to Soar and
instantiate it on the top-state.

A sample command looks like:

(write-message ' (input-link hello))

This would create an attribute in the top-state (of your loaded Soar
program) named “input-link with value hello.

N.B. REMEMBER to (close-socket-io) when you finished running the Lisp process

and "shutdown-socket-io" with the Soar process.

HOW TO GET HELP

If you require any assistance regarding this package, please drop an email to
<itxrlo@unicorn.nott.ac.uk>

Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
September 15, 1994 - University Park

80

A Sample Run

D.1 Sample Run 1 (Wed Sep 14 13:21:03 1994)

Soar 6.2.3

Bugs and questions should be sent to soar-bugs@cs.cmu.edu
The current bug-list may be obtained by sending mail to
soar-bugs@cs.cmu.edu with the Subject: line "bug list".

This software is in the public domain, and is made available AS IS.
Carnegie Mellon University, The University of Michigan, and

The University of Southern California/Information Sciences Institute
make no warranties about the software or its performance, implied

or otherwise.

Type "help" for information on various topics.

Type "quit" to exit. Use ctrl-c to stop a Soar run.
Type "soarnews" for news.

Type "version" for complete version information.

Loading /psyc/teaching/UG/otherug/itxro/.init.soar

Loading
/psyc/teaching/UG/otherug/itxro/soar6.2.3/default/non-nnpscm/default.soar

AR ESRESEEEEAEEEEREEREESEEEE LR S R R R R R R i S L X
AhkhhkhkhhkhkhkhkhkhkdrARrrA bk Ak kv rhhhkhkk

Loading /psyc/teaching/UG/otherug/itxro/garnet/ATC. soar

khhkhkhkhhhhkhhkhkhkhkhkbhhkhhhhkhhkhrdhhd

Soar> init-socket-io upsyc 3200
Created Socket with id 3

Connecting to server with name upsyc
Connecting to server with port #3200
connected to socket 3

Soar> d
0: ==>G: Gl
1: P: Pl (atc)
2: S: s1
3: 0: 01 (look-scope)

write successful socket 3

4: ==>G: G2 (operator no-change)

5: P: Pl (atc)

6: S: sl

7: 0: 02 (watching-command-process)
8: O: 02 (watching-command-process)

81

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations

Appendix D.]

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23;
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45;
46:
47
48:
49:
50:
51:
52:
53:
54
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:

PRl 00R2020020200

02
02
02
o2
02
o2
o2
o2
02
02
02
02
02
o2
02
o2
02
02
02
o2
o2
o2
02
02
02
02
o2
02
02
02
(o)
o2
o2
02
02
02
02
o2
02
02
o2
02
o2
02
02
o2
02
o2
02
02
o2
02
o2
02
02
o2
02
o2
o2
02
oz

(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching~command-process)
(watching—-command-process)
(watching-command-process)
{watching-command~process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
{watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching~command-process)
{watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

82

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D. 1

70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
81:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:

0
O
O
O
o
0
o)
0o
0
o
0
o
0
0
O
0O
0
O
0
o}
o)
o
o)
0O
o}
O
O
O
0
0
0O:
O:
O.
O
0
0
O
0
0
O
0
O
0
0O
0O
0
0O
0
0O
0
0
0
0
O
O
0O
0
0
0
0
0

02
02
02
o2
o2
o2
02
o2
02
(o)
02
o2
02
02
0z
02
o2
02
02
o2
02
02
02
o2
02
02
02
(0)/]
02
o2
02
02
02
02
o2
02
02
o2
02
02
o2
02
o2
02
02
o2
o2
o2
02
o2
02
o2
02
o2
02
02
02
02
02
02
02

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)

{(watching-command-process)

(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching~command-process)
(watching~command-process)
{(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)

83

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D. 1

131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
i6l:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:

o)
o
o)
o)
0O
0
o
O
0
0
0
O
o)
0
0
0o
0
@)
o}
0O
o
0
0O
O
0
0
o
@)
0
O:
O:
o.
0
O
O
0
@)
0
0
O
o
0
o}
o)
O
o}
0
o
o)
o
o}
O
O
O
0o
o)
O
0
o
@)
0

02
02
02
02
02
02
02
o2
02
02
02
02
02
02
02
02
o2
o2
02
02
o2
02
02
o2
o2
o2
o2
o2
02
o2
02
02
02
02
o2
02
02
02
oz
02
02
02
o2
02
o2
o2
02
o2
o2
02
o2
02
02
o2
02
o2
02
02
02
02
02

(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching~command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching~command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching~command-process)
{(watching-command-process)
(watching~command-process)
(watching-command-process)

84

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.1

192: O: 02 (watching-command-process)
193: 0: 02 (watching-command-process)
194: O: 02 (watching-command-process)
195: O: 02 {(watching-command-process)
196: O: 02 (watching-command-process)
197: O: 02 (watching-command-process)
198: 0: 02 (watching-command-process)
199: O: 02 (watching-command-process)
200: 0: 07 (lower-altitude)

Flight number pr301 has reached First approach fix.

Descending to 5000 meters.

write successful socket 3

201: ==>G: G3 (operator no-change)

202: P: Pl (atc)

203: S: 81

204: O: 010 (watching-command-process)
205: O: 010 (watching-command-process)
206: O: 010 (watching-command-process)
207: O: 010 (watching-command-process)
208: 0: 010 (watching-command-process)
209: O: 010 (watching-command-process)
210: O: 010 (watching-command-process)
211: 0: 010 (watching-command-process)
212: O: 010 (watching-command-process)
213: O: 010 (watching-command-process)
214: O: 010 (watching-command-process)
215: 0: 010 (watching-command-process)
216: 0: 010 (watching-command-process)
217: O: 010 (watching-command-process)
218: O: 010 (watching-command-process)
219: O: 010 (watching-command-process)
220: O: 09 (look~-scope)

write successful soc

ket 3

(operator no-change)

G5 (operator tie)

019 (evaluate-object 015 (lower-altitude))

G: G6 (operator no-change)

221: ==>G: G4

222: P: Pl (atc)

223: S: s1

224: ==>G

225: P: P4 (selection)
226: S: 82

227: 0:

228: == >

229: P: Pl (atc)
230: S: D3

231:

Flight number pr301 has reached First approach fix.

Descending to 5000
232:

O: C4 (lower-altitude)

meters.

==>G: G7 (operator no-change)

233: P: Pl (atc)

234: S: D3

235: 0: 023 (watching-command-process)
236: O: 023 (watching-command-process)
237: 0O: 023 (watching-command-process)
238: O: 023 (watching-command-process)
239: O: 023 (watching-command-process)
240: O: 023 (watching-command-process)
241: 0: 023 (watching-command-process)
242: O: 025 (there-are-planes)

There are planes to land.

85

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.1

243:

244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:
260:
261:
262:
263:
264;

265:

266:
267:
268
269:
270:
271:
272:
273:
274:
275:
276:
277:
278:
279:
280:
281:
282:
283:
284:
285:
286:

287:

288:
289:
290:
291:
292:
293:
294:
295:

O: 028 (look-scope)
write successful socket 3

G8

Pl

sl

031
031
031
031
031
031
031
031
031
031
031
031
031
031
031
031
031

1l
1l
Vv

QS?.O.Q.C?.OOOOOOOOOOOO(A'UG]

(operator no-change)
(atc)

(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

[oH 035 (there-are-planes)
There are planes to land.

O: 038 (look-scope)

write successful socket 3

G9

Pl

sl

041
041
041
041
041
041
041
041
041
041
041
041
041
041
041
041
041

===

@

QQQ_C?Q'OOOOOOOOOOOOUA'U

(operator no-change)
(atc)

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

0o: 045 (there-are-planes)
There are planes to land.

O: 048 (look-scope)

write successful socket 3

==>G: G10
P: P1
S: s1
O: 051
O: 051
O: 051
0O: 051
0O: 051

(operator no-change)

(atc)

(watching-command-process)
(watching-command~process)
(watching~command-process)
(watching—command-process)
(watching-command-process)

86

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.1

296: O: 051 (watching-command-process)
297: O: 051 (watching-command-process)
298: 0: 051 (watching-command-process)
299: 0: 051 (watching-command-process)
300: 0: 051 (watching-command-process)
301: O0: 051 (watching-command-process)
302: 0: 051 (watching-command-process)
303: O: 051 (watching-command-process)
304: O: 051 (watching-command-process)
305: 0: 051 (watching-command-process)
306: 0: 051 (watching-command-process)
307: O: 058 (lower-altitude)

Flight number cx901 has reached First approach fix.

Descending to 5000 meters.
write successful socket 3

308: ==>G: Gl1 (operator no-change)

309: P: Pl (atc)

310: S: sl

311: 0: 061 (watching-command-process)
312: 0: 061 (watching-command-process)
313: 0: 061 (watching-command-process)
314: 0: 061 (watching-command-process)
315: 0: 061 (watching-command-process)
316: O: 061 (watching-command-process)
317: O: 061 (watching-command-process)
318: 0: 061 (watching-command-process)
319: 0: 061 (watching-command-process)
320: 0: 061 (watching-command-process)
321: 0: 061 (watching-command-process)
322: O: 061 (watching-command-process)
323: 0: 061 (watching-command-process)
324: 0: 061 (watching-command-process)
325: 0: 061 (watching-command-process)
326: 0: 061 (watching-command-process)
327: O: 061 (watching-command-process)
328: O: 060 (look-scope)

write successful socket 3

329: ==>G! Gl2 (operator no-change)

330: P: Pl (atc)

331: S: sl

332: ==>G: G1l3 (operator tie)

333: P: P13 (selection)

334: S: 83

335: 0: 070 (evaluate-object 066 (lower-altitude))
336: ==>G: Gl4 (operator no-change)
337: P: Pl (atc)

338: S: D5

339: O: Cll1 (lower—~altitude)

Flight number cx901 has reached First approach fix.

Descending to 5000 meters.

340: ==>G: G15 (operator no-change)

341: P: Pl (atc)

342: S: D5

343: 0: 074 (watching-command-process)
344: 0: 074 (watching-command-process)
345: 0: 074 (watching-command-process)
346: 0: 074 (watching-command-process)
347: 0: 074 (watching-command-process)
348: 0: 074 (watching-command-process)

87

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations

Appendix D.1

349: O: 076 (there—-are-planes)
There are planes to land.
350: 0: 079 (look-scope)

write successful socket 3

@

351: ==>
352:
353:
354:
355:
356:
357:
358:
359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:

Pl (atc)
sl

C?E)S)QOOOOOOOOOOOOOU)"U

There are planes to land.

372: O: 089 (look-scope)

write successful socket 3

373: ==
374:
375:
376:
377:
378:
379:
380:
381:
382:
383:
384:
385:
386:
387:
388:
389:
390:
391:
392:

Pl (atc)
s1

0.9999000000000000(0"05

There are planes to land.

394: O: 099 (look-scope)

write successful socket 3

395: ==>G

396: P: Pl (atc)
397: S: sl

398: 0O:

399: 0O:

400: O:

Gl16 (operator no-change)

082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching—-command-process)
‘082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching—-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
082 (watching-command-process)
371: O: 086 (there-are-planes)

G17 (operator no-change)

092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
092 (watching-command-process)
393: 0O: 096 (there-are-planes)

G18 (operator no-change)

0102 (watching~command-process)
0102 (watching-command-process)
0102 (watching-command-process)

88

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D, 1

401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:

416:

417
418:
419:
420:
421:
422
423:
424:
425
426:
427:
428:
429:
430:
431:
432:
433
434:
435:
436:

437:

438:
439:
440:
441:
442:
443;
444
445:
446:
447
448:
449:
450:
451:
452:
453
454:
455:

o-

==>G:

O-

1l

1l
Vv

(?.C.)OOOOOOOOOOOO

o102
0102
0102
0102
0102
0102
0102
0102
0102
0102
0102
0102
0102
0102

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching—-command-process)

0106 (there—~are-planes)
There are planes to land.

O: 0109 (look-scope)
write successful socket 3

G1l9 (operator no-change)

P: Pl (atc)

s: sl

0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command~process)
0: 0112 (watching-command-process)
O: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
0: 0112 (watching-command-process)
O: 0112 (watching-command-process)

0116 (there-are-planes)
There are planes to land.

O: 0119 (look-scope)
write successful socket 3

G: G20 (operator no-change)

P: Pl (atc)

S: s1

0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command~process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
O: 0122 (watching-command-process)
0: 0122 (watching-command-process)
0: 0122 (watching-command-process)
O: 0122 (watching-command-process)

89

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.1

456: 0: 0122 (watching-command-process)
457: 0: 0122 (watching-command-process)
458: O: 0126 (there-are-planes)

There are planes to land.

459 O: 0129 (look-scope)

write successful socket 3

460: ==>G: G21 (operator no-change)

461: P: Pl (atc)

462: S: 81

463: 0: 0132 (watching-command-process)
464: 0: 0132 (watching-command-process)
465 0: 0132 (watching-command-process)
466: 0: 0132 (watching-command-process)
467: O: 0132 (watching-command-process)
468: 0O: 0132 (watching-command-process)
469: O: 0132 (watching-command-process)
470: 0: 0132 (watching-command-process)
471: 0: 0132 (watching-command-process)
472: O: 0132 (watching-command-process)
473: 0: 0132 (watching-command-process)
474: 0: 0132 (watching-command-process)
475: 0: 0132 (watching-command-process)
476: 0: 0132 (watching-command-process)
477: 0: 0132 (watching-command-process)
478 0: 0132 (watching-command-process)
479: O: 0136 (there-are-planes)

There are planes to land.

480: O: 0139 (look-scope)

write successful socket 3

481: ==>G: G22 (operator no-change)

482: P: P1 (atc)

483: S: sl

484: 0: 0142 (watching-command-process)
485; 0: 0142 (watching-command-process)
486: 0: 0142 (watching-command-process)
487 : 0: 0142 (watching-command-process)
488: 0O: 0142 (watching-command-process)
489: 0: 0142 (watching-command-process)
490: 0: 0142 (watching-command-process)
491: 0: 0142 (watching-command-process)
492: O: 0142 (watching-command-process)
493: O: 0142 (watching-command-process)
494: 0: 0142 (watching-command-process)
495:; 0: 0142 (watching-command-process)
496: O: 0142 (watching-command-process)
497: O0: 0142 (watching-command-process)
498: 0: 0142 (watching-command-process)
499; O: 0142 (watching-command-process)
500: O: 0142 (watching-command-process)
501: 0: 0142 (watching-command-process)
502: 0: 0142 (watching-command-process)
503: 0: 0142 (watching-command-process)
504: O: 0142 (watching-command-process)
505: O: 0142 (watching—-command-process)
506: O: 0142 (watching-command-process)
507: 0: 0142 (watching-command-process)
508: O: 0142 (watching-command-process)
509: O0: 0142 (watching-command-process)
510: 0: 0142 (watching-command-process)

90

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D. 1

511: 0: 0142 (watching-command-process)
512: 0: 0142 (watching-command-process)
513: O: 0142 (watching-command-process)
514: O: 0142 (watching-command-process)
515: 0O: 0142 (watching-command-process)
516: O: 0142 (watching-command-process)
517: 0: 0142 (watching-command-process)
518: O0: 0142 (watching-command-process)
519: O: 0142 (watching-command-process)
520: 0: 0142 (watching-command-process)
521: O: 0142 (watching-command-process)
522: 0: 0142 (watching-command-process)
523: 0: 0142 (watching-command-process)
524: O: 0142 (watching-command-process)
525: 0: 0142 (watching-command-process)
526: O: 0142 (watching-command-process)
527: 0: 0142 (watching-command-process)
528: O: 0142 (watching-command-process)
529: 0: 0142 (watching-command-process)
530: 0: 0142 (watching-command-process)
531: O: 0142 (watching-command-process})
532: O0: 0142 (watching-command-process)
533: O: 0142 (watching-command-process)
534: 0: 0142 (watching-command-process)
535:; 0: 0142 (watching-command-process)
536: 0: 0142 (watching-command-process)
537: 0: 0142 (watching-command-process)
538: O: 0142 (watching-command-process)
539: 0: 0142 (watching-command-process)
540: O: 0142 (watching-command-process)
541: O: 0142 (watching-command-process)
542: O: 0146 (there-are-planes)
There are planes to land.
543: O: 0149 (look-scope)

write successful socket 3

544: ==>G: G23 (operator no-change)
545; P: Pl (atc)
546: S: s1
547: 0: 0152 (watching-command-process)
548: O: 0152 (watching-command-process)
549: 0: 0152 (watching-command-process)
550: 0: 0152 (watching-command-process)
551: O: 0152 (watching-command-process)
552: 0: 0152 (watching-command-process)
553: 0: 0152 (watching-command-process)
554: 0: 0152 (watching-command-process)
555: O: 0152 (watching-command-process)
556: 0: 0152 (watching-command-process)
557: 0: 0152 (watching~command-process)
558: O: 0152 (watching-command-process)
559: O: 0152 (watching-command-process)
560: O: 0152 (watching-command-process)
561: 0: 0152 (watching-command-process)
562: O: 0152 (watching-command-process)
563: O: 0152 {(watching-command-process)
564: O: 0156 (there-are-planes)

There are planes to land.
565: O: 0159 (look-scope)

write successful socket 3

91

Mechanisms for Routinely Tying Cognitive Models 1o Interactive Simulations

Appendix D.1

566: ==>G: G24 (operator no-change)
567: P: Pl (atc)
568: S: sl
569: O: 0162 (watching-command-process)
570: 0: 0162 (watching-command-process)
571: O: 0162 (watching-command-process)
572: 0: 0162 (watching-command-process)
573: 0: 0162 (watching-command-process)
574: 0: 0162 (watching-command-process)
575: 0: 0162 (watching-command-process)
576: O: 0162 (watching-command-process)
577: 0: 0162 (watching-command-process)
578: O: 0162 (watching-command-process)
579: - 0: 0162 (watching-command-process)
580: O: 0162 (watching-command-process)
581: 0O: 0162 (watching-command-process)
582: 0: 0162 (watching-command-process)
583: 0: 0162 (watching-command-process)
584: 0: 0162 (watching-command-process)
585: O: 0166 (there-are-planes)

There are planes to land.
586: O: 0169 (look-scope)

write successful socket 3

587: ==>G: G25 (operator no-change)
588: P: Pl (atc)
589: S: s1
590: 0: 0172 (watching-command-process)
591: 0: 0172 (watching-command-process)
592: 0: 0172 (watching-command-process)
593: 0: 0172 (watching-command-process)
594: O: 0172 (watching-command-process)
595: 0: 0172 (watching-command-process)
596: O: 0172 (watching-command-process)
597: 0: 0172 (watching-command-process)
598: 0: 0172 (watching-command-process)
599: 0: 0172 (watching-command-process)
600: 0: 0172 (watching-command-process)
601: O: 0172 (watching-command-process)
602: 0: 0172 (watching-command-process)
603: 0: 0172 (watching-command-process)
604: O: 0172 (watching-command-process)
605: 0: 0172 (watching-command-process)
606: 0: 0172 (watching-command-process)
607: O: 0176 (there-are-planes)

There are planes to land.
608: 0O: 0179 (look-scope)

write successful socket 3

609: ==>G: G26 (operator no-change)

610: P: Pl (atc)

611: S: s81

612: 0: 0182 (watching-command-process)
613: 0: 0182 (watching-command-process)
614: 0: 0182 (watching-command-process)
615: 0: 0182 (watching-command-process)
616: O: 0182 (watching-command-process)
617: 0: 0182 (watching-command-process)
618: 0: 0182 (watching-command-process)
619: 0: 0182 (watching-command-process)
620: O: 0182 (watching-command-process)

92

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D, 1

621: O: 0182 (watching-command-process)
622: 0: 0182 (watching-command-process)
623: O: 0182 (watching-command-process)
624: O0: 0182 (watching-command-process)
625: 0: 0182 (watching-command-process)
626: 0: 0182 (watching-command-process)
627: O: 0182 (watching-command-process)
628: O: 0186 (there-are-planes)
There are planes to land.
629: O: 0189 (look-scope)

write successful socket 3

630: ==>G: G27 (operator no-change)
631: pP: Pl (atc)
632: S: 81
633: O: 0192 (watching-command-process)
634: 0: 0192 (watching-command-process)
635: O: 0192 (watching-command-process)
636: 0: 0192 (watching-command-process)
637: 0: 0192 (watching-command-process)
638: 0: 0192 (watching-command-process)
639: 0: 0192 (watching-command-process)
640: O: 0192 (watching-command-process)
641: 0: 0192 (watching-command-process)
642: 0: 0192 (watching-command-process)
643: O0: 0192 (watching-command-process)
644: 0: 0192 (watching-command-process)
645: 0: 0192 (watching-command-process)
646: 0: 0192 (watching-command-process)
647: 0: 0192 (watching-command-process)
648: 0: 0192 (watching-command-process)
649: 0: 01%2 (watching-command-process)
650: O: 0196 (there-are-planes)

There are planes to land.
651: 0: 0199 (look-scope)

write successful socket 3

652: ==>G: G28 (operator no-change)
653: P: Pl (atc)
654: S: si
655: 0: 0202 (watching-command-process)
656: 0: 0202 (watching-command-process)
657: O: 0202 (watching-command-process)
658: 0: 0202 (watching-command-process)
659: 0: 0202 (watching-command-process)
660: O: 0202 (watching-command-process)
661: 0: 0202 (watching-command-process)
662: 0: 0202 (watching-command-process)
663: O: 0202 (watching-command-process)
664: 0: 0202 (watching-command-process)
665: O: 0202 (watching-command-process)
666: 0: 0202 (watching-command-process)
667: 0: 0202 (watching-command-process)
668: O: 0202 (watching-command-process)
669: 0: 0202 (watching-command-process)
670: O: 0202 (watching-command-process)
671: 0: 0202 (watching-command-process)
672: O: 0206 (there-are-planes)

There are planes to land.
673: O: 0209 (look-scope)

write successful socket 3

93

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D. 1

674: ==>G: G29 (operator no-change)

675: P: Pl (atc)

676: s: sl

677: 0: 0212 (watching-command-process)
678: O: 0212 (watching-command-process)
679: O: 0212 (watching-command-process)
680: 0: 0212 (watching-command-process)
681: O: 0212 (watching-command-process)
682: O: 0212 (watching-command-process)
683: 0: 0212 (watching-command-process)
684: O: 0212 (watching-command-process)
685: O: 0212 (watching-command-process)
686: 0: 0212 (watching-command-process)
687: 0: 0212 (watching-command-process)
688: O: 0212 (watching-command-process)
689: O: 0212 (watching-command-process)
690: O: 0212 (watching-command-process)
691: 0: 0212 (watching-command-process)
692: 0: 0212 (watching-command-process)
693: 0: 0219 (land-plane)

Flight number pr301 has reached Final approach fix.

Handing to Approach controller.
write successful socket 3

694: ==>G: G30 (operator no-change)
695: P: Pl (atc)
696: s: sl
697: 0: 0222 (watching-command-process)
698: 0: 0222 (watching-command-process)
699: 0: 0222 (watching-command-process)
700: 0: 0222 (watching-command-process)
701: 0: 0222 (watching-command-process)
702: 0: 0222 (watching-command-process)
703: 0: 0222 (watching-command-process)
704: 0: 0222 (watching-command-process)
705: 0: 0222 (watching-command-process)
706: 0: 0222 (watching-command-process)
707: 0: 0222 (watching-command-process)
708: 0: 0222 (watching-command-process)
709: 0: 0222 (watching-command-process)
710: 0: 0222 (watching-command-process)
711: 0: 0222 (watching-command-process)
712: O0: 0222 (watching-command-process) .
713: O: 0221 (look-scope)

write successful socket 3
714: ==>G: G31 (operator no-change)
715: P: Pl (atc)
716: S: sl
T17: ==>G: G32 {(operator tie)
718: P: P44 (selection)
719: S: sS4
720: O: 0231 (evaluate-object 0227 (land-plane))
721: ==>G: G33 (operator no-change)
722: P: Pl (atc)
723: s: D7
724: O0: C29 (land-plane)

Flight number pr301 has reached Final approach fix.

Handing to Approach controller.

725:
726:

==>G: G34

P: Pl (atc)

(operator no-change)

94

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.1

(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

727: S: D7

728: O: 0235

729: O: 0235

730: O: 0235

731: O: 0235

732: O: 0235

733: O: 0235

734: O: 0236 (there-are-planes)

There are planes to land.

735:

O: 0240

(look~scope)

write successful socket 3

736: ==>G: G35 (operator no-change)

737: P: Pl (atc)

738: S: s1

739: 0: 0243 (watching-command-process)
740: O: 0243 (watching-command-process)
741: 0: 0243 (watching-command-process)
742: O: 0243 (watching-command-process)
743: O: 0243 (watching-command-process)
744: O: 0243 (watching-command-process)
745: O: 0243 (watching-command-process)
746: O: 0243 (watching-command-process)
747: 0: 0243 (watching-command-process)
748: O: 0243 (watching-command-process)
749: O: 0243 (watching-command-process)
750: O: 0243 (watching-command-process)
751: O: 0243 (watching-command-process)
752: O: 0243 (watching-command-process)
753: 0O: 0243 (watching-command-process)
754: O: 0243 (watching-command-process)
755 O: 0243 (watching-command-process)
756: O: 0250 (land-plane)

Flight number cx9

01 has reached Final approach fix.

Handing to Approach controller.
write successful socket 3

757: ==>G: G36 (operator no-change)

758: P: Pl (atc)

759: S: s1

760: 0: 0253 (watching~-command-process)
761: O: 0253 (watching-command-process)
762: O: 0253 (watching-command-process)
763: O: 0253 (watching-command-process)
764: O: 0253 (watching-command-process)
765: O: 0253 (watching~command-process)
766: O: 0253 (watching-command-process)
767: O: 0253 (watching-command-process)
768: O: 0253 (watching-command-process)
769: 0: 0253 (watching-command~process)
770: 0O: 0253 (watching-command-process)
771: O: 0253 (watching-command-process)
772 0: 0253 (watching-command-process)
773: 0: 0253 (watching-command-process)
774: O: 0253 (watching-command-process)
775: O: 0253 (watching-command-process)
776: O: 0252 (look-scope)

write successful socket 3

777:
778:

==>G: G37

p:

(operator no-change)

Pl (atc)

95

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix D. 1

779: S: sl

780: ==>G; G38 (operator tie)

781: P: P49 (selection)

782: S: 85

783: 0: 0262 (evaluate-object 0258 (land-plane))
784: ==>G: G39 (operator no-change)

785: P: Pl (atc)

786: S: DS

787: O: C34 (land-plane)

Flight number cx901 has reached Final approach fix.
Handing to Approach controller.

788: ==>G: G40 (operator no-change)

789: P: Pl (atc)

790: S: D9

791: 0: 0266 (watching—-command-process)
792: O: 0266 (watching~command-process)
793: O: 0266 (watching~command-process)
794: O: 0266 (watching-command-process)
795: O: 0266 (watching-command-process)
796: O: 0266 (watching-command-process)

797: 0O: 0268 (no-more-planes-to-land)
There are no more planes to land.
goal G1 achieved
goal atc achieved
Goal atc succeeded.
System halted.

96

D.2 Sample Run 2 (Thu Sep 15 13:01:56 1994)

Soar 6.2.3

Bugs and questions should be sent to socar-bugs@cs.cmu.edu
The current bug-list may be obtained by sending mail to
soar-bugs@cs.cmu.edu with the Subject: line "bug list".

This software is in the public domain, and is made available AS 1IS.
Carnegie Mellon University, The University of Michigan, and

The University of Southern California/Information Sciences Institute
make no warranties about the software or its performance, implied

or otherwise.

Type "help" for information on various topics.

Type "quit" to exit. Use ctrl-c to stop a Soar run.
Type "soarnews" for news.

Type "version" for complete version information.

Loading /psyc/teaching/UG/otherug/itxro/.init.soar

Loading
/psyc/teaching/UG/otherug/itxro/soar6.2.3/default/non-nnpscm/default.soar
KA AR A A AR AR A A A A A A AR AR A AR AR AR A A AT A AR IR AR A AN A A A A AR A ARk kA kA A AR AR A A AR AR AN KR &

khhkhkhkhhhkhhkhkhkhkhkkAAkA AR A bk rhkhhkhkhhhx

Loading /psyc/teaching/UG/otherug/itxro/garnet/ATC.soar
LA AR AR S SRS SRR EETEESEE SRR X LIRS

Socar> init-socket-io upsyc 3296
Created Socket with id 4

Connecting to server with name upsyc
Connecting to server with port #3296
connected to socket 4

Soar> d
0: ==>G: Gl
1: P: Pl (atc)
2: S: 81
3: 0: 01 (look-scope)

write successful socket 4

4: ==>G: G2 (operator no-change)

5: P: Pl (atc)

6: S: st

7: 0: 02 (watching-command-process)
8: 0: 02 (watching-command-process)
9: 0: 02 (watching-command-process)
10: 0: 02 (watching-command-process)
11: 0: 02 (watching-command-process)
12: 0: 02 (watching-command-process)
13: 0: 02 (watching-command-process)
14: 0: 02 (watching-command-process)
15: 0: 02 (watching-command-process)
16: 0: 02 (watching-command-process)
17: 0: 02 (watching-command-process)
18: 0: 02 (watching~command-process)
19: O: 02 (watching-command-process)
20: 0: 02 (watching-command-process)
21: O: 02 (watching-command-process)
22: 0: 02 (watching-command-process)

97

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47 :
48:
49:;
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
T1:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:

O
0
0
o)
(o)
o)
o)
O
0
O
0
0
O
0
@
(e}
0
@)
¢}
@)
0
o)
e}
O
¢}
@)
0
0
0
O:
O:
o.
0
o
0
0
0
0
o
o
O
0
0O
0
0O
O
O
O
0
O
(¢
O
0
O
0O
0
0
0
0
0
O

02
o2
02
o2
02
02
o2
02
o2
02
o2
02
02
02
(o)
02
02
o2
02
o2
02
o2
o2
02
02
02
02
02
02
02
02
o2

02

o2
02
oz
o2
02
o2
02
02
o2
02
o2
02
o2
02
o2
o2
o2
02
o2
02
o2
02
02
o2
02
02
02
02

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching~-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

98

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

84:

85:

86:

87:

88:

89:

90:

gl1:

92:

93:

94:

95:

96:

97:

98:

99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142
143:
144:

PR 022020002000002922020000000000000000000000000000000000

o2
02
02
02
o2
02
o2
02
o2
02
o2
02
02
o2
02
02
o2
02
o2
02
02
02
02
02
o2
02
02
02
02
02
o2
02
o2
02
02
02
o2
o2
02
02
02
o2
02
02
02
o2
02
02
02
02
02
02
02
02
o2
02
02
o2
02
02
02

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command~process)
(watching-command-process)
(watching-command-process)
(watching-command~-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
(watching-command~process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching—-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

99

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:

9999999000000000OOOOOOOOOOOOOO

O

write successful socket 4

177: ==
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:

@

Pl (atc)
sl

OO‘QOOOOOOOOOOOOOU)"U

write successful socket 4

197: ==>G: G4 (operator no-change)

198: P: Pl (atc)
199: S: sl

02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
02 (watching-command-process)
: 02 (watching-command-process)
176: 0: 07 (lower-altitude)

Flight number pr301 has reached First approach fix.
Descending to 5000 meters.

G3 (operator no-change)

010 (watching-~command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
010 (watching-command-process)
: 010 (watching-command~process)
196: O: 09 (look-scope)

100

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

200:
201:
202:
203;
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:

220:

221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:

242:

243:
244;
245:
246:
247:
248:
249:
250:
251:
252:
253
254:

014
014
014
014
014
014
0l4
014
014
014
014
014
014
014
014
014
014
014
014

O..C?QSDQOOOOOOOOOOOOOO

(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)

O: 019 (there-are-planes)
There are planes to land.

0: 022 (look-scope)
write successful socket 4

==>

Q

Pl

Sl

025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025
025

99999900000000000(})"0

G5 (operator no-change)
(atc)

(watching-command-process)
{(watching-command-process)
(watching-command-process)
{(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-~command-process)
(watching-command-process)
{watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

O: 029 (there-are-planes)
There are planes to land.

0: 032 (look-scope)
write successful socket 4

==>G: G6 (operator no-change)

P: Pl (atc)

S: s1

0: 035 (watching-command-process)
0: 035 (watching-~command-process)
0: 035 (watching-command-process)
0: 035 (watching-command-process)
O: 035 (watching-command-process)
0: 035 (watching-command-process)
0: 035 (watching-command-process)
0: 035 (watching-command-process)
0: 035 (watching-command-process)

101

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

255: 0: 035 (watching-command-process)
256: 0: 035 (watching-command-process)
257: 0: 035 (watching-command-process)
258: O: 035 (watching-command-process)
259: 0: 035 (watching-command-process)
260: 0: 035 (watching-command-process)
261: 0: 035 (watching-command-process)
262: 0: 035 (watching-command-process)
263: O: 039 (there-are-planes)
There are planes to land.
264: 0O: 042 (look-scope)

write successful socket 4

265: ==>G: G7 (operator no-change)
266: P: Pl (atc)
267: S: s1
268: 0: 045 (watching-command-process)
269: 0: 045 (watching-command-process)
270: O: 045 (watching-command-process)
271: 0: 045 (watching-command-process)
272: O: 045 (watching-command-process)
273: 0: 045 (watching-command-process)
274: O: 045 (watching-command-process)
275: 0: 045 (watching-command-process)
276: 0: 045 (watching-command-process)
277: 0: 045 (watching-command-process)
278: 0: 045 (watching-command-process)
279: 0: 045 (watching-command-process)
280: 0: 045 (watching-command-process)
281: 0: 045 (watching-command-process)
282: 0: 045 (watching-command-process)
283: 0: 045 (watching-command-process)
284: O: 045 (watching-command-process)
285: O: 049 (there-are-planes)
There are planes to land.
286: 0: 052 (look-scope)

write successful socket 4

287: ==>G: GB (operator no-change)

288: P: Pl (atc)

289: S: s1

290: 0: 055 (watching-command-process)
291: 0: 055 (watching-command-process)
292: 0: 055 (watching-command-process)
293: 0: 055 (watching-command-process)
294: 0: 055 (watching-command-process)
285: 0: 055 (watching-command-process)
296: 0: 055 (watching-command-process)
297: 0: 055 (watching-command-process)
298: 0: 055 (watching-command-process)
299: 0: 055 (watching-command-process)
300: 0: 055 (watching-command-process)
301: 0: 055 (watching-command-process)
302: 0: 055 (watching-command-process)
303: 0: 055 (watching-command-process)
304: O: 055 (watching-command-process)
305: 0: 055 (watching-command-process)
306: 0: 062 (lower-altitude)

Flight number cx901 has reached First approach fix.

Descending to 5000 meters.

write successful socket 4

102

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

307: ==>G: G9 (operator no-change)

308: P: Pl (atc)

309: S: S1

310: 0: 065 (watching-command-process)
311: 0: 065 (watching-command-process)
312: 0: 065 (watching-command-process)
313: O: 065 (watching-command-process)
314: O: 065 (watching-command-process)
315: 0: 065 (watching-command-process)
316: 0: 065 (watching-command-process)
317: O: 065 (watching-command-process)
318: 0: 065 (watching-command-process)
319: 0: 065 (watching-command-process)
320: O: 065 (watching-command-process)
321: 0: 065 (watching-command-process)
322: 0: 065 (watching-command-process)
323: 0: 065 (watching-command-process)
324: 0: 065 (watching-command-process)
325: 0: 065 (watching-command-process)
326: 0: 065 (watching-command-process)

327: 0: 064 (look-scope)
write successful socket 4

328: ==>G: Gl0 (operator no-change)
329: P: Pl (atc)
330: S: s1
331: O: 069 (watching-command-process)
332: 0: 069 (watching-command-process)
333: O: 069 (watching-command-process)
334: O: 069 (watching-command-process)
335: O: 069 (watching-command-process)
336: 0: 069 (watching-command-process)
337: O: 069 (watching-command-process)
338: O: 069 (watching-command-process)
339: 0: 069 (watching-command-process)
340: O: 069 (watching-command-process)
341: O: 069 (watching-command-process)
342: 0: 069 (watching-command-process)
343: 0: 069 (watching-command-process)
344: 0: 069 (watching-command-process)
345: 0: 069 (watching-command-process)
346: 0: 069 (watching-command-process)
347: 0: 069 (watching-command-process)
348: 0: 069 (watching-command-process)
349: 0: 074 (there-are-planes)

There are planes to land.
350: 0: 077 (look-scope)

write successful socket 4

351: ==>G: Gll (operator no-change)

352: P: Pl (atc)

353: S: s1

354: 0: 080 (watching-command-process)
355: 0: 080 (watching-command-process)
356: 0: 080 (watching-command-process)
357: O: 080 (watching-command-process)
358: 0: 080 (watching-command-process)
359: 0O: 080 (watching-command-process)
360: 0: 080 (watching-command-process)
361: 0: 080 (watching-command-process)
362: 0: 080 (watching-command-process)

103

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

363: 0: 080 (watching-command-process)
364: 0: 080 (watching-command-process)
365: O: 080 (watching-command-process)
366: 0: 080 (watching-command-process)
367: O: 080 (watching-command-process)
368: O: 080 (watching-command-process)
369: 0: 080 (watching-command-process)
370: 0: 080 (watching-command-process)
371: O: 084 (there-are-planes)

There are planes to

land.

372: O: 087 (look-scope)
write successful socket 4

373: ==>G: Gl2 (operator no-change)

374: P: Pl (atc)

375: S: sl

376: 0: 090 (watching-command-process)
377: 0: 090 (watching-command-process)
378: 0: 090 (watching-command-process)
379: 0: 090 (watching-command-process)
380: 0: 090 (watching-command-process)
381: 0: 090 (watching-command-process)
382: 0: 090 (watching-command-process)
383: 0: 090 (watching-command-process)
384 O: 090 (watching-command-process)
385: 0: 090 (watching-command-process)
386: 0: 090 (watching-command-process)
387: O: 090 (watching-command-process)
388: O: 090 (watching-command-process)
389: O0: 090 (watching-command-process)
390: O0: 080 (watching-command-process)
391: 0: 090 (watching-command-process)
392: 0: 090 (watching-command-process)
393: O: 094 (there-are-planes)

There are planes to

land.

394: O: 097 {(look-scope)
write successful socket 4

395: ==>G: Gl1l3 (operator no-change)

396: P: Pl (atc)

397: S: S1

398: 0: 0100 (watching-command-process)
399: O: 0100 (watching-command-process)
400: O: 0100 (watching-command-process)
401: O: 0100 (watching-command-process)
402: 0: 0100 (watching-command-process)
403: 0: 0100 (watching-command-process)
404: 0: 0100 (watching-command-process)
405: 0: 0100 (watching-command-process)
406: 0: 0100 (watching-command-process)
407: O: 0100 (watching-command-process)
408: 0: 0100 (watching-command-process)
409: 0: 0100 (watching-command-process)
410: 0: 0100 (watching~command-process)
411: 0: 0100 (watching-command-process)
412: 0: 0100 (watching-command-process)
413: O0: 0100 (watching-command-process)
414: 0: 0100 (watching-command-process)
415: O: 0104 (there-are-planes)

There are planes to

land.

104

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

416:

0: 0107

(look-scope)

write successful socket 4

417:
418:
419:
420:
421:
422:
423
424
425
426:
427
428:
429:
430:
431:
432:
433:
434
435:
436:

0: 0114

O.QQ_0.000000000000UJ'!)(\I/)

Gl4 (operator no-change)

Pl (atc)

sl

0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)
0110 (watching-command-process)

(there-are—-planes)

There are planes to land.

437: 0: 0117 (look-scope)

write successful socket 4
438: ==>G: Gl5 (operator no-change)
439: P: Pl (atc)
440: S: sl
441: 0: 0120 (watching-command-process)
442 0: 0120 (watching-command-process)
443: O: 0120 (watching-command-process)
444: O: 0120 (watching-command-process)
445: 0: 0120 (watching-command-process)
446: 0: 0120 (watching-command-process)
447: O: 0120 (watching-command-process)
448: O: 0120 (watching-command-process)
449: 0: 0120 (watching-command-process)
450: 0: 0120 (watching-command-process)
451: 0: 0120 (watching-command-process)
452: O: 0120 (watching-command-process)
453: 0: 0120 (watching-command-process)
454: 0: 0120 (watching-command-process)
455: 0: 0120 (watching-command-process)
456: 0: 0120 (watching-command-process)
457 0: 0120 (watching-command-process)
458: 0: 0124 (there-are-planes)

There are planes to land.

459: 0: 0127 (look-scope)

write successful socket 4
460: ==>G: G16 (operator no-change)
461: P: Pl (atc)
462: S: s1
463: 0: 0130 (watching-command-process)
464: 0: 0130 (watching-command-process)
465: 0: 0130 (watching-command-process)
466: O: 0130 (watching-command-process)
467 : 0: 0130 (watching-command-process)
468: O: 0130 (watching-command-process)

105

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

469: 0: 0130 (watching-command-process)
470: 0: 0130 (watching-command-process)
471: O: 0130 (watching-command-process)
472: 0: 0130 (watching-~command-process)
473: 0: 0130 (watching-command-process)
474: 0: 0130 (watching-command-process)
475: 0: 0130 (watching-command-process)
476: 0: 0130 (watching-command-process)
477: 0: 0130 (watching-command-process)
478: 0: 0130 (watching-command-process)
479: 0: 0134 (there-are-planes)
There are planes to land.
480: O: 0137 (look-scope)

write successful socket 4

481: ==>G: Gl7 (operator no-change)
482: P: Pl (atc)
483: S: s1
484: O: 0140 (watching-command-process)
485: O: 0140 (watching-command-process)
486: 0: 0140 (watching-command-process)
487: 0: 0140 (watching-command-process)
488: 0: 0140 (watching-command-process)
489: O: 0140 (watching-command-process)
490: O: 0140 (watching-command-process)
491: 0: 0140 (watching-command-process)
492 O: 0140 (watching-command-process)
493: O: 0140 (watching-command-process)
494: 0: 0140 (watching-command-process)
495: 0: 0140 (watching-command-process)
496: O: 0140 (watching-command-process)
497: O: 0140 (watching-command-process)
498: O: 0140 (watching-command-process)
499: O: 0140 (watching-command~process)
500: O: 0140 (watching-command-process)
501: O: 0144 (there-are-planes)

There are planes to land.
502: O: 0147 (look-scope)

write successful socket 4

503: ==>G: G1l8 (operator no-change)

504: P: P1 (atc)

505: S: s1

506: 0: 0150 (watching-command-process)
507: 0: 0150 (watching-command-process)
508: 0: 0150 (watching-command-process)
509: 0: 0150 (watching-command-process)
510: 0: 0150 (watching-command-process)
511: 0: 0150 (watching-command-process)
512: 0: 0150 (watching~command-process)
513: 0: 0150 (watching-command-process)
514: 0: 0150 (watching-command-process)
515: 0: 0150 (watching-command-process)
516: 0: 0150 (watching-command-process)
517: 0: 0150 (watching-command-process)
518: 0: 0150 (watching-command-process)
519: 0: 0150 (watching-command-process)
520: 0: 0150 (watching-command-process)
521: O0: 0150 (watching-command-process)

522: O: 0154 (there-are-planes)
There are planes to land.

106

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

523: 0: 0157 (look-scope)

write successful socket 4
524: ==>G: G1l9 (operator no-change)
525: P: P1 (atc)
526: S: s1
527: 0: 0160 (watching-command-process)
528: 0: 0160 (watching-command-process)
529: 0: 0160 (watching-command-process)
530: O: 0160 (watching-command-process)
531: 0: 0160 (watching-command-process)
532: 0: 0160 (watching-command-process)
533: 0: 0160 (watching-command-process)
534: 0: 0160 (watching-command-process)
535: 0: 0160 (watching-command-process)
536: O: 0160 (watching-command-process)
537: O: 0160 (watching-command-process)
538: 0: 0160 (watching-command-process)
539: 0: 0160 (watching-command-process)
540: 0: 0160 (watching-command-process)
541: 0: 0160 (watching-command-process)
542: 0: 0160 (watching-command-process)
543: 0: 0160 (watching-command-process)
544: O: 0164 (there-are-planes)

There are planes to land.

545:; O: 0167 (look-scope)

write successful socket 4
546: ==>G: G20 (operator no-change)
547: P: Pl (atc)
548: S: s1
549: 0: 0170 (watching-command-process)
550: 0: 0170 (watching-command-process)
551: 0: 0170 (watching-command-process)
552: 0: 0170 (watching-command-process)
553: 0: 0170 (watching-command-process)
554: 0: 0170 (watching-command-process)
555: 0: 0170 (watching-command-process)
556: 0: 0170 (watching-command-process)
557: 0: 0170 (watching-command-process)
558: 0: 0170 (watching-command-process)
558: 0: 0170 (watching-command-process)
560: 0: 0170 (watching-command-process)
561: 0: 0170 (watching-command-process)
562: 0: 0170 (watching-command-process)
563: 0: 0170 (watching-command-process)
564: 0: 0170 (watching-command-process)
565: 0: 0174 (there-are-planes)

There are planes to land.

566: O: 0177 (look-scope)

write successful socket 4
567: ==>G: G21 (operator no-change)
568: P: Pl (atc)
569: S: s1
570: 0: 0180 (watching-command-process)
571: 0: 0180 (watching-command-process)
572: 0: 0180 (watching-command-process)
573: 0: 0180 (watching-command-process)
574: 0: 0180 (watching-command-process)
575: 0: 0180 (watching-command-process)

107

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

576: 0: 0180 (watching-command-process)
577: O: 0180 (watching-command-process)
578: 0: 0180 (watching-command-process)
579: 0: 0180 (watching-command-process)
580: 0: 0180 (watching-command-process)
581: 0: 0180 (watching-~command-process)
582: O: 0180 (watching-command-process)
583: 0: 0180 (watching-command-process)
584: 0: 0180 (watching-command-process)
585: O: 0180 (watching-command-process)
586: O: 0180 (watching-command-process)
587: O: 0184 (there-are-planes)
There are planes to land.
588: 0O: 0187 (look-scope)

write successful socket 4

589: ==>G: G22 (operator no-change)
590: P: Pl (atc)
591: S: s1
592: 0: 0190 (watching-command-process)
583: 0: 0190 (watching-command-process)
594: 0: 01390 (watching-command-process)
595: 0: 0190 (watching-command-process)
596: 0: 0190 (watching-command-process)
597: O: 0190 (watching-command-process)
598: 0: 0190 (watching-command-process)
599: 0: 0190 (watching-command-process)
600: O0: 0190 (watching-command-process)
601: 0: 0190 (watching-command-process)
602: O: 0190 (watching-command-process)
603: 0: 0190 (watching-command-process)
604: O: 0190 (watching-command-process)
605: 0: 0190 (watching-command-process)
606: 0: 0190 (watching-command-process)
607: O: 0190 (watching-command-process)
608: 0: 0194 (there-are-planes)

There are planes to land.
609: 0: 0197 (look-scope)

write successful socket 4

610: ==>G: G23 (operator no-change)

611: P: Pl (atc)

612: S: s1

613: 0: 0200 (watching-command-process)
614: 0: 0200 (watching-command-process)
615: 0: 0200 (watching-command-process)
616: O: 0200 (watching-command-process)
617: 0: 0200 (watching-command-process)
618: O: 0200 (watching-command-process)
619: 0: 0200 (watching-command-process)
620: 0: 0200 (watching-command-process)
621: 0: 0200 (watching-command-process)
622: 0: 0200 (watching-command-process)
623: 0: 0200 (watching-command-process)
624: 0: 0200 (watching-command-process)
625: 0: 0200 (watching-command-process)
626: 0: 0200 (watching-command-process)
627: 0: 0200 (watching-command-process)
628: 0: 0200 (watching-command-process)
629: 0: 0200 (watching-command-process)

108

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

630:

631:

632:
633:
634:
635:
636:
637:
638:
639:
640:
641:
642:
643;
644:
645:
646:
647:
648:
649:
650:
651:

652:

O: 0204 (there-are-planes)
There are planes to land.

0: 0207 (look-scope)

write successful socket 4

==>

Oc
There are planes to land.

O: 0217

G: G24 (operator no-change)

P: Pl (atc)

S: sl

0: 0210 (watching-command-process)
O: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0: 0210 (watching-command-process)
0214 (there-are-planes)

(look-scope)

write successful socket 4

653:
654:
655:
656:
657:
658:
659:
660:
661:
662:
663:
664:
665:
666:
667:
668:
669:
670:
671:
672:
673:

674:

==>

o.
There are planes to land.

O: 0227

G: G25 (operator no-change)

P: Pl (atc)

S: s1

0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
O: 0220 (watching-command-process)
O: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0: 0220 (watching-command-process)
0224 (there-are-planes)

(look-scope)

write successful socket 4

675:
676:
677:
678:
679:
680:
681:

=>

OQO0OO0OO0OWnmwaQ

G26 (operator no-change)

Pl (atc)

S1

0230 (watching-command-process)
0230 (watching-command-process)
0230 (watching-command-process)
0230 (watching-command-process)

109

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

682: 0: 0230 (watching-command-process)
683: 0: 0230 (watching-command-process)
684: 0: 0230 (watching-command-process)
685: 0: 0230 (watching-command-process)
686: O: 0230 (watching-command-process)
687: 0: 0230 (watching-command-process)
688: 0: 0230 (watching-command-process)
689: 0: 0230 (watching-command-process)
690: 0: 0230 (watching-command-process)
691: 0: 0230 (watching-command-process)
692: 0: 0230 (watching-command-process)
693: 0O: 0230 (watching-command-process)
694: O: 0234 (there-are-planes)
There are planes to land.
695: 0: 0237 (look-scope)
write successful socket 4
636 ==>G: G27 (operator no-change)
697: P: Pl (atc)
698: S: s1
699: 0: 0240 (watching-command-process)
700: 0: 0240 (watching-command-process)
701: 0: 0240 (watching-command-process)
702: 0: 0240 (watching-command-process)
703: O: 0240 (watching-command-process)
704: 0: 0240 (watching-command-process)
705: 0: 0240 (watching-command-process)
706: 0: 0240 (watching-command-process)
707: 0: 0240 (watching-command-process)
708: O: 0240 (watching-command-process)
709: O: 0240 (watching-command-process)
710: 0: 0240 (watching-command-process)
711: O: 0240 (watching-command-process)
712: 0: 0240 (watching-command-process)
713: 0: 0240 (watching~command-process)
714: O0: 0240 (watching-command-process)
715: 0: 0240 (watching-command-process)
716: 0: 0240 (watching-command-process)
717: O: 0240 (watching-command-process)
718: 0: 0240 (watching-command-process)
719: O: 0240 (watching-command-process)
720: O: 0240 (watching-command-process)
721: O: 0240 (watching-command-process)
722: 0: 0240 (watching-command-process)
723: 0: 0240 (watching-command-process)
724: 0: 0240 (watching-command-process)
725: 0: 0240 (watching-command-process)
726: 0: 0240 (watching-command-process)
727: 0: 0240 (watching-command-process)
728: 0: 0240 (watching-command-process)
729: 0: 0240 (watching-command-process)
730: 0: 0240 (watching-command-process)
731: O: 0240 (watching-command-process)
732: 0: 0240 (watching-command-process)
733: 0: 0240 (watching-command-process)
734: 0: 0240 (watching-command-process)
735: 0: 0240 (watching-command-process)
736: 0: 0240 (watching-command-process)
737: 0: 0240 (watching-command-process)
738: 0: 0240 (watching-command-process)
739: 0: 0240 (watching-command-process)

110

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

740: 0: 0240 (watching-command-process)
741: 0: 0240 (watching-command-process)
742: 0: 0240 (watching-command-process)
743: 0: 0240 (watching-command-process)
744: 0: 0240 (watching-command-process)
745: 0: 0240 (watching-command-process)
746: 0: 0240 (watching-command-process)
747: 0: 0240 (watching-command-process)
748: 0: 0240 (watching-command-process)
749: 0: 0240 (watching-command-process)
750: 0: 0240 (watching-command-process)
751: 0: 0240 (watching-command-process)
752: 0: 0240 (watching-command-process)
753: 0: 0240 (watching-command-process)
754: 0: 0240 (watching-command-process)
755: 0: 0240 (watching-command-process)
756: 0: 0240 (watching-command-process)
757: 0: 0240 (watching-command-process)
758: 0: 0240 (watching-command-process)
759: O: 0240 (watching-command-process)
760: 0: 0240 (watching-command-process)
761: 0: 0240 (watching-command-process)
762: 0: 0240 (watching-command-process)
763: 0: 0240 (watching-command-process)
764: 0: 0240 (watching-command-process)
765: 0: 0240 (watching-command-process)
766: 0: 0240 (watching-command-process)
767: 0: 0240 (watching-command-process)
768: O: 0240 (watching-command-process)
769: 0: 0240 (watching-command-process)
770: 0: 0240 (watching-command-process)
771: 0: 0240 (watching-command-process)
772 0: 0240 (watching-command-process)
773: 0: 0240 (watching-command-process)
774: 0: 0240 (watching-command-process)
775: 0: 0240 (watching-command-process)
776: 0: 0240 (watching-command-process)
777 0: 0240 (watching-command-process)
778: O: 0244 (there-are-planes)
There are planes to land.

779: 0: 0247 (look-scope)

write successful socket 4
780: ==>G: G28 (operator no-change)
781: P: Pl (atc)
782: S: Sl
783: 0: 0250 (watching-command-process)
784: 0: 0250 (watching-command-process)
785: 0: 0250 (watching-command-process)
786: 0: 0250 (watching-command-process)
787: 0: 0250 (watching-command-process)
788: 0: 0250 (watching-command-process)
789: 0: 0250 (watching-command-process)
790: 0: 0250 (watching-command-process)
791: 0: 0250 (watching-command-process)
792: 0: 0250 (watching-command-process)
793: 0: 0250 (watching-command-process)
794: 0: 0250 (watching-command-process)
795: 0: 0250 (watching-command-process)
796: 0: 0250 (watching-command-process)
797: 0: 0250 (watching-command-process)

111

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

798:
799:
800:

801:

802:
803:
804:
805:
806:
807:
808:
809:
810:
811:
812:
813:
814:
815:
816:
817:
818:
819:
820:
821:

822:

823:
824:
825:
826:
827:
828:
829:
830:
831:
832:
833:
834:
835:
836:
837:
838:
839:
840:
841:
842:
843:

844:

845:
846:
847:
848:
849:

O:
0O:

0250 (watching-command-process)
0250 (watching-command-process)

0: 0254 (there-are-planes)
There are planes to land.

0: 0257 (look-scope)

write successful socket 4

==>

9]

(?.O.C.)OOOOOOOOOOOOOU)'U

G29 (operator no-change)

Pl (atc)

si

0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)
0260 (watching-command-process)

O: 0264 (there-are-planes)
There are planes to land.

0: 0267 (look-scope)

write successful socket 4

==>G:

O.QQ.C')OOOOOOOOOOOOOUJFU

G30 (operator no-change)

Pl (atc)

S1

0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)
0270 (watching-command-process)

O: 0274 (there~are-planes)
There are planes to land.

0: 0277 (look-scope)

write successful socket 4

==>G:
P:

S:
O:
O:

G31 (operator no-change)

Pl (atc)

s1

0280 (watching-command-process)
0280 (watching-command-process)

112

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

850:
851:
852:
853:
854:
855:
856:
857:
858:
859:
860:
861:
862:
863:
864:

O: 0284

OOOOOOOOOOOOOO

0280
0280
0280
0280
0280
0280
0280
0280
0280
0280
0280
0280
0280
0280

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)

(there-are-planes)

There are planes to land.

865:

O: 0287

(look-scope)

write successful socket 4

866:
867:
868:
869:
870:
871:
872:
873:
874:
875:
876:
877:
878:
879:
880:
881:
882:
883:
884:
885:
886:

==>G: G32 (operator no-change)

P: Pl (atc)

S: s1

0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
O: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching-command-process)
0: 0290 (watching~command-process)

O: 0294 (there—~are-planes)

There are planes to land.
0: 0297 (look-scope)
write successful socket 4

887:

888:
889:
890:
891:
892
893:
894:
895:
896:
897:
898:
899:
900:
901:
902:
903:
904:

Vv
-C.)OQOOOOOOOOOOOUJ'UG)

G33 (operator no-change)

Pl (atc)

S1

0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)
0300 (watching-command-process)

113

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

905:
906:
907:

908:

909:
910:
911:
912:
813:
914:
815:
gl6:
917:
918:
919:
920:
921:
922:
923:
924:
925:
926:
927:
928:
929:
Flight number pr30l1 has reached Final approach fix.

0: 0300
O: 0300

(watching-command-process)
(watching-command-process)

O: 0304 (there-are-planes)
There are planes to land.

0: 0307 (look-scope)

write successful socket 4

==>G: G34 (operator no-change)

P: Pl (atc)

S: sl

0: 0310 (watching-command-process)
O: 0310 (watching-command-process)
0: 0310 (watching-command-process)
~0: 0310 (watching-command-process)
O: 0310 (watching-command-process)
0: 0310 (watching-command-process)
0: 0310 (watching-command-process)
O: 0310 (watching-command-process)
O: 0310 (watching-command-process)
O: 0310 (watching-command-process)
0: 0310 (watching-command-process)
O: 0310 (watching-command-process)
0: 0310 (watching-command-process)
0: 0310 (watching-command-process)
0: 0310 (watching-command-process)
O: 0310 (watching-command-process)
O: 0310 (watching-command-process)

O: 0317 (land-plane)

Handing to Approach controller.
write successful socket 4

930:
931:
932:
933:
934:
935:
936:
937:
938:
939:
940:
941:
942:
943
944:
945:
946:
947:
948:
949

950:
951:
952:
953:
954:
955
956:

==>G: G35 (operator no-change)

P: Pl (atc)

S: s1

0: 0320 (watching-command-process)
O0: 0320 (watching-command-process)
O0: 0320 (watching-command-process)
0: 0320 {watching-command-process)
O0: 0320 (watching-command-process)
0: 0320 (watching-command-process)
0: 0320 (watching-command-process)
O: 0320 (watching-command-process)
O: 0320 (watching-command-process)
O: 0320 (watching-command-process)
0: 0320 (watching-command-process)
O: 0320 (watching-command-process)
O: 0320 (watching-command-process)
0: 0320 (watching-command-process)
O0: 0320 (watching-command-process)
O: 0320 (watching-command-process)

0: 0319 (look-scope)
write successful socket 4

==>G: G36 (operator no-change)
P: Pl (atc)
S: s1
0: 0324 (watching-command-process)
0: 0324 (watching-command-process)
0: 0324 (watching-command-process)
0: 0324 (watching-command-process)

114

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

957:
958:
959:
860:
961:
962:
963:
964:
965:
966
967:
968:
969:
970:
971:

872:

973:
974:
975:
976:
977:
978:
979:
980:
981:
982:
983:
984:
8985:
986:
987:
988:
989:
990:
891:
992:

993:

994:
995:
996:
997:
998:
999:
1000:
1001:
1002:
1003:
1004:
1005:;
1006:
1007:
1008:
1009:
1010:
1011:

0324
0324
0324
0324
0324
0324
0324
0324
0324
0324
0324
0324
0324
0324

O0000000000O00O0

(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching~command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command-process)
(watching-command~process)

0: 0328 (there-are-planes)
There are planes to land.

O: 0332 (look-scope)
write successful socket 4

==>G: G37 (operator no-change)

P: Pl (atc)

s: s1

0O: 0335 (watching-command-process)
O: 0335 (watching-command-process)
O: 0335 (watching-command-process)
O: 0335 (watching-command-process)
0: 0335 (watching-command-process)
0: 0335 (watching-command-process)
0: 0335 (watching-command-process)
0: 0335 (watching-command-process)
O0: 0335 (watching-command-process)
0: 0335 (watching-command-process)
O: 0335 (watching-command-process)
0: 0335 (watching-command-process)
0: 0335 (watching-command-process)
O: 0335 (watching-command-process)
0: 0335 (watching-command-process)
0: 0335 (watching-command-process)

O: 0338 (there-are-planes)
There are planes to land.

O: 0342 (look-scope)

write successful socket 4

==>G: G38 (operator no-change)

P: Pl (atc)

S: sl

O0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
O: 0345 (watching-command-process)
0: 0345 (watching-command-process)
O0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
0: 0345 (watching-command-process)
O: 0345 (watching-command-process)
0: 0345 (watching-command-process)
O: 0345 (watching-command-process)
O: 0345 (watching-command-process)

115

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix D.2

1012: 0: 0345 (watching-command-process)

1013: 0O:
1014: 0: 035

Flight number cx901 has reached Final approach fix.

0345

(watching-command-process)

2 (land-plane)

Handing to Approach controller.
write successful socket 4

1015: ==
1016:
1017:
1018:
1019:
1020:
1021:
1022:
1023:
1024:;
1025:
1026:
1027:
1028:
1029:
1030:
1031:
1032:
1033:
1034: O: 035

Vv
C?‘(.)'C.).C.).C.)OOOOOOOOOOOUJ'UO

1035: ==
1036:
1037:
1038:
1039:
1040:
1041:
1042:
1043:
1044:
1045:
1046:;
1047:
1048:
1049:
1050:
1051:
1052:
1053:
1054:
1055:
1056: 0O: 036

9]

OQQ.CP.OOOOOOOOOOOOOOU!'U

goal Gl achieved
goal atc achieve
Goal atc succee

System halted.

G39 (operator no-change)

Pl (atc)

51

0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching~command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-command-process)
0355 (watching-~command-process)
0355 (watching-command-process)

4 (look-scope)
write successful socket 4

G40 (operator no-change)

Pl (atc)

S1

0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0358 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)
0359 (watching-command-process)

4 (no-more-planes-to-land)
There are no more planes to land.

d
ded.

116

Air Traffic Control (ATC) Simulation Package

E.1 ATC-Garnet.lisp

;7277 —*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 —=*-

P I R R R R R N S e R R N N I N N R R R R N N R R S S S Y S NP R B R R R SR S S R P S)
lIllIIlIlIllIIIIIIIIIIIIIIIIIIIIIIII"/’III'I/IIIIIIIIIIIII'/IIIIIIIIII

The Garnet User Interface Development Environment.

..
IIII//IIIIIIIIIIIIlIIIIIIIIIIIIII/IllII/llll,/I’IIIII’I'//I"IIIII'I!II

This code was written as part of the MSc Thesis project at
;732 Nottingham University, and has been placed in the public
;;:: domain.

......................................

;;;;;II;;;;;;;IIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
rrrzs

;20 File : ATC-Garnet.lisp

;:::; Author : Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>

;7:; Created On : Fri Aug 19 15:36:00 1994

;7:: Last Modified By: Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>

/+:: Last Modified On: Tue Sep 13 13:13:17 1994

;7:: Update Count : 5

irii

;7 :: PURPOSE

This file provides an entire lisp package that runs the Air Traffic

;713 Control (ATC) Simulation.

rrr

::7: This is part of a MSc Thesis project in Information Technology.
rrrzr

;2:; N.B. See the "ATC-README" file on instructions on how to the load
PP and run the entire ATC code.

riii

rrii

;:7;; TABLE OF CONTENTS

iiii

iri I. Load Garnet Gadgets

HE IT. Global Variables

HE N IIT. Prototype Objects

iiii Iv. Garnet Functions

i V. Utlity Functions

iiii VI. Main Function

rrrr

;i3 (C) Copyright 1994, Roberto L. Ong <itxrloQunicorn.nott.ac.uk>
IR University of Nottingham, all rights reserved.

.III’III'llIlIIll/II’II’I'IIII’lIIIIIIIII/IIIIIIIIIIIIIIIIIII"IIIIIIIII

;::; Status
;7;: HISTORY

...

117

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix E. 1

;77 load this file
(format t "~%loading ATC-Garnet.lisp ~%")

;7 load file into default package - "USER"
(in-package "USER")
(use-package ' ("KR" "LISP"))

(i: I Load Garnet Gadgets

e 5.
rrr

(load "/psyc/lang/garnet/2.2/bin/gadgets/menubar-functions.sbin")
(load "/psyc/lang/garnet/2.2/bin/gadgets/menubar.sbin")

i .
;20 II. Global Variables

)
rrv

(defconstant pi/18 (/ pi 18))

;77 change pathname with the appropriate path in the form:

;7; <garnet-directory>/beacon.db

;7 <garnet-directory>/plane.db

(defconstant beacon-file-name "~/garnet/beacon.db")
(defconstant plane-file-name "~/garnet/plane.db")
(defparameter atc-win nil)

(defparameter atc-agg nil)

(defparameter radar-agg nil)

(defparameter *LIST-OF-BEACONS* nil)

(defparameter *LIST-OF-PLANES* nil)

i
(i III. Prototype Objects

. s e
rrzs

;7 create outer scope

(create-instance 'my-scope opal:circle
(:box '"(0 15 560 560))

tleft (o-formula (+ 0 25)))

ttop (o-formula (+ 15 25)))

:width (o-formula (- 560 50)))

theight (o-formula (- 560 50)))

:line-style opal:white-line)

:filling-style opal:black-£fill))

;i create prototype beacon
(create-instance 'beacon opal:aggregadget
(:box '(0 0))

(:center-x (o-formula (first (gvl :box))))
(:center-y (o-formula (second (gvl :box))))
(:width 10)
(
(

:radius/2 (o-formula (/ (gvl :width) 2)))

:parts
*((:first-line ,opal:line
(:x1 , {(o-formula (- (gvl :parent :center-x)

(gvl :parent :radius/2))))
(:yl , {(o-formula (gvl :parent :center-y)))
(:x2 , (o-formula (+ (gvl :parent :center-x)

(gvl :parent :radius/2))))
(:y2 , (o-formula (gvl :parent :center-y)))

118

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix E. 1

(
{

:line-style ,opal:white-line))
:second-line ,opal:line
, (o-formula (gvl :parent :center-x)))

' x1
'yl

1 X2
1y2

(:

s (o-formula (- (gvl :parent :center-y)
(gvl :parent :radius/2))))

¢ (o-formula (gvl :parent :center-x)))

, (o-formula (+ (gvl :parent :center-y)
(gvl :parent :radius/2))))

line~style ,opal:white-line)))))

;:; create prototype airplane
(create-instance 'plane-proto opal:aggregadget
(:width 10) (:height 10)
(:flight-no nil)
:X-position 0)
:y-position 0)
taltitude 0)
:velocity 0)
:distance 0)

:control nil)

:radius/3 (o-formula (round (gvl :width)
tradius/2 (o-formula (round (gvl :width)
:std-font (opal:get-standard-font :fixed
:parts
*{((:white-circlel ,opal:circle
(:left , (o-formula (gvl :parent :x-position)))
(:top , (o-formula (gvl :parent :y-position)))
(:width , (o-formula (gvl :parent :width)))
(:height , (o-formula (gvl :width)))
(:line-style ,opal:white-line))

—

. 0.
17

(
(
(
(
(
(:status nil)
(
(
(
(
(

:white-circle2 ,opal:circle

3)))
2)))

:roman :small))

(:left , (o-formula (+ (gvl :parent :x-position)

(gvl :parent :radius/3))))

(:top , (o-formula (+ (gvl :parent :y-position)

{(gvl :parent :radius/3))))

(:width , (o-formula (- (gvl :parent :width)

(* 2 (gvl :parent :radius/3)))))
(:height , (o~-formula (gvl :width)))
(:line-style ,opal:white-line))

:flight~-text ,opal:text

(:left , (o-formula (- (gvl :parent :x-position)
(gvl :parent :radius/2))))

(:

iii IV,

e o»
rrv

..
rr

top , (o-formula (+ (gvl :parent :y-position)

(gvl :parent :theight))))
:font , (o-formula (gvl :parent :std-font)))
:string , (o-formula (format nil "~s"
:line-style ,opal:white-line)))))

Garnet Functions

;+;Procedures to do the work

.
rrs

(defun create-atc-menu (agg)
"Creates a menu bar for the simulation."

(atc—menu)

(let

(gvl :parent :flight-no))))

s KKK KKK AT AR IR AR AT A AR AA A Ak h kA A AR Ak Ak Ak kA kkkkkhhkh

s R KKK AR I AR I I AAKA A IR A AR A AR KRAAA AR A AR A A A AR Ak Ak ko hhkhkkkkkkvkk*k

119

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E. 1

;; create a menu bar
(setf atc-menu (create-instance NIL gg:menubar

(:items
"(("File" Nil
(("Load-File" read-plane-db-file) ("Quit"™ Doquit)))
("RadarScope" Nil
(("Show Beacon" show-beacon)
("Show weather" show-weather)))
("Command" Nil
(("Speed") ("Climb") ("Handoff")))
("Information" Nil
(("Flightplan")))))))

(opal:add-components agg atc-menu)))

(defun create-radar-screen (agg win)
"Creates a radar screen."”
(let (radar-screen outer-scope)

/i create a radar screen
(setf radar-screen (create-instance NIL opal:rectangle
(:left 0) (:top 15) (:width 560) (:height 560)

(:filling-style opal:white-£ill)))

;/ create outer scope
(setf outer-scope (create-instance NIL my-scope
(:left (o-formula (+ (gv radar-screen :left) 25)))

(:top (o-formula (+ (gv radar-screen :top) 25)))
(:width (o-formula (- (gv radar-screen :width) 50)))
(:height (o-formula (gvl :width)))))

(opal:add~components agg radar—-screen outer-scope)

;: create inner scope
{dotimes (i 6)
(let ((interval (* i 40)))
(opal:add-components
agg
;7 create outline of radar
(create-instance nil opal:circle
(:line-style opal:white-line)
(:filling-style NIL)
(:left (formula ' (+ (gv ,outer-scope :left) 5 ,interval)))
(:top (formula *(+ (gv ,outer-scope :top) 5 ,interval)))
(:width (formula ‘(- (gv ,outer-scope :width) 10 (* 2 ,interval))))

(:height (o~formula (gvl :width)))))))

;7 add degree values and tick marks in scope
(dotimes (3 36)
{let ((cosl0*j (cos (* pi/18 j)))
(sinl10*3j (sin (* pi/18 j)))

(offset-x (cond ((= j 0) -3) ((< Jj 10) =5) (t -7)))
(offset-y (cond ((= 3 0) -1) ((< j 10) =-3) (t -=-5))))
(opal:add-components
agg

(create-instance nil opal:text
{:font (create-instance nil opal:font (:size :small)))
(:string (formula ' (int-to-string ,3j)))
(:left (formula " (+ (opal:gv-center-x ,outer-scope)

,o0ffset-x
(floor (* 13/25 (gv ,outer-scope :width)
,81inl10*3)))))

120

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E. 1

(:top (formula ' (+ (opal:gv-center-y ,outer-scope)
,offset-y
(floor (* -13/25 (gv ,outer-scope :width)
,cos10*3)))))))))

;; create radar sweep
(setf sweep (create-instance NIL opal:line
(tangle 0.0)
(:length (o-formula
(floor (- (gv outer-scope :width) 10) 2)))
(:x1 (o-formula (opal:gv-center-x outer-scope)))
(:yl (o-formula (opal:gv-center-y outer-scope)))
(:x2 (o-formula
(floor (- (gvl :x1) (* (gvl :length)
(sin (gvl :angle)))))))
(:y2 (o-formula
(floor (- (gvl :yl) (* (gvl :length)
(cos (gvl :angle)))))))
(:line-style opal:white-1line)))

(opal:add-components agg sweep)

?; This interactor advances the radar sweep 1 degree every .0l sec
(create-instance NIL inter:animator-interactor
(:window win)
(:start-event t)
(:stop-event t)
(:timer-repeat-wait 0.02)
(:timer-handler
#' (lambda (inter)
(s-value sweep :angle
(if (= (g-value sweep :angle) -359)
0

(- (g-value sweep :angle) (/ pi/18 10)))))))
))

(defun create-info-screen (agg win)
"Creates a window where info about a plane can be displayed."
(opal:add~components
agg
;; creates an information screen
(create-instance NIL opal:rectangle
(:left 560) (:top 15) (:width 140) (:height 560))

(create-instance NIL opal:rectangle
(:left 560) (:top 15) (:width 140) (:height 20)
(:£illing-style opal:black-£fill))

(create-instance NIL opal:text
(:left 560) (:top 15)
(:justification :center)
{(:string "Plane Information")
(:line-style opal:white-line))))

;:: not implemented at the moment -RLO (02/09/94)
(defun display-info (agg)
"displays plane information on the screen."
(let (info)

121

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E. 1

;7 create plane information
(setf info (create-instance nil opal:multifont-text
(:left 565)
(:top 35)
(:initial-text
'((" flight: ")
("heading: ")
(" height: ")
(" others: "}))))

(opal:add-components agg info)))

(defun show-weather (&rest arg-list)
"Creates weather cells on the radar screen."
(let (weather)
/7 creates weather cells
(setq weather
(create-instance NIL opal:polyline
{:point-list '(320 180 400 120 500 200 520 300 470 350 350 370 300
300))
(:filling-style opal:light-gray-£fill)
(:line-style nil)
(:draw-function :xor)))

(opal:add-component radar-agg weather)))

(defun show-beacon (&rest arg-list)
"Displays radar beacons across the radar."
(if *LIST-OF-BEACONS*
(turn-beacons-off *LIST-OF-BEACONS*)
(with-open~file (beacon-stream beacon-file-name :direction tinput)
(do ((beacon-num (read beacon-stream nil nil))
(count 1) (new-beacon nil))
((> count beacon-num) nil)
(setq new-beacon (create-instance NIL beacon))
{s-value new-beacon :center-x (read beacon-stream nil nil))
(s-value new-beacon :center-y (read beacon-stream nil nil))
(s-value new-beacon :visible t)
{(incf count)
(opal:add-components radar-agg new-beacon) :
(setq *LIST-OF-BEACONS* (cons new-beacon *LIST-OF-BEACONS*))))))

(defun turn-beacons-off (alist-of-beacons)
"Remove beacons from radar scope."
(if (null alist-of-beacons)
(setq *LIST-OF-BEACONS* nil)
(let ((beacon (car alist-of-beacons)))
(s-value beacon :visible nil)
(turn-beacons-off (cdr alist-of-beacons)))))

(defun read-plane-db-file (&rest arg-list)
"Reads plane database from a file."
(if *LIST-OF-PLANES*
nil
(with-open-file (plane-stream plane-file-name :direction :input)
(do ((plane-num (read plane-stream nil nil))
(count 1))
{ (> count plane-num) nil)
(let ((plane (gensym)))
(setq plane (create-instance NIL plane-proto))

f 122

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E. 1

(s-value plane :flight-no (read plane-stream nil nil))
(s-value plane :x-position (read plane-stream nil nil))
(s-value plane :y-position (read plane-stream nil nil))
(s-value plane :altitude (read plane-stream nil nil))
(s—-value plane :distance
(calculate-distance-from-airport
! (g-value plane :x-position)
(g-value plane :y-position)))
{s-value plane :velocity (read plane-stream nil nil))
| (s-value plane :control (read plane-stream nil nil))
(s-value plane :status (read plane-stream nil nil))
(opal:add-components radar-agg plane)
(incf count)
(setf *LIST-OF-PLANES* (cons plane *LIST-OF-PLANES*))
;7 this interactor advance the plane a distance
(create-instance nil inter:animator-interactor
(:window atc-win)
:start-event t)
:start-where t)
‘timer-repeat-wait 0.5)
:timer-handler
#' (lambda (inter)
(if (<= (gv plane :distance) 20)
(progn ; (inter:stop-animator plane-inter)
; (opal:remove-components radar-agg plane))
(setq *LIST-OF-PLANES*
(clean-up-list-of-planes *LIST-OF-PLANES*))
(s-value plane :visible nil))
(progn
(s-value plane :x-position
(calculate-new-x-position
(gv plane :x-position)
(gv plane :velocity)
(gv plane :distance)))
(s-value plane :y-position
(calculate-new-y-position
(gv plane :y-position)
{(gv plane :velocity)
(gv plane :distance)))
-(s-value plane :distance
(calculate-distance-from-airport
(gv plane :x-position)
(gv plane :y-position}))))))))

3))

(defun doquit (&rest arg-list)
"Exits the ATC simulation."
(opal:destroy atc-win))

. e
rrr

iri V. Utility functions

)
rr s

(defun calculate-new-x-position (x-position velocity distance)
"Calculate the new x-position based on where the plane is in the scope."
(let* ((scope (create-instance nil my-scope))
(center-x (+ (g-value scope :left)
(/ (g-value scope :width) 2)))
(x-distance (abs (- center-x x-position))})

123

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E. 1

{(cond ((< x-position center-x)
(round (+ x-position (/ (* x-distance velocity)

distance))))

({> x-position center-x)

(round (- x-position (/ (* x-distance velocity)
distance))))

((= x-position center-x)
center-x))))

(defun calculate-new-y-position (y-position velocity distance)
"Calculate the new y-position based on where the plane is in the scope."

(let* ((scope (create-instance nil my-scope))
(center-y (+ (g-value scope :top) (/ (g-value scope :height) 2)))
(y-distance (abs (- center-y y-position))))

(cond ((< y-position center-y)
(round (+ y-position (/ (* y-distance velocity)

distance))))

((> y-position center-y)

(round (- y-position (/ (* y-distance velocity)
distance))))

({= y-position center-y)
center-y))))

(defun calculate-distance-from-airport (x-position y-position)
"Calculates the distance of a plane from the airport.™
(let* ((scope (create-instance nil my-scope))

(center-x (+ (g-value scope :left)
(/ (g-value scope :width) 2)))
(center-y (+ (g-value scope :top)
(/ (g-value scope :height) 2)))
(distance 0))
(setq distance
(round (sqrt (+ (square (- center-x x-position))
{square (- center-y y-position))))))))

(defun clean-up-list-of-planes (alist-of-planes)
"Clean up the *LIST-OF-PLANES* for handed planes to be removed."
(1f (null alist-of-planes)
nil
(let ((plane-struct (car alist-of-planes)))
(if (eq (g-value plane-struct :control) 'handed)
(cdr alist-of-planes)
(cons plane-struct
(clean-up-list-of-planes (cdr alist-of-planes)))))))

{(defun int-to-string (int)
"Converts a given integer to a string.”
(do ((x 0 (+ x 1)))
((= x int) (format nil "~s" (* int 10)))))

(defun square (num)
"Calculates the square of a number."
(* num num))

i
;i; VI Main Function

Y
£ 77

124

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E. 1

LEE AR ES RS SRR ERES LS EEEE R R TR TR E R R R R R T R R R R R R R I S graprigrap

main procedure
Kk hkh kA kA kA A kA A A AR Ak ke ko kA hkhkhkhhh kA hkhk ko Ak ko kok ok &k ke ok o

e
’

e Ne owe

’
..
rr
..
L4

(defun do-go (&key dont-enter-main-event-loop double-buffered-p)
"Main routine for executing air traffic control (atc) simulation."
(let (info-agg test)

i/ create a viewport (top-level window)

(setf atc-win (create-instance nil inter:interactor-window
(:left 300) (:top 10) (:width 700) (:height 575)
(:title "ATC Simulation") (:icon-title "ATC")
(:double-buffered-p double-buffered-p)))

;¢ create the top level aggregate

(setf atc-agg (create-instance nil opal:aggregate
(:left 0) (:top 0)
(:width (o-formula (gv atc-win :width)))
(+height (o-formula (gv atc-win :height)))))

(setf radar-agg (create-instance nil opal:aggregate))
(setf info-agg (create-instance nil opal:aggregate))

;7 create air traffic control (atc) simulation menu
(create-atc-menu atc-agg)

;7 create a radar screen
(create-radar-screen radar-agg atc-win)

¢; create information screen
(create-info-screen atc-agg atc-win)

77 add the aggregates to the window and update
(s-value atc-win :aggregate atc-agg)
(opal:add-component atc-agg radar-agg info-agg)
(opal:update atc-win)

;; print description

(format t "~%ATC-Simulation:~%
This simulation is provided as a tool for routinely tying a
Soar model to a simulation. It is a bsimulation of a grossly
simplified Air Traffic Control (ATC) task and therefore it
does not contain all the features you could find in a real
ATC. But this simulation is sufficient enough for its purpose.

The simulation creates a radar screen with menu bars for which
to display things like beacons, weather fragments and planes.
It also displays a radar sweep which is constantly sweeping
the radar scope.")

/i if not cmu commonlisp, then start the main event loop to look for
events
(unless dont-enter-main-event-loop #-cmu (inter:main-event-loop))

;s return atc window
atc-win))

125

E.2 ATC-fn.lisp

;2:: —-*- Mode: Lisp -*-

FRP TG i i i i il i i i iRl R iRl
iiii

iiii

;i:: File : ATC-fn.lisp

;::i Author ¢! Roberto L.Ong <itxrlo@unicorn.nott.ac.uk>

;::: Created On : Fri Aug 19 15:36:00 1994

;7:: Last Modified By: Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>

;/27; Last Modified On: Tue Sep 13 13:26:17 1994

;+:: Update Count 4

rii

;77 : PURPOSE

iriv

i::; This file provides an entire lisp package that supports ATC simulation
77:; socket to Soar. It runs the Lisp socket code as a background process and
7777 the Air Traffic Control (ATC) simulation in the foreground.

rroervs

7i7; This is part of a MSc Thesis project in Information Technology.

N.B. See the "ATC-README" file on instructions on how to the load
and run the entire ATC code.

~
~

B
~

~
~
.
Ne Ne e e

ii;
ii:

;7+; TABLE OF CONTENTS

iiii

7iii I. Global Variables

Pili ' II. Utility Functions

pii: III. Soar-read-loop Functions

Pl Iv. ATC Functions

;i V. Main Function

rrrzv

7777 (C) Copyright 1994, Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>

University of Nottingham, all rights reserved.

;77; Status
;72 HISTORY

------------ .

;7: load this file
(format t "~%loading ATC-fn.lispvvuu... ~%")

;7: load file into default package - "USER"
(in-package "USER")

;2 I, Global Variables

(defparameter *soar-read-loop-process* nil)

L R R R R N N A R A L R R R R N I B NN N RSPy L I R R N N TC TIC U S S SP SR S a0
I/lIIIlIIIIII’lIIII’IIIIII'/IIII/IIII/IIIII’IIIIIIIIIIIII(IIIIIIIIIIIII

126

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix E.2

RN
pi: II. Utility Functions

¢ v e
r etz

(defun plane-struct-to-list (plane)

"Creates a list out of a plane structure."

‘(plane (flight-no , (g-value plane :flight-no))
(x-position , (g-value plane :x-position))
(y-position , (g-value plane :y-position))
(altitude , (g-~value plane :altitude))
(distance , (g-value plane :distance))
(velocity , (g-value plane :velocity))
(control , (g-value plane :control))
(status , (g-value plane :status))))

(defun send-to-socar (alist)
(declare (special *socket-stream*))
(write-message (cons 'input-link alist)))

iii
;r: III. Soar-read-loop Functions

e .
rrz

(defun launch-socar-read-loop-process ()

"Spawn a process which is doing Soar interaction all the time

RETURN the process.”
;7 If there was already a process running, kill it.
(declare (special *socket-stream*))
(when (lcl:processp *soar-read-loop-process*)
(progn (lcl:kill-process *soar-read-loop-process¥*)
(setq *soar-read-loop-process* nil)))
(unless (connected-with-soar-p)
(set-up-socket-as-server))
(setf *soar-read-loop-process*
(lcl:make-process :name "Soar-read-loop-process"
tpriority 500
:stack~size 1000
:function 'soar-read-loop-process)))

(defun soar-read-loop-process ()
"Creates the body of the Soar read loop process."
(lcl:handler-bind
((lcl::error #'lcl:invoke-debugger))
(loop
; (setq *soar-read-loop-process* lucid::*current-process¥*)
(when (not (connected-with-soar-p))
(accept-client-and-make-socket-stream nil))
(when (and (connected-with-soar-p)
(listen *socket-stream*))
(read-command-and~-args (read-message-stream))))))

(defun connected-with-soar-p ()

"test quick and dirty whether a connection exists"
;: should later be done with *features¥*

(declare (special *client-id*))

(and

client-id

(boundp '*client-id¥*)

(not (eq -1 *client-id*))))

127

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix E.2

..
rr
rir IV,

)
rrr

ATC Functions

(defun read-command-and-args (expression)
"Reads a command and optional arguments, then processes it."
;7 at the moment the commands are arriving as
;7 (socketout-link (id <id>) (name <name>) [(args <args>*]).
;7 note that the lisp-function has to sort out the right arguments
(let ((command (second (assoc 'name (cdr expression))))

(id (second (assoc 'id (cdr expression))))
(args (mapcar

#' (lambda (arg-el)
(second arg-el))
(remove-if-not

#' {lambda (el) {(eq (car el) 'args))
(cdr expression)))))
(if command
(progn
(format t "I have read the command ~d.~%" command)
(cond ((eq command 'send-scope-info)
(send-scope-info))
((eq command 'lower-plane-altitude)
(lower-plane—-altitude args *LIST-OF-PLANES*))
((eq command 'land-the-plane)

(land-the-plane args *LIST-OF-PLANES*)))
(perception-system-operate id)))))
(defun perception-system-operate (id)

;7 send message to soar to remove latest-msg
;} write new message,

saving it for later removal
:: (setq latest-msg id)

(format t "I have done the command.

~%n)
(write-message

" (done-external-operator ,id)))

(defun send-scope-info ()

"Look for any planes in the scope and return their attributes."
(if *LIST-OF-PLANES*
(send-to-soar

(mapcar #'plane-struct-to-list *LIST-OF-PLANES*))
(send~-to~-soar '((plane (number 0))))))

(defun lower-plane-altitude (plane-attributes alist-of-planes)
"Change the altitude of a particular plane."

{let ((plane-struct (car alist-of-planes))
(flight-num (car plane-attributes)))
(if (eq (g~value plane-struct :flight-no) flight-num)
(progn
(s—-value plane-struct :altitude 5000)
(s-value plane-struct :control 'descend))

(lower-plane-altitude plane-attributes (cdr alist-of-planes)))))

(defun land-the-plane (plane-attributes alist-of-planes)
"Land a plane by handing it over to the approach controller."
(let ((plane-struct (car alist-of-planes))

{(flight-num (car plane-attributes)))

(if (eq (g-value plane-struct :flight-no) flight-num)
(s-value plane-struct :control 'handed)

(land-the-plane plane-attributes (cdr alist-of-planes)))))

128

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix E.2

ii
rrr V. Main Function

[y
rrzs

(defun main-routine ()
"This is the main routine."
;7 initialize global variables
(setqg atc-win nil)
(setq atc-agg nil)
(setq radar-agg nil)
(setq *LIST-OF-BEACONS* nil)
(setq *LIST-OF~-PLANES* nil)
(setq *soar-read-loop-~process* nil)
(let (test)
(setqg test (launch-socar-read-loop-process))
(format t "~s~%" test)
(do-go)))

129

E.3 ATC-files.load

-*- Mode: LISP; Syntax: Common-Lisp; Package: USER; Base: 10 —-*-

”l’lllll'llllll/l/lIIIIIIlIIIIIII/lIIIIIIIIIIIIIII’IIIIIIIIII"III

The Garnet User Interface Development Env1ronment

~. ~e
~s o~
~e e

~e wa

; This code was written as part of the MSc Thesis project at
; Nottingham University, and has been placed in the public
; domain.

Ne e N Ne N
Ne Ve Ne ne n
e Nu Ne Ng N we N

~e N

File : load-ATC-files.lisp

Author : Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
Created On : FRI Sep 02 12:25:17 1994

Last Modified By: Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
Last Modified On: Sat Sep 03 12:25:17 1994

Update Count 2

Ne we Ne N

~e e

Ne e Ve Ne e Ne Se Ne Ne N

PURPOSE

e Mo Ve Ne N owe we

~
Ne Ne Ne e Na we we No

This file provides the necessary the necessary files to be loaded
in order to run the ATC code.

~
~
Ne Ne Ve e Ne Ne Ne Ne Ne Na we we S

This is part of a MSc Thesis project in Information Technology.

i
iii
irii
RN
;/72: N.B. See the "ATC-README" file on instructions on how to the load
HE and run the entire ATC code.
Priq
i
;+72: TABLE OF CONTENTS
Y < see contents of this module >
rr
2727 (C) Copyright 1994, Roberto L. Ong <itxrloQunicorn.nott.ac.uk>
NN University of Nottingham, all rights reserved.
FRT IR i IR I IRl IR iRl il iR
iii;
;77; Status
; 7+ HISTORY
IREN
riii

..

;+; load this file
(format t "~%loading load-ATC-files.lisp La~g")

;7 load file into default package - "USER"
(in-package "USER")

(load "/psyc/teaching/UG/otherug/itxro/socket/socket/stdio.lisp")
(load "/psyc/teaching/UG/otherug/itxro/socket/socket/socket.lisp")
(load "/psyc/teaching/UG/otherug/itxro/garnet/ATC~Garnet.lisp")
(load "/psyc/teaching/UG/otherug/itxro/garnet/ATC-fn.lisp")

130

e o,
~
~
~e
~
~
~
~e
~

File

Organization
Created on

Mo Ne e Ne Ne N Ne N

Soar Version

Se N Ne e Ne Ne Yo N Ne Ne o Ne N we e S

~e

~

.
’
I3
4
.
’
.
’
.
7
.
’
.
’
.
’
.
’
.
14
.
’
.
’
.
’
.
’
.
’
.
r
.
’

Ne Ne Ne Ne N Ne N N

; Description:

~

Mo Ne Ne Ne Ne Ne Ne we we

e e Ne e Yo Ne e N we N
~

@ Ne Ne N Ne Ne N Ne we we

;IIIlIIIIIIIIIIII’IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

.
II/I

ATC.soar

Original author(s) Roberto L. Ong <itxrlo@unicorn@nott.ac.uk>

: /psyc/teaching/UG/otherug/itxro/.organization
19 Aug 1994, 13:07:35

Last Modified By : Roberto Ong <itxro@nott.ac.uk>
Last Modified On : 15 Sep 1994, 20:01:45

6.2.3

ABSTRACT. These Soar productions implement the Air Traffic Control (ATC)
task. The task is to find a plane and land it.

This is a model of an individual doing a simple "Air Traffic
Control" task. The model interacts with the outside via UNIX
sockets. The socket stuff was provided by Joseph Mertz and
Gary Pelton, and was modified, adapted and generalized by
Roberto L. Ong and Josef Nerb (hence MONGSU [Mertz-Ong-Nerb-
Gary Socket Utilityl}).

It does basic ATC task such as looking at the scope and
landing planes. It also checks to see if there are no planes
in the scope. The goal is to land planes which has landing
status. If all planes (i.e., planes with status land) has
landed then the system terminates, otherwise it continues
to loock at the scope.

...

rrrrr vt rrrrrrrrrrrrrr s

;77 turn learning off

learn off

TOP GOAL:
ATC

e “a e
e we N
~s Ne N

(sp top-gcal*elaborate*goal*ATC
(goal <g> ”~object nil)

-—>

(<g> “name ATC))

131

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

~e

e we wa w.
e N Ne N

~e N e

Ne Ne N we
Ne Ne N e
e Se e we

)
rr s
TRy
rr
o 8.
77

)
rrs

(sp

Ne e Ne
e Ne Ne w
e Ve e we

(sp

TOP GOAL PROBLEM SPACE:
ATC

ATC*propose*space*ATC

(goal <g> “name ATC “object nil)
-—>

(<g> “problem-space <p>)

(<p> “name ATC))

ATC PROBLEM SPACE:
DESIRED STATE

ATC*elaborate*goal*desired-state

(goal <g> “problem-space <p> ”“object nil)
(<p> “name ATC)

-

(<g> ~desired <d>)

(<d> “planes-to-land none))

ATC PROBLEM SPACE:
INITIAL STATE

ATC*propose*state*initial-state
(goal <g> “name ATC
“problem-space <p>
~“desired <d>)
(<p> “name ATC)
(<d> “planes-to-land none)
-
(<g> “*state <s>)
(<s> "planes-to-land yes “first-look no “looked no)
(<s> “current-planes none))

ATC PROBLEM SPACE OPERATORS:
look-scope -> propose

ATC*propose*operator*look-scope
(goal <g> “problem-space <p> “state <s> “object nil)
(<p> “name ATC)
(<s> “planes-to-land yes “looked no)
;; there should be one condition which makes sure that the rule
;: fires not during you are monitoring <or>
;7 you could say that all the monitoring operators are better than
;+ look-scope
-2
(<g> “operator <o> + >)
(<o> “name look-scope
~“external yes))

132

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

P R T
~e
e ve e w

U3 ~e e
o]

LT T

- Ne e wy W,
1 ~e ~e ~e ~e

s e
rrz
I
rrzs
s e
rre
.o
rr

(sp

)
r e
..o
rr
s
7z
s .
rrs

(sp

ATC PROBLEM SPACE:
look-scope*note-first-op -> implement

ATC*implement*look-scope*note-first-op

(goal <g> “state <s> “operator <o>)

(<s> “planes-to-land yes "~first-look no “looked no)
(<s> “current-planes none)

(<o> “name look-scope)

—-—2

(<s> ~“first-look no - yes +))

ATC PROBLEM SPACE:
look-scope -> implement

ATC*implement*operator*look-scope

(goal <g> “state <s> “operator <o>)

(<s> “planes-to-land yes ~first-look yes ~looked no)

(<o> “name look-scope '
~“external yes)

-—>

(<s> "“looked no - yes +)

{(<o> “issued <command>)

(<s> "socketout-link <command> + &)

(<command> “name send-scope-info)

(<command> ~id (make-constant-symbol)))

ATC PROBLEM SPACE:
look-scope*receive*and*mark*input -> implement

ATC*implement*look-scope*receive*and*mark*input
(goal <g> “state <s> "“operator <o>)

(<s> “planes-to-land yes)

(<o> “name look-scope)

(<s> “~input-link <planes>)

(<s> -"read <planes>)

(<s> “current-planes <old-planes>)

-2

(<s> “current-planes <old-planes> -~ <planes> + &)
(<s> “read <planes> + &))

ATC PROBLEM SPACE:
look-scope -> terminate

terminate*operator*look-scope
(goal <g> “problem-space <p> “state <s> “operator <o>)
(<o> “name look-scope
~issued <command>
~“external yes)
(<p> “name ATC)
(<s> “current-planes <planes> { <> none })
(<s> “socketout-link <command>)
(<s> ~input-link <planes> “read <planes>)
(<command> ~id <constant-symbol>)
(<s> "“done-external-operator <constant-symbol>)
-—>
(<g> “operator <o> @))

133

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

PP
;77 ATC PROBLEM SPACE OPERATORS:
t7: lower-altitude -> propose

;¢ plane has reached first approach fix
;7 issue command to descend
(sp ATC*propose*operator*lower-altitude
(goal <g> “problem-space <p> “state <s>)
{(<p> “name ATC)
(<s> "“looked yes ~current-planes <cp>)
(<cp> “plane <plane>)
(<plane> “status land “control under “~distance {<= 200} <d>)
-
(<g> “operator <o> + >)
(<o> “name lower-altitude
“plane <plane>
“external yes))

i
/77 ATC PROBLEM SPACE:
¢7+ lower-altitude -> implement

TRy
rre

{sp ATC*implement*operator*lower-altitude
{(goal <g> “problem-space <p> “state <s> “operator <o>)
(<p> ”“name ATC)
(<o> "“name lower-altitude
“plane <plane>
~“external yes)
(<plane> "~flight-no <arg>)

-—>
(<s> “looked yes - no +)
(write
(crlf) | Flight number | <arg> | has reached First approach fix. |
(crlf) | Descending to 5000 meters. |)

(<o> “issued <command>)

(<s> “socketout-link <command> + &)
(<command> “name lower-plane-altitude)
(<command> ~id (make-constant-symbol))
(<command> “args <arg>))

Pi
;.7 ATC PROBLEM SPACE:
;77 lower-altitude -> terminate

[
rrs

{(sp ATC*terminate*operator*lower-altitude
(goal <g> “problem-space <p> “state <s> “operator <o>)
(<o> “name lower-altitude
~issued <command>
“external yes)
(<p> “name ATC)
(<s> "“socketout-link <command>)
(<command> ~id <constant-symbol>)
(<s> “done-external-operator <constant-symbol>)
-—>
(<g> “operator <o> @))

134

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

~e

ATC PROBLEM SPACE OPERATORS:
land-plane -> propose

N Ne e N

e Ne e
e e o

(sp ATC*propose*operator*land-plane
(goal <g> “problem-space <p> “state <s>)
(<p> “name ATC)
(<s> *looked yes “current-planes <cp>)
{(<cp> “plane <plane>)
(<plane> “status land “control descend “distance {<= 80} <d>)
-2
(<g> "“operator <o> + >)
(<o> “name land-plane
“plane <plane>
“external yes))

ATC PROBLEM SPACE:
land-plane -> implement

~e we w
~e “e N
s Ne Ne N

~
~e

{sp ATC*implement*operator*land-plane
(goal <g> “problem-space <p> “state <s> “operator <o>)
(<p> “name ATC)
(<o> “name land-plane
“plane <plane>
“external yes)
(<plane> ~flight-no <arg>)

-2

(<s> "“looked yes - no +)

(write
(crlf) | Flight number | <arg> | has reached Final approach fix.
(crlf) | Handing to Approach controller. |)

(<o> "issued <command>)

(<s> “socketout-link <command> + &)
(<command> “name land-the-plane)
(<command> "~id (make-constant-symbol))
(<command> “args <arg>))

;/+; ATC PROBLEM SPACE:
;7; land-plane -> terminate

(sp ATC*terminate*operator*land-plane
(goal <g> “problem-space <p> “state <s> “operator <o>)
(<o> “name land-plane
~issued <command>
~“external yes)
(<p> “name ATC)
(<s> “socketout-link <command>)
(<command> ~id <constant-symbol>)
(<s> "done-external-operator <constant-symbol>)
-->
(<g> ~operator <o> @))

135

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

¢ s e
717

..
177

ATC PROBLEM SPACE OPERATORS:

;7; there-are-planes -> propose

s
rrz

i/ plane has landing status but is in intermediate distance
(sp ATC*propose*operator*there-are-planes

~e Ne NN
e Ne wa N

e Ne Ne N

(goal <g> “state <s> “problem-space <p>)

(<p> “name ATC)

(<s> ~looked yes “planes-to-land yes “current-planes <cp>)
(<cp> “plane <plane>)

(<plane> “status land “control <cntl> { <> handed })

—-=>

(<g> “operator <o> + =)

(<o> “name there-are-planes))

ATC PROBLEM SPACE:
there-are-planes -> implement

(sp ATC*implement*operator*there-are-planes

e Se SooN
LT PO

..
rr

..
7

L

(goal <g> “problem-space <p> “state <s> “operator <o>)
(<p> “name ATC)
(<o> “name there-are-planes)
(<s> “planes-to-land yes)
-2
(<s> ~looked yes - no +)
(write (crlf)
| There are planes to land. |))

ATC PROBLEM SPACE:
there-are-planes -> terminate

ATC*terminate*operator*there-are-planes
(goal <g> "state <s> “operator <o>)
(<o> “name there-are-planes)

(<s> ~looked no)

-—>

(<g> "~operator <o> @))

ATC PROBLEM SPACE:
no-more-planes-to-landl -> propose

there are no more planes with landing status
there are only overflights

(sp ATC*propose*operator*no-more-planes-to-landl

(goal <g> ”"problem-space <p> “state <s>)

(<p> “name ATC)

(<s> "planes-to-land yes “looked yes “current-planes <cp>)
(<cp> “plane <plane>)

(<plane> “control under “status over)

-2

(<g> "“operator <o> + =)

(<o> “name no-more-planes-to-land))

136

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

e ve N N
e Ne Ne W,
Ne Ne e N,

ATC PROBLEM SPACE:
no-more-planes-to-land2 -> propose

;7 all planes with landing status have already been

[y
r

(sp

e Ne ne N
e Ne Ne N
~e

e Ne we

..
s

(sp

« e
7 17
[RE R
rrrs
...
rrr

..
rrs

(sp

~.

LTI PR YRR Y
T T
Ne Ne wa

handed over to the approach controller

ATC*propose*operator*no-more-planes~to-land2

(goal <g> “problem-space <p> “state <s>)

(<p> “name ATC)

(<s> “planes-to-land yes "“looked yes “current-planes <cp>)
(<cp> “plane <plane>)

(<plane> “control handed “status land)

-—>

(<g> "“operator <o> + =)

(<o> “name no-more-planes-to-land))

ATC PROBLEM SPACE:
no-more-planes-to-land3 -> propose

there are no more planes in the radar scope
ATC*propose*operator*no-more-planes-to-land3

(goal <g> "state <s> “problem-space <p>)

(<p> “name ATC)

(<s> “planes-to-land yes “~looked yes “current-planes <cp>)
(<cp> “plane <plane>)

(<plane> “number 0)

-2

(<g> “operator <o> +)

(<o> “name no-more-planes-to-land))

ATC PROBLEM SPACE:
no-more-planes-to-land -> implement

ATC*implement*operator*no-more-planes-to-land
(goal <g> “problem-space <p> “state <s> “operator <o>)
(<p> “name ATC)
(<o> “name no-more-planes-to-land)
(<s> “planes-to-land yes)
-2
(<s> “planes-to-land yes - none +)
(write (crlf)
| There are no more planes to land. }))

ATC PROBLEM SPACE:
no-more-planes-to-land -> terminate

ATC*terminate*no-more-planes-to-land
(goal <g> “state <s> "operator <o>)
(<o> "“name no-more-planes-to-land)
(<s> “planes-to-land none)

-2

(<g> "operator <o> @))

137

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

ATC: SEARCH CONTROL KNOWLEDGE

e e Ne o
we Ne Ne N

~e N

;i compare distances of the planes that has reached the first approach fix
/i and issue command to the plane that is nearest to the airport
(sp ATC*compare*operator*monitor-distance*and*lower-altitude

(goal <g> “problem-space <p> “state <s>

“operator + { <> <02> } +)

(“name lower-altitude “plane <planel>)

(<02> “name lower-altitude “plane <plane2>)

(<planel> ~distance <distance-1>)

(<plane2> ~distance { > <distance-1> } <distance-2>)

-2

(<g> “operator > <o02>))

i; compare distances of the planes that has reached the final approach fix
/i and issue command to the plane that is nearest to the airport
(sp ATC*compare*operator*monitor-distance*and*land-plane

(goal <g> “problem-space <p> “state <s>

“operator + { <> <0l> <02> } +)

(<0l> “name land-plane “plane <planel>)

{(<02> “name land-plane “plane <plane2>)

(<planel> “~distance <distance-1>)

(<plane2> “~distance { > <distance-1> } <distance-2>)

-—>

(<g> "“operator > <02>))

;i land-plane is always better than lower-altitude
(sp ATC*compare*operator*land-plane*better*lower-altitude
(goal <g> “problem-space <p> “state <s>
“operator + { <> <o02> } +)
(“name lower-altitude)
(<02> “name land-plane)
-2
(<g> “operator <o02> >))

i/ lower-altitude and land-plane is always better than
;7 there-are-planes
{sp ATC*compare*operator*there-are-planes*always*worst
(goal <g> “problem-space <p> “state <s>
~operator + { <> <02> } +)
(<0l> “name << lower-altitude land-plane >>)
(<o2> "name there-are-planes)
-2
(<g> "operator <o02> < <o0l>))

i+ watching-command-process is always better than
;7 any operator proposed simultaneously
;: => bug fix for operator tie impasse
;: -RLO (15/09/94)
(sp ATC*compare*operator*watch*always*best
(goal <g> ”“problem-space <p> “state <s>
“operator + { <> <0l> <02> } +)
{(“name << lower-altitude land-plane >>)
(<o2> "name watching-command-process)
-—>
(<g> "“operator <o02> >))

138

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix F

;+ 1f there are still planes to land, don't quit
;7 look-again
{sp ATC*compare*operator*there-are-planes*no-more-planes
(goal <g> “problem-space <p> “state <s>
“operator + { <> <0l> <02> } +)
(“name there-are-planes)
(<02> “name no-more-planes-to-land)
-—>
(<g> “operator > <02>))

~e e
~

ATC: Watch command processor

~e we e

-~
~e e

(sp look-at-scope*impasse-watching-command-process
(goal <g> “impasse no-change “attribute operator “object <gl>)
(goal <gl> ”“operator <o>)
(<o> "“external yes)
-—>
(<g> “operator <ow> <ow> >)
(<ow> “name watching-command-process))

(sp terminate*operator*watching-command-process
"Terminate watching-motor-process as soon as it is selected."
(goal <g> “state <s> ”“operator <o>)
(<o> “name watching-command-process)
-—>
(<g> “operator <o> @))

"
ATC PROBLEM SPACE:
STATE EVALUATION

~
Ne e Ne Ne

.
’
.
7’
..
7

EVALUATION: STATE SUCCESS/GOAL TEST

~
s e N
~e Sa N

/7 success means there are no more planes to land
7+ i.e., all planes that have to be landed already landed

(sp ATC*evaluate*state*success

(goal <g> “problem-space <p>
~“state <s>
~desired <d>
~“object nil)

(<p> “name ATC)

(<d> “planes-to-land none)

(<s> "planes—~to-land none)

-—>

(<s> “success <d> + &))

(sp default*top-goal*halt-success*state*success
tdefault
(goal <g> “state <s> “desired <d> "“object nil)
(<s> “success <d>)
-2
(write (crlf) | goal | <g> | achieved |)
(halt))

;:: eof of ATC.soar

139

Mertz-Ong-Nerb-Gary Socket Utility (MONGSU)

G.1 std-soar-socket.c

/* ~*- Mode: C -*- %/
/***/

/*
/* File : std-soar-socket.c
/* Author : Ralph Morelli

/* Created On Sat Mar 14 14:32:14 1992
/* Last Modified By: Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
/* Last Modified On: Tue Sep 13 12:49:20 1994

/* Update Count : 19

/*

/* PURPOSE

/* This file provides socket support for sockets from LISP. It will
/* interface with Allegro, Lucid or CMU Common Lisp. It was originally
/* written for use with cT.lisp, which defines the functions given here
/* as foreign functions. It is compiled to std-soar-socket.o and loaded
/* into LISP. See these programs and the Makefile for details.

/*

/* The following foreign (integer) functions are defined.

/* sock = create_socket ()

/* port = bind socket (sock)

/* client_file descriptor = listen socket (sock)

/* accept_socket (sock)

/* close_socket (sock)

/* shutdown_socket (sock, how)

/* connect_socket (sock, server_system name, server port number)

/*

/* TO COMPILE: (Use the Makefile)

/*

/* TABLE OF CONTENTS

/* | >Contents of this module<]|

/*

/* Sections:
/* (C) Copyright 1991, Carnegie Mellon University, all rights reserved.

/* (C) Other sections Copyright 1994, Roberto L. Ong and Frank E. Ritter.
/***/

/* Status : Unknown, Use with caution!

/* HISTORY

/*

/* Blake Ward developed first version of this program which defined three
/* functions: create-socket, connect-socket, destroy-socket

/* Modification: Garret Pelton modified the functions to work with cT
/* Modification: 3/9/92: RM modified documentation

/* Modification: 3/11/92: RM added DEBUG and PERROR code

/* Modification: 3/11/92: RM modified destroy socket

140

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.1

/* Modification: 3/14/92: RM redefined the foreign functions to bring them
/* into a 1-1 relationship with C-language system calls, thereby giving
/* more fine-grained control to LISP.

/* Modification: 12/7/92: JM added connect_socket

/* Modification: 19/8/94: RLO changed variable names and added global

/* variables to make the code more general,

/* understandable and clear.

/* Made error messages more constructive and clear.
/*

/***/

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>

#define DEBUG 1 /* Set to 1 for ON, 0 for OFF */

#define DEFAULT PROTOCOL 0 /* Set to standard protocol */
/* -RLO (19/08/94) */

#define DEFAULT_QUEUE_LENGTH 1 /* Set to number of connectrions allowed */
/* -RLO (19/08/94) */

static struct sockaddr in serverINETaddress; /* Full internet name of */
/* Lisp side of socket */

/* -RLO (19/08/94) */

/* Create a socket */
create socket ()

{

int sock;

/* Create a socket on which to send. */
sock = SOCKet(AF_INET, SOCK_STREAM, DEFAULT_PROTOCOL) ;
if (sock == -1) {

/* modified error message -RLO (31/08/94) */

fprintf (stderr, »
"Establish Socket: Unable to create socket in create socket.\n");

perror ("ERROR: CREATING STREAM SOCKET"):; -
return(-1);

}

if (DEBUG)
fprintf (stderr, "Created Socket with id %d\n", sock):

return (sock):;

) /* end create */

/* Bind the socket to a port */
bind_socket (sock)
int sock;

{

int namelen;

serverINETaddress.sin_family = AF_INET;

serverINETaddress.sin_addr.s_addr = INADDR_ANY;

serverINETaddress.sin_port = htons(0); /* Uses a wild card port number */
/* assigned by the system */

141

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.1

if (bind(sock, &serverINETaddress, sizeof (serverINETaddress)) == -1) ({
/* modified error message -RLO (31/08/94) */
fprintf (stderr,

"Establish Socket: Unable to bind to socket %d (in bind_socket).\n",
sock) ;
perror ("BIND ERROR: Closing Socket"):;
return(-1);

}

namelen = sizeof(serverINETaddress);
if (getsockname (sock, &serverINETaddress, &namelen)) {

/* modified error message -RLO (31/08/94) */
perror ("ERROR: Unable to get socket name.");
return(-1);

}

return (ntohs(serverINETaddress.sin_port));
} /* end bind */

/* Put socket in "listen" state (one connection) */
listen_socket (sock)
int sock;

{

int rtncode;

rtncode = listen(sock, DEFAULT_ QUEUE_LENGTH) ;
if (rtncode == -1) {
fprintf(stderr, "Establish Socket: Unable to listen to socket gd.\n",
sock) ;
perror ("LISTEN ERROR: Closing Socket");
return(-1);

}
if (DEBUG)
fprintf (stderr, "Listening at socket with id %d\n", sock);

return(rtncode);
} /* end listen */

/* This function takes a socket, waits for someone to connect to it and
then returns a unix file descriptor corresponding to the socket. */

accept_socket (sock)

int sock;

{

int client_fd; /* fd after client has connected */
struct sockaddr in clientINETaddr;

int client_addr len;
struct hostent *host;

/* Wait for a connection */
client_addr_len = sizeof(clientINETaddr):;

client fd= accept(sock, &clientINETaddr, &client_addr len);

if (client_fd == -1) {
/* commented for use with launching a process in Lisp. */
/* Because it keeps on printing error messages during initial */
/* launching of a process as there is no connected process yet */

/* -RLO (19/08/94) */
/* fprintf(stderr, "Accept: Unable to accept connection at socket $d\n",

sock); */
/* perror ("ACCEPT ERROR: Closing Socket"); */

return(-1);

}
142

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.1

host = gethostbyaddr((char*) &clientINETaddr.sin_addr.s_addr, 4, AF_INET);

if (DEBUG)
fprintf(stderr, "Accepted connection from %s\n",host—>h_name);

return(client_f£fd);
} /* end accept */

/* connect_socket: This function takes the server name and port number
* of a socket from a server process, and a socket server fd and connects
* to it. The process returns the result of the connect system call.

*/

int connect_socket (server_ fd, server_name, port no)
int server_ fd, port_no;
char *server name;

{

struct sockaddr_in serverINETaddress;
struct hostent *host;
int rtncode;

host = gethostbyname (server_name);

if (host == 0) {
fprintf(stderr, "Connect: Unknown host %s.\n", host);

perror ("CONNECT ERROR");
return(-1);

)

bzero((char *)&serverINETaddress, sizeof(serverINETaddress));

serverINETaddress.sin_family = host->h_addrtype;
bcopy (host->h_addr, (char *)&serverINETaddress.sin_addr, host->h_length);

serverINETaddress.sin_port = htons(port_no);

rtncode = connect (server fd, &serverINETaddress, sizeof (serverINETaddress));

if (rtncode == -1) {
fprintf(stderr, "Test: Unable to connect (errno=%d).\n",errno);

perror ("ERROR MESSAGE");
return(-1);

}

if (DEBUG)
fprintf ("Connected to server with fd %d\n", server_ fd);

return(rtncode);

/* Close the socket */
close_socket ({sock)
int sock;

{

int rtncode;

rtncode = close(sock);
if (rtncode == -1) {
fprintf (stderr, "close: Unable to close socket %d.\n", sock):;

perror ("CLOSE ERROR");
return(-1);

}

143

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.1

if (DEBUG)
fprintf (stderr,"Closed socket with id $d\n", sock);

return (rtncode);
} /* end close */

/* Shutdown causes a socket's connection to be shutdown. If how is 0, then
further receives will be disallowed. If how is 1, then further sends
will be disallowed. If how is 2, then further sends and receives will

be disallowed. */

shutdown_socket (sock, how)
int sock, how;

{

int rtncode;

rtncode = shutdown (sock, how);

if (rtncode == -1) {
fprintf (stderr, "close: Unable to shutdown socket ¢d.\n", sock):;
perror ("SHUTDOWN ERROR");
return(-1);

}

return (rtncode);

144

G.2 soar-socket.c

/* ~*- Mode: C -*- %/
/**

/*

/* File : soar-socket.c
/* Author : Joe Mertz
/* Created On : December 1992

/* Last Modified By: Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
/* Last Modified On: Thu Sep 27 12:57:20 1994

/* Update Count : 14

/* Associated modules : std-soar-socket.c

/* : ../src/* (i.e., the rest of Soaré6)

/*

/* Description: This file implements a simple socket I/0O facility for
/* Soar6. The user has to be aware of the following new
/* Soar interface interface commands

/*

/* init-socket-io

/* init-socket-server

/* close-socket-io

/* shutdown-socket-io

/* socket-output-link

/*

/* See "help" for each command in Soar6é for more information.

/*

/* Changes necessary in HOOKS.C:

/* stdsocket_init() must be called from system startup hook()

/* stdsocket_flush() must be called from before init_ soar_ hook()
/*

/* Also, do not forget to add soar-socket.c and std-soar-socket.c to the
/* makefile.

/*
/* CAVEATS:

/* Some sizes to keep in mind:

/* 10 chars Max length server name -RLO (19/08/94)

/* 1024 chars Max length of single output wme list

/* 2048 chars Max length of single input wme list

/* 128 chars Max length of any input attribute or value constant
/* 512 tokens Max number per single input list.

/* Token = '(' | ')' | attribute constant | value constant

/*
/* That should be all of them. I think that these are reasonably

/* large, .and making them dynamic was more work than I wanted to do
/* at this point. But if you start blowing up, you might check

/* these hardcoded barriers first (there is no checking in the code).
/*

/* Error recovery from incoherent input lists is not very strong.

/*

/* "When working with cT, and other systems where Soar is directing the
/* action, Soar as a server works well. Some of these systems can not really

/* work well as a server, but can interface to a server easily.

/*

/* When working with multiple Soars or Soar and other agent-like systems and
/* and all these agents talking to some common interface, Socar as a client

/* works better."

/* -GAP (September, 1994)

/*

/* Revision history:

/* ?2?7Dec92 - started hacking
/* 01Feb93 - added this header

145

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

/* 16Jun93 -~ added ability to have (foo ()) which will translate into

/* an attribute foo with an id as its value.

/* 03Feb93 - seriously bumped up the limits listed above to accomodate the
/* posttest test. Used respectively: 1024 30000 128 5000

/* 19Aug94 - added header files for Soar global variables

/* (RLO) modified init_socket_io to act as a server and allow parameters
/* to be typed in the Soar command line

/* modified variables to make it compatible to Scar6.2.3

/* modified init-socket-io for Soar to act as client

/* added init-socket-server for Soar to act as server

/* modified functions to work in Soar 6.2.3

/* added shutdown-socket-io

/*

/**/

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

finclude <strings.h>

#include <fcntl.h>

#include <ctype.h>

#include <errno.h>

/* provide full path for the following soar files -RLO */
#include "/psyc/teaching/UG/otherug/itxro/soar6.2.3/src/soar.h"
finclude "/psyc/teaching/UG/otherug/itxro/soarG.2.3/src/global_vars.c"

/* The following external functions are defined in socket.c. */
extern int create_socket ();

extern int connect_socket (int, char*, int);

extern int bind_socket (int);

extern int listen_socket (int);

extern int accept_socket (int);

extern int close_socket (int);

extern int shutdown_socket (int, int);

/* Definition of constants */
#define MAX_SERVER_NAME LENGTH 10 /* max length of server name */
/* -RLO (19/08/9%4) */

int client_id = -1; /* file descriptor for client process */
/* if client_id == -1, then the socket is not up, */
/* initialize for use with stdsocket flush during */
/* init-soar */

/* ~RLO (31/08/94) */

int socket_id; /* file descriptor for server process */
/* This is used if Soar acts as a server */
/* -RLO (31/08/94) */

/* OUTPUT STUFF */
char wme_list buf([102]; /* where wme lists are built for output */

/* INPUT STUFF */

char in_buf[30000]; /* where whole input lists are read and staged */

int in_nest; /* the level of nesting currently being input */

int in_count; /* the character count in the current list being input */
char in_string[128); /* where each input token is built */

146

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

int in_string idx; /* end of input token being built */
int in_integer, in_float, in_sym constant; /* use to decide token type */

typedef enum paren_type_enum {LEFTPAREN, RIGHTPAREN} paren_type;

typedef union in_token_union {

}

Symbol *in symbol,
paren_type paren;
in_token;

in_token in_tokens[5000];

typedef struct in_list struct {

)

Symbol *link_symbol;

wie *link_ wme;

struct in_list struct *next;
in_list;

in_list *in_links;

int in_token_ last;
int in_token_next;

/* Routines defined in this file */
void stdsocket_init (void);

void stdsocket flush (void);

void socketout (int, io_wme*);

void parse_output (Symbol*, io_wme*);
bool init_ socket io (void);

bool init socket server (void);
bool close socket io (void):;

bool shutdown socket io (void);
void socketin (int);

void parse_input (void);

void build_wmes (Symbol*)

void buildtoken (char);

void endtoken ()

void paren (paren_type);

in_token get_input_token ():
in_token get input_token_paren ();
in_token get_input_ token_ symbol ();
bool is_in_token_paren (in_token);
bool is_in_token_symbol (in_token);
bool socket _output link (void);

/***** stdsocket_ flush: read any input on socket that may be pending ***k*%x/
void stdsocket flush (void) {

if (client_ia == -1) return; /* flush only if the socket is open */
while (TRUE) { /* read until error or when input blocked */
char next char; .
if (read(cllent id, é&next char, 1) == -1)
if (errno == EWOULDBLOCK) /* poll shows nothing to read on socket */
return;
else {
perror ("ERROR message ");
return;

147

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

/*

void socketout (int mode, io_wme *outputs)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
NI

/*

void parse_output (Symbol *id, io_wme *outputs)

{

*rkKkhkk*** gocketout: output routine called by soar *r*kkkkkrk/

Symbol *socketout_link_id;

{

/* currently only care about ADDED_OUTPUT_COMMAND */

switch (mode) {
case REMOVED_ OUTPUT_COMMAND:

printf ("This is remove_output_command\n");

return;
case MODIFIED OUTPUT_ COMMAND:

printf ("ThIs is modified output_command\n");

return;
case ADDED_OUTPUT COMMAND: break;

}

*/
*/
*/
*/
*/
*/
*/
*/

*/

current agent (top_ state),

The statement below converts something like:
(X1 ~foo Z1)

(21 “bar noo)

(sl "socketout-link X1)

and turns it into

(foo (bar noo))

If the above output is desired

(a) uncomment the statement below

(b) change arguments of parse_output to (socketout_link_id, outputs) */
~RLO (19-Aug-94)

socketout_link id = get_output value (outputs,
Ly: */

/* take something like:

/* (X1 ~foo Z1)

/* (Z1 “bar noo)

/* (S1 ~socketout-link X1)

/* and turn it into

/* (socketout-link (foo (bar noo)))

*/
*/
*/
*/
*/
*/

/* reset the buffer "wme_ list buf" for building the nested wme list */

wme_list buf[0] = '\0';

parse_output (current_agent(top state), outputs);

strcat (wme list buf, " ");

/* put extra space on end for dumb lisp reader*/
if (write (client_id, wme_list buf, strlen(wme_list buf)) == -1) {
printf ("soar-socket.c: Unable to write to fd %d.\n", client id):

}

printf ("\nwrite successful socket %d\n", client_id);

hxxkxkk parse output: take output wme's and turn to nested list *xxxx/

io_wme *next_wme;

for (next_wme = outputs ; next_wme != NIL ; next wme = next wme->next) {

if (next_wme->id == id) {

/* start with attribute */
strcat (wme_list buf, "(");

strcat (wme_list_buf, next wme->attr->sc.name);

148

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix G.2

}

[F*E*H*AARKHA% init socket io:

}

/* add value and finally right paren */
switch (next_wme->value->common.symbol type) ({

case

case

case

case

case

}

VARIABLE SYMBOL_TYPE:

print ("whoops! a variable as a value.");
break;

IDENTIFIER_ SYMBOL TYPE:

strcat (wme_list_buf, " ");

parse_output (next wme->value, outputs);
break;

SYM_CONSTANT_SYMBOL TYPE:

strcat (wme_list buf, " ");
strcat (wme_list_buf, next_wme->value->sc.name);
break;

INT_CONSTANT_ SYMBOL TYPE:

sprintf (wme_list_buf+strlen(wme_list buf), " su",

next_wme->value->ic.value);
break;
FLOAT_CONSTANT SYMBOL TYPE:

sprintf (wme_list_buf?strlen(wme_list_buf), " oRfY,

next_wme->value->fc.value);
break;

strcat (wme_list buf, ")");

}

interface command to initialize socket ***/

/* Syntax: init-socket-io <server-name> <port-no> -RLO (31/08/94) */
/* This allows Soar to act as a client */
bool init_socket io (void)

{

int result;
int server port no;
char server name[MAX SERVER_NAME LENGTH];

get_lexeme();

/*
if

/*
if

}

rintf ("Connecting to server with name %s\n", server name);
’ —

create a raw socket */
({client_id = create_socket()) == -1) return FALSE;

/* consume "init_socket_io", advance to arguments */

Gets the server name argument as a symbol constant -RLO (19/08/94) */
(current_agent (lexeme).type != SYM CONSTANT LEXEME) ({
printf("Server name should be a symbol.\n");

return
else {

/* copies the server name as a string -RLO (19/08/94) */

FALSE;

strepy (server_name, current_agent (lexeme).string);
get_lexeme(); /* consume server name */

/* Gets the server port number argument */
if (current_agent (lexeme).type != INT_CONSTANT LEXEME) {
printf ("Server port number should be an integer.\n");

return
else {

FALSE;

server port_no = current_agent (lexeme).int_val;
get _lexeme(); /* consume port number */

149

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

printf ("Connecting to server with port #%d\n", server port no);
fflush(stdout);

/* connect to named server */
if ((connect_socket(client_id, server name, server port no)) == -1)
return FALSE;

printf ("connected to socket %d", client_id);
/* use non-blocking i/o to stream */
if ((fcntl (client_id, F_SETFL, FNDELAY)) == -1) return FALSE;

/* do the rest of initialization: */
in_nest = 0;

in buf(0] = '\0';

in_count = 0;

in_links = NIL;

return TRUE;

/*¥*x*dkxdkxk init socket server: interface command to initialize socket *x*/
/* Syntax: init-socket-server -RLO (31/08/94) */
/* Use this function to make Soar act as a server. */
bool init_socket_server (void) ({
int socket_port no;

get _lexeme(); /* consume command */

if (client_id != -1) { /* if the socket is already open, close first */
print ("First close previous socket connection.\n");
return FALSE;

}

if ((socket_id = create_socket()) == -1) return FALSE;
if ((socket_port_no = bind socket(socket_id)) == -1) return FALSE;

print ("Please initialize I/O client with port #%d\n", socket_port no);
fflush(stdout);

/* Put the socket in "listen" state (allow only one connection) */
if (listen_socket(socket id) == -1) return FALSE;

print ("Waiting for connection...\n");

fflush{stdout);

if ((client_id = accept_socket (socket id)) == -1) return FALSE;

/* use non-blocking i/o to stream */
if ((fcntl (client_id, F_SETFL, FNDELAY)) == -1) return FALSE;

print ("Connection complete.\n");

/* do the rest of initialization: */
in _nest = 0;

in_buf[0] = '\0';

in_count = 0;

in_links = NIL;

return TRUE;

150

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

/****KKxk%%k close socket io: interface command to close socket ***%x%/
/* Syntax: close-socket-io */
bool close_socket_io (void)

{

get_lexeme(); /* consume command */

/* clean up */
while (in_links) {
in_list *x;
remove_input_wme (in_links->link_wme);
release_io symbol (in_links->link_symbol);
X = in_links;
in _links = in_links->next;
free_memory (X, MISCELLANEOUS_MEM USAGE);
}

if (close_socket(client_id) == -1) return FALSE;

}

/***Fx*kxx%* shutdown_socket io: interface command to close socket ***%x/
/* Syntax: shutdown-socket-io */

/* - RLO (15/09/94) */

bool shutdown_socket io (void)

{

get_lexeme(); /* consume command */

/* clean up */
while (in_links) ({
in_list *x;
remove_input_wme (in_links->link_wme) ;
release_io_symbol (in_links->link_symbol);
X = in_links;
in_links = in_links->next;
free_memory (x, MISCELLANEOUS_ MEM USAGE);
}

if (close_socket (socket_id) == -1) return FALSE;
client_id = -1;

}

[/***Fkk%kk* gocketin: input routine called by soar **x*x%/
void socketin (int mode)

{

int rd_result;
char next_char;

if (client_id == -1) return; /* 1f the socket is not initialized */

switch (mode) ({

case TOP_STATE_JUST CREATED: - /* Initialize and internalize objects */
return;
case TOP_STATE_ JUST_REMOVED: /* Clean up */

while (in_links) {
in_list *x;
/* remove input wme is not done because it has already been removed */
release_io_symbol (in_links->link_symbol);
x = in links;
in_links = in_links->next;
free_memory (%, MISCELLANEOUS_MEM USAGE) ;
}

return;

151

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

case NORMAL_INPUT_CYCLE: /* Standard stuff */
break;

}

while((rd_result = read(client_id, &next_char, 1)) > 0)

{

in_buf[in_count++] = next_char;
switch (next_char) {
case '(':

in_nest++;

break;
case ')':

if (in_nest-- == 1) { /* transitioning 1 to 0 means completed list */
parse_input (): /* so parse it into wme's */
in_buf[0] = '\O';
in_count = 0;

)

break;

}
}

/* return on error or when input blocked */
if (rd_result == 0)
return;
else |
if (errno == EWOULDBLOCK) { /* poll shows nothing to read on socket */
return;
} else {
perror ("ERROR message ");
return;
)
}
)

/***%x*xk**** parse input: take input and turn into wme's ***kkxkkkkx/
void parse_input () |{

in_token link_token;

in_list **link_p;

int idx; -

/* first syntactically turn the string in_buf into a list in_token
* of either symbol or parenthesis tokens
*/
in_string_idx = in_integer = in_float = in_sym constant = in_token_last =
0;

for (idx = 0 ; in_buf[idx] != '\0' ; idx++) {
switch (in_buflidx]) {
case '(': endtoken (); paren(LEFTPAREN); break;
case ')': endtoken(); paren{(RIGHTPAREN); break;
case ' ': endtoken () ; break;
default: buildtoken (in_buf[idx]); break;
}
}
/* the link name should be the second token: "(eyes ..." */

link_token = in_tokens[1];
if (is_in_token_paren(link_token)) {
printf ("Socket input error, first item on list is not an atom\n");

printf ("Input string: %$s\n", in_buf):
return;

152

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

/* for now, throw out all old input link wmes matching the link symbol */
link_p = &in_links;

while (*link p) {
if ((*1link p)->link_symbol == link_token.in_symbol) {
in_list *x;
remove_input_wme ((*link p)->link_wme);
release_io_symbol ((*link_p)->link_symbol);
x = *link p;
*link p = (*link_p)->next;
free_memory (x, MISCELLANEOUS MEM USAGE);
} else
link_ p = &((*link_p)->next);
}
in_token next = 0; /* reset the index to the first token */

get_input_token paren(); /* always call build_wmes past opening paren */
build_wmes (current agent (top_state));

[rFHRFxxHRRK build wmes: recursively transverse the in_token's and make wmes
**/
void build _wmes (Symbol *id) {

in_token attribute_token, value_token;
wme *new_wme;
Symbol *sub value:;

sub_value = NIL;
attribute_ token = get_input token_symbol();

/* may be the case of (), which means just an unattached id */
if (attribute_token.paren == RIGHTPAREN) return;

for (value_ token = get_input_token();
value_token.paren != RIGHTPAREN;
value_token = get_input token()) {
new_wme = NIL;
if (value token.paren == LEFTPAREN) { /* we have substructure */
if (!sub value) {
sub_value=get new io 1dent1f1er(attr1bute token.in_symbol->sc. name[O]),
new_wme = add_input_wme (id,
attribute_token.in_symbol,
sub_value);
}
build_wmes (sub_value);
}
else { /* no substructure */
new_wme = add_input_wme (id,
attribute token.in_symbol,
value token in_symbol);
release_io_symbol (value_token.in_symbol);
}

if (new_wme) {

if (id == top_state) { /* save a record of these wme's */
in_list *new;
new = (in_list *) allocate_memory

(sizeof (in_list), MISCELLANEOUS_ MEM USAGE);
/* need to get_io_sym constant to keep the reference counts correct */
new->link_symbol =
get_io sym constant (attribute token.in symbol->sc.name);

153

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

new->link _wme = new_wme;
new->next = in_links;
in_links = new;
}
}
}
release_io_symbol (attribute_token.in_symbol);
if (sub_value) release_io_symbol (sub_value);

[x*KKkkkkkk¥hujldtoken(): add letters to a token Fhh A KKk kkhkokkkkkok /
void buildtoken (char nextchar) ({

)

in_string[in_string idx++] = nextchar;

in_string(in_string_idx] = '\0' ;
if (isdigit(nextchar)) in_integer++;
else if ((nextchar == '.') && (in_float == 0)) in float++;

else in_sym constant++;

[*¥**kxwxkx% endtoken: turn string into token and add to list ***k%x/
void endtoken () (

Symbol *tok_ sym;

/* the io constants gotten here are released as they are used after */

/* becoming part of a wme. */
if ((in_sym constant > 0) || ({(in_float == 1) && (in_integer == 0))) {
if (in_string[0] == '<') { /* simple test that it is an identifier */
/* ... it would be nice if I kept track */
/* of these, then i could have <x> */
/* multiple places in the tree and make */
/* them the same soar id... but I don't */
/* need this immediately so i will take */
/* the short route *x/

in_tokens{in_token_last++].in_symbol =
get_new_io_identifier(in_string[l]);
} else
in_tokens[in_token_last++].in_symbol = get_io_sym_constant (in_string);
}
else if (in_float == 1) { /* and in_integer must be > 0 */
in_tokens[in_token_last++].in_symbol =
et_io_float_constant(atof(in_string));
}
else if (in_integer > 0) ({
in_tokens[in_token_ last++].in_symbol =
get_io_int_constant(atoi(in_string));

}

/* reset everything */
in_string idx = in_integer = in_float = in_sym constant = 0;

/**xxkkxkxx leftparen: add to input list that found left paren ****x%/
void paren(paren_type paren) {

}

in_tokens[in_token_last++].paren = paren;

154

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

[*rr*Kkkk*k get input token: return the next token in the input list ***x/

in_token get_input_ token () |{
return in_tokens(in_token_next++];

}

[***kkkk** get input_ token paren: return next token & check if paren **%/
in_token get_input token_paren () {
in_token tok;
tok = get_input token();
if (is_in_token paren(tok))
return tok;

else |
printf ("Socket input error, expected a parenthesis\n");

printf("Input string: %$s\n", in_buf);
return;

)
}

/*¥**Fx%k k%% get input_token_symbol: return next token & check if symbol ***/
in_token get_input token_symbol () {
in_token tok;
tok = get_input token();
if (is_in_token_paren(tok)) ({
printf ("Socket input error, first item on list is not an atom\n");
printf("Input string: %s\n", in_buf);
return;

}

else return tok;

)

/**x*FKkx*xK i5 in token_paren: is the token a paren? ***/

bool is_in_tokgn_paren(in_token tok) {
if ((tok.paren == LEFTPAREN) || (tok.paren == RIGHTPAREN))
return TRUE;
else
return FALSE;
}

[xxxxkkxxkk jg in token_paren: is the token a symbol (not paren)? ***x/
bool is_in token _symbol (in_token tok) {
return ('1s_1n_token_paren(tok));

}

[*****KKKK* socket output link: interface command to set output link ***/
/* Syntax: socket-output-link <output-link-name> */
bool socket output link (void) ({

get_lexeme(); /* consume command */
while (current agent(lexeme).type != R_PAREN_LEXEME) {
if (current_agent (lexeme).type == SYM [CONSTANT_ LEXEME) {

add_output_function (current agent(lexeme) string, socketout);
get lexeme();
} else {
printf ("Expected an output link name.\n");
print_location_of most_recent lexeme();
return FALSE;
}
}
return TRUE;

155

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

/******************** HELP STRINGS ********************************/
/* modified to incorporate changes on the commands -RLO (31/08/94) */

char *help on_init_socket io[] = {
"Command: init-socket-io",
LR
14
"Syntax: init-socket-io server name server port no",
nn
’

"This command creates a socket port and connects to a named server and",
"port number.",

"

’
"Once a socket is initialized, then when any modification is made",
"to a socket-output-link augmentation on the top-state, the",
"augmentation and its substructure is sent as a nested list",
"out the socket port.",

"
14
"A default socket~output-link is created called socketout-link. ",
"Use socket-output-link to add other links.",
0 }:

/* added this help for init-socket-servger */
/* -RLO (15/09/94) */
char *help_on_init socket_ server[] = {
"Command: init-socket-server",
nn

14

"Syntax: init-socket-server",

" "

"Thls command creates a socket port and displays its port number.",
"The command then waits for another process to connect to the socket"
"port, using this number.",

"wu

’
"Once a socket is initialized, then when any modification is made",
"to a socket-output-link augmentation on the top-state, the",
"augmentation and its substructure is sent as a nested list",
"out the socket port.",

"
4
"A default socket-output-link is created called socketout-link. ",
"Use socket-output-link to add other links.",
0 };

char *help on_close_socket io[] = {
"Command: close-socket-io",
"y
’
"Syntax: close-socket-io",
nn
4

"This command closes a previously initialized and opened client socket.
0 };

/* added this help for shutdown-socket-io */
/* -RLO (15/09/94) */
char *help on_shutdown_socket _diof] = {
"Command: shutdown-socket- 10"
"
’
"Syntax: shutdown-socket-io",
"N
4

"This command closes a previously initialized and opened server socket. ",
0 };

156

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.2

char *help_on_socket output link[] = (
"Command: socket-output-link",

’
"Syntax: socket-output-link output-link-name",
"n

14
"The socket-output-link command adds socket output-links. Once a",
"socket-output~link is named, when any modification to an augmentation",
"by that name on the top-state is made, the augmentation and its",
"substructure is sent as a nested list out the socket port.",
0}

/x*xFxdxkx% stdsocket_init: register socket routines with soar ****kkx%/
void stdsocket init (void) {

add_command ("init-socket-io", init_socket_io);

add_help ("init-socket-io", help_on_init_socket io);

/* added this function for creating a server socket */

/* -RLO (15/09/94) */

add_command ("init-socket-server", init_socket_server);
add_help ("init-socket-server", help_on_init_socket_server);

add_command ('"close-socket-io", close_socket io);
add_help ("close-socket-io", help_on_close_socket io);

/* added this function for shutting down a server socket */
/* -RLO (15/09/94) */

add_command ("shutdown-socket-io", shutdown_socket_io);
add_help ("shutdown-socket-io", help on_shutdown_socket io);

add_command ("socket-output-link", socket output link);
add_help ("socket-output-link", help _on_socket output_link);

add_input_function (socketin);
add_output_function ("socketout-link", socketout);

157

G.3 socket.lisp

-%*- Mode: Lisp -*-

~e

’ rrs
FRPF PG E IR IR IR NI IR I IR I IR R R IR IRyl
RN
irii
;; File : socket.lisp
; Author : Blake Ward, Garret Pelton, Ralph Morelli, Joe Mertz
; Created On : Mon Mar 16 08:58:50 1992
; Last Modified By: Roberto L. Ong <itxrlo@unicorn.nott.ac.uk>
; Last Modified On: Thu Sep 15 13:10:33 1994
; Update Count ¢ 58
14
; PURPOSE

This file provides low-level socket support in Lucid, CMU or
Allegro Common Lisp. It is meant to be used in conjunction with the
object file "std-soar-socket.o". The ".o" is a compilation of the
functions in "std-soar-socket.c" which are imported into LISP and
declared as foreign functions.

e Vs Ne Ne e Ne e Ne Ne Ne N we we we
Ve Ve N Ne N Ne Ne Ne Ne Ne Ve we we wa

~

There are two modes for which the socket support has been written.
The first mode is for use when the lisp process is a server and the
make-socket-stream is used to accept a client process (e.g., Soar).
The second mode is for use when the lisp process is a client and the
connect-socket-stream call is used to connect to a soar process.

Te Mo e Ve Ne e Ne e e Ne N e Ne we wa N

FOREIGN FUNCTIONS DECLARED -~ These correspond to unix system calls

e Ne e Yo Ne N we we v
Ne e Ne Na we N,
® e Ne e Ne Ne N Ne we Ne Se S

Ne Mo Sa Ne Ne Ne Ne Ne No Ne we e Se v

(create_socket) ~-- creates a UNIX socket

(bind_socket sock port) -- binds soc to port in Unix address space
(listen_socket sock) -- wait at soc for external process to connect
(accept_socket sock) -- returns file descriptor of external socket
(connect_socket sock name port) -- connects to server port on name
(close_socket sock) ~-—- closes the socket

(shutdown_socket sock how) -- discontinues communication at socket

Based on the above foreign functions, the following functions provide
socket-support for SoarIO.

e Ne N e

make-socket-stream
creates a socket using a wildcard 'port', waits for someone
to connect to it and then creates an input/output character
stream that uses the socket and the socket. Uses global
variables *socket-id*, *socket-stream*, *socket-port* and

; *client-id*. ‘

connect-socket-stream server_name server port
creates a socket and connects to server port on system
server_ name

shutdown-socket~stream
Closes *socket-stream* and *socket-id* and resets the
corresponding global variables.

Ne he Na Ne Ne e Ne Ne Ne wa e wa

Ne Na we N
~e e

Ne Mo Ne Ve Ne Ne Ne Ne N Ne we o ve Na W
-~ Ne Mo Ne Ne Ne Ne Ne Ne e N

s Ne Nu we w.
Ne e No N
~ ~

~e
~. N

~e N

TABLE OF CONTENTS
| >Contents of this module<]|

e e Ne e e N N N

; Sections:
(C) Copyright 1991, Carnegie Mellon University, all rights reserved.
i (C) Other sections Copyright 1994, Roberto L. Ong and Frank E. Ritter

................

---------------------------- L I I I T T R S
IlIIIIIIIIIIIIIIII"IIIllIlIIII/IIIIIIIIIIlIIIIIIIIIIIIIIIIII/IIII'IIIII

e Ne Ne wa we we

~
~

N e e
~

’
; Status : Debbugged only the Allegro code. (RM) Ditto. (JM)
; HISTORY

158

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.3

1 1. First version of this interface was created by BW for ET-Soar.
iiii 2. Second version was created by GAP for draw-Soar on cT.

NN 3. Current version by RM for Soar/ITS (also for cT-Soar).

;i 4. Added connect-socket-stream and *soar6-mode*.

rii;

FRT R I iRl i il IRl
Illl

(format t "~%loading socket.lisp~%")

;77: load file into default package - "USER"
;;7; -RLO (10/09/94)

(in-package "USER")

t:; The following variables are for keeping version of the code
:7: and not used for any other purpose -RLO

(defvar *soar-version* '6.2.3)

(defvar *socket-lisp-version* 1.0)

; define global variables

; replace the path for *socket-o-file* with the appropriate path in the
; form:

¢ "<soar-directory>/user/obj/<machine-directory>/std-soar-socket.o>"
;:; -RLO (09/09/94)

(defparameter *socket-o-file* "~/soar6.2.3/user/obj/sund4/std-soar-socket.o")
(defparameter *socaré6-mode* t)

(defparameter *debug-on* nil)

(defparameter *sockets-on* t)

(defparameter *socket-connected* nil)

(defparameter *socket-id* nil)

(defparameter *socket-port* nil)

(defparameter *socket-stream* nil)

(defparameter *client-id* nil)

~

e Ne N
Ne Ne Ne v

(if *soaré-mode* (setq *print-case* :downcase))

2+ gc before foreign function load ~fer 14/9/90
#+:ALLEGRO
(excl:gc t)

77; commented because of garbage collection problems ~RLO (29/08/94)
;7 #~ :ALLEGRO
P {gc t)

Definitions of foreign functions only works for LUCID 4.1.

:i; If other versions of Lucid Lisp is going to be used, reference to

;::; the manual is strongly suggested.

;;: -RLO (09/09/94)

#+(and :LUCID :LCL4.1)

(if *sockets-on*

(progn
(def-foreign-function (create_socket (:name "_create _socket")))
(def-foreign-function (bind_ socket (:name " blnd socket")) sock)

s e
rrr

(def-foreign-function (llsten socket (:name Tn _listen _socket")) sock)
(def-foreign-function (accept_ “socket (:name " accept socket")) sock)
(def-foreign-function (close_socket (:name "_closewsocket")) sock)

(def-foreign-function (shutdown_socket (:name "_shutdown_socket")) sock

how)
(def-foreign-function (connect_socket (:name " connect_socket"))

server-fd server-name port-no)
(load-foreign-files *socket-o-file*)))

159

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix G.3

#-(and :LUCID :LCL4.1)
(1f *sockets-on*

(progn
(define-foreign-function
(define-foreign-function :
(define-foreign-function
(define-foreign-function
(define-foreign-function :
(define-foreign-function
(define-foreigh-function
(load~foreign-files

' (*socket~o~file*))
)

'create_socket :integer)
'bind_socket :integer)
'listen_socket :integer)
‘accept_socket :integer)
'close_socket :integer)
'shutdown_socket :integer)
'connect_socket :integer)

aaaoaaoaaaaon

#+:CMU
(1f *sockets-on¥*
(progn

(extensions:load-foreign "std-soar-socket.o")

(extensions:def-c-routine "create_socket" (int) ())
(extensions:def-c-routine "bind_socket" (int) (soc int))
(extensions:def-c-routine "listen_socket" (int) (soc int))
(extensions:def-c-routine "accept socket" (int) (soc int))
(extensions:def-c-routine "close socket" (int) (soc int))

(extensions:def-c-routine "shutdown_socket" (int) (soc int how int))
(extensions:def-c-routine "connect_socket" (int) (soc int name string?

port-no int))
»)

#+:DEC3100
(if *sockets-on*
(load *socket-o-file*))

#+:ALLEGRO
(1f *sockets-on*
(progn

(ff:defforeign 'create_socket :arguments '()
return-type :integer)
(ff:defforeign 'bind_socket :arguments ' (fixnum)
:return-type :integer)
(ff:defforeign 'listen_socket :arguments ' (fixnum)
ireturn-type :integer)
(ff:defforeign 'accept socket :arguments ' (fixnum)
:return-type :integer)
(ff:defforeign 'close socket :arguments ' (fixnum)
ireturn-type :integer)
(ff:defforeign 'shutdown_socket :arguments ' (fixnum fixnum)
:return-type :integer)

(ff:defforeign 'connect_socket :arguments '(fixnum simple-string fixnum)

:return-type :integer)
))

/;: Creates a server process by creating a socket,
;;: and listen for incoming requests for connection
(defun make-socket-stream (&optional (messages t))
"Create a socket when the Lisp process is the server."
;; create a socket
(setq *socket-id* (create_socket))
(if (= *socket-id* -1)
(error "Unable to create socket~%"))

160

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.3

(if messages (format t "Created socket ~d.~%" *socket-id*))

;7 bind the socket
(setq *socket-port* (bind_socket *socket-id*))
(if (= *socket-port* -1)
(error "Unable to bind socket ~d.~%" *socket-id*))
(if messages (format t "Bound socket ~d to port ~d~%" *socket-id*
socket-port¥))
(1f messages (format t "Listening at socket ~d~%" *socket-id*))

;7 wait for a connection
(setq ret-code (listen_socket *socket-id*))
(if (= ret-code -1)
(progn (format t "Error code ~d~%" ret-code)
(error "Unable to listen socket ~d.~%" *socket-id*))))

;i: creates a client process
777 Syntax: (connect-socket-stream "server-name" server-port-no)
(defun connect-socket-stream (server-name server-port-no
&optional (messages t))

"Create a socket when the Lisp process is a client."

;1 create a raw socket

(setq *client-id* (create_socket))

(if (= *client-id* -1)

(error "Unable to create socket~%"))
(if messages (format t "Created socket ~d.~%$" *client-id*))

/7 connect to a server
(setq *socket-port* server-port-no)
(setq retno (connect_socket *client-id* server-name server-port-no))
(1f (= retno -1)
(error "Error in connecting to socket~%"))
(if messages (format t "Connected to server, file descriptor is: ~d~%"
client-id))

(setqg *socket-connected* t)

;/+ make a Lisp stream for socket
#+:LUCID
(setqg *socket-stream*

(make-lisp~stream :input-handle *client-id*

:output-handle *client-id* :stream-type :ephemeral))

#+:CMU
(setqg *socket-stream*

(lisp::make-terminal~stream *client-id* *client-id*))

#+:ALLEGRO
(setq *socket-stream*
(excl::make-buffered-terminal-stream *client-id* *client-id* t t))

)

;ii shutdown-socket-stream performs an orderly shutdown of the socket
;i; connection. It can be used during development & debugging when
;:: shutdown-io fails to shutdown sockets.
(defun shutdown-socket-stream ()

"Shutdown a socket stream."

(close_socket *socket-id*)

(format t "Socket ~d closed.~%" *socket-id*)

(setq *socket-id* nil)

(setqg *client-id* nil)

(setq *socket-port* nil)

161

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.3

(close *socket-stream* :abort t)

(setq *socket-stream* nil)

(setq *sockets-on* nil)

(format t "Channel interface is shutdown.~%"))

(eval-when (eval compile load)
(if (not *soar6-mode*) (soarsyntax)))

The following statements are commented since cT is not used
in our system -RLO (19/08/94)

(and (not (member :ct *features*))

(pushnew :ct *features*))

LTI
e Ne we N,
AT

~e

The following functions tests the socket code by setting up a simple
"Lisp server". It creates a socket, accepts lisp sexprs from it,
evaluates them and returns the result. It does no error checking,

so is not robust if the form should contain an error. This is use in
conjunction with "clienttest.out" (complied version of "clienttest.c")
-RLO (31-08-~94)

AT PR T TR
e e e Ne owe N,

Se e Ne e Na we

~

(defun set-up-socket-as-server ()
"Creates a server process."
(setq *sockets-on* t)

(setq *debug-on* nil)
(make-socket-stream))

{(defun accept-client-and-make-socket-stream (¢éoptional (messages t))
"Accepts a client."
(setq *client-id* (accept_socket *socket-id*))

(when (and messages (= *client-id* -1))
(format t "Client has not yet connected.~%"))
(when (and messages (not (= *client-id* -1)))

(format t "Connected to client, file descriptor is: ~d~%"
client-id))

#+:LUCID
(unless (= *client-id* -1)
(setqg *socket-stream*
(make-lisp-stream :input-handle *client-id*
:output-handle *client-id*
:stream-type :ephemeral)))

#+:CMU
(unless (= *client-id* -1)
(setg *socket-stream*
(lisp::make-terminal-stream *client-id* *client-id*)))

#+:ALLEGRO
(unless (= *client-id* -1)
(setqg *socket-stream*
(excl::make-buffered-terminal-stream *client-id* *client—id* t t)))

(unless (= *client-id* -1)

(setqg *socket-connected* t)))

(defun do~-stuff ()
"Do-stuff when socket is already connected."
(when (= *client-id* -1)

162

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.3

(accept-client-and-make-socket-stream))
(unless (= *client-id* -1)
(setq input (read-message-stream))
(format t "Received message: ~a~%" input)
(format t "Evaluated message: ~a~%" (eval input))
(shutdown-socket-stream)))

The following functions tests the socket code by setting up a simple
"Lisp client". It connects to a named socket and port-number.

A list is then sent to the server and printed out. This is used in
conjunction with "servertest.out" (compiled version of "servertest.c").
-RLO (31-08-94)

e Mo Se we N
e ve Ne e we
Ne Ne e we N

;7 Syntax: set-up-socket-as-client "<server-name>" port-number
(defun set-up-socket-as-client (server-name port-number)
"Creates a server process."
(connect-socket-io server-name port-number))

(defun test-write ()
"Writes a message to the server and prints it."
(Lf *socket-connected*
(progn
(write-message 'hello-there)
(write-message 'this-is-a-test)
(close-socket-io))))

163

G.4 stdio.lisp

~e

Ne Ve N Se w,

Ne Ne N Ne Ne Na e N Ne we
e N N

e Ne

o« Ne Ne
Te e Ne N Ne Ne e Ne Ne e Yo Ne N Ne Ne Ne e ow, we

~

Te e Mo N Ne Ne Ne Ne e Ne Ne e we Se we N
S Ve e Se Na we N N
~

Ne s Ne Ne Ne Ne Se we

NE Ne Me Ne Ne Se Ne Ne Ne e we Ne wa W

Mo Ne Ne Ne e Ve Se N6 Ne we e Ne e

e Ne e Na Ne Ne Ne Ne we N

Last Modified By:

—-*- Mode: Lisp -*-

File : stdio.lisp
Author : Blake Ward, Garret Pelton, Ralph Morelli, Joe Mertz

Created On ¢+ Mon Mar 16 08:58:50 1992
Roberto L. Ong <itxrloQunicorn.nott.ac.uk>

;
;

; Last Modified On: Thu Sep 15 13:12:33 1994
; Update Count ¢ 3

’

PURPOSE

read-message-stream

reads a "message" from the *socket-stream*.
write-message sexpr stream

writes a "message" to the stream.

TABLE OF CONTENTS

| >Contents of this module<|

Sections:
(C) Copyright 1991, Carnegie Mellon University, all rights reserved.
(C) Other sections Copyright 1994, Roberto L. Ong and Frank E. Ritter

; Status
; HISTORY

?2?27??222727?7 -~ Unknown
19-Aug-94 - RLO put all Lisp-socket utilities here.

Modified some existing utilities and added

some more.

.....

This file provides general functions to support Lucid, Allegro
and Common Lisp. It is meant to be used in conjunction with the
file "socket.lisp" and provide utilities such as reading, writing
from socket streams

; The following functions provide socket-support for SoarIO.

........... TN}
rrrrrrrrrrrvrve

...............

¢ e s s e v e e L R R A N A I A I N
IIIlIIIIlI/lIIIIIIIIIIIIII/I’IIIIIIIII’lllIIlIIIIIII/IIII'IIIIIII’II/

(format t "~%loading stdio.lisp e ™%

;:; load file into default package - "USER"
(in-package "USER")

(defun read-message-stream ()
"Read a list from the socket stream."

;; read alist

(let

((inp nil))

(1f (listen *socket-stream*)

(setqg inp (read *socket-stream*)))

(if *debug-on*

(format t "~%debug: read-message-stream ~s" inp))

inp))

164

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations Appendix G.4

(defun write-message (alist)
"Writes a message to *socket-stream* iff a socket link is already
established."
(if *debug-on*
(format t "~%|<>| send to Soar ~A |<>|~%" alist))

(1f *socket-connected*
(progn
(write alist :stream *socket-stream*)
(finish-output *socket-stream*))
;selse
(format t "Socket not connected, use connect-socket-io~%")))

(defun do-world()
"Do stuff if a socket connection is already established."
(Lf *socket-connected*
(do () (nil)
(let ((message (read-message-stream)))
(1f (listp message)
(world message)
;selse
(format t "Caught a non-list message~3%"))))
;relse
(format t "Socket not connected, use connect-socket-io~%")))

(defun connect-socket-io (server-name server-port)
"Connects to a client process iff there is no open socket."
(if *socket-connected*
(progn
(format t "Closing down current connection first~$%")
(close-socket-io))
;ielse
(progn
(connect-socket-stream server-name server-port)
(setq *socket-connected* t))))

;; Modified this function to work on closing a
;; client socket (if Lisp is a client).
;7 -RLO (15/09/94)
(defun close-socket-io ()
"Close an open client socket."
(if *socket-connected*
(progn (close_socket *client-id*)
(setq *socket-id* nil)
(setq *client-id* nil)
(close *socket-stream* :abort t) ;; still cause some error
(setq *socket-stream* nil)
(setq *socket-connected* nil))
;; else
(format t "Socket not connected~%")))

(defun debug (message-string)
"Debugs a message string."
(case message-string
(on (setqg *debug-stdio* t))
(off (setq *debug-stdio* nil))
{(otherwise
(when *debug-stdio*
(format t message-string)))))

165

Mechanisms for Routinely Tying Cognitive Models to Interactive Simulations

Appendix G.4

/i The following utility functions are for setting up a process
/i that would read incoming data from Soar if there are any, and
;+ evaluate them depending on the user's application.

?? N.B. These functions are specially built for Lucid Lisp 4.1
i and Soar 6
;7 -RLO (31-08-94)

(defvar *socar-read-loop-process* nil)

(defun launch-a-soar-read-loop-process ()
"Spawn a process which is doing Soar interaction all the time
RETURN the process."
?; If there was already a process running, kill it,
(declare (special *socket-stream*))
(when (lcl:processp *soar-read-loop-process¥*)
(progn (lcl:kill-process *soar-read-loop-process*)
(setq *soar-read-loop-process* nil)))
(unless (connected-with-soar-p)
(set-up-socket-as-server))
(setf *soar-read-loop-process*
(lcl:make-process :name "Soar-read-loop-process"
:priority 10000 ;; the higher this value,
:; the better and faster
;7 in terms of speed
7+ -RLO (31/08/94)
:function 'soar-read-loop-process)))

(defun soar-read-loop-process ()
"Creates the body of the Soar read loop process."
(lcl:handler-bind
((lcl::error #'lcl:invoke-debugger))
(loop
(setq *soar-read-loop-process* lucid::*current-process*)
(when (not (connected-with-soar-p))
(accept-client-and-make-socket-stream))
(when (and (connected-with-soar-p)
(listen *socket-stream*))
7i this 4is where incoming data is read and evaluated,
;7 you can therefore add your own functions.
;7 -RLO (31/08/94)
(setq input (read-message-stream))))))

(defun connected-with-soar-p ()

"test quick and dirty whether a connection exists"
;+ should later be done with *features*

(declare (special *client-id¥*))

(and

client-id

(boundp '*client-id*)

(not (eq -1 *client-id*))))

166

