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Preface 

The International Conference on Cognitive Modelling (ICCM) is the premier conference for research 
on computational models and computation-based theories of human cognition. ICCM is a forum for 
presenting and discussing the complete spectrum of cognitive modelling approaches, including 
connectionism, symbolic modeling, dynamical systems, Bayesian modeling, and cognitive architectures. 
Research topics can range from low-level perception to high-level reasoning. In 2024, ICCM was jointly 
held with MathPsych – the annual meeting of the Society for Mathematical Psychology. The conference 
was held at the University of Tilburg from July 19th to July 22nd. An additional, virtual conference was 
held online from June 17th to June 21st. The proceedings from the in-person and the virtual conference 
are published jointly. 
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Computer-Based Experiments in VR: A Virtual Reality Environment to Conduct 
Experiments, Collect Participants’ Data and Cognitive Modeling in VR 

Amir Bagherzadeh (amir.bagherzadeh@psu.edu) 
Department of Industrial and Manufacturing Engineering, Penn State, University Park, PA 16802 USA 

Farnaz Tehranchi (farnaz.tehranchi@psu.edu)  
School of Engineering Design and Innovation, Penn State, University Park, PA 16802 USA 

Abstract 
In this paper, we explore the integration of Virtual Reality (VR) 
into behavioral experiments, addressing the technical 
challenges that researchers face due to the necessity of 
advanced programming and game engine knowledge. By 
developing a VR environment designed to provide an interface 
to move computer-based experiments to VR and pairing it with 
a VR Analysis Tool (VRAT) for data analysis and visualization, 
we facilitate a more accessible entry into VR-based research. 
The advantage that our tool provides is that researchers can 
transfer their traditional computer-based experiments to a VR 
environment with superior eye tracking and higher experiment 
validity due to a higher level of control over environmental 
factors. We also designed an experiment to compare VR eye-
tracking systems with traditional screen-based eye-trackers in 
terms of accuracy and precision. We observed that based on 
our results, VR shows a better consistency across different 
screen sizes (24, 30 and 35-inch displays). Finally, we extended 
the capabilities of VisiTor, a tool that enables interaction for 
cognitive models to interact with the developed environment in 
VR.  

Keywords: Behavioral studies; user study; virtual reality; eye 
tracking 

Introduction 
The evolution of human research experiments, particularly 
within the fields of psychology, cognitive science, and 
industrial engineering, has experienced a remarkable 
transformation over the past century. This journey from the 
simplicity of pen and paper to today's sophisticated, digitally 
driven methodologies signifies a significant leap in our 
capacity to understand human behavior and cognition. 
Initially, the field was characterized by using basic tools—
paper, and pencils—which, while foundational, were 
constrained by their imprecision and the tedious nature of 
manual data collection and analysis. It is also susceptible to 
human error and subjective biases (Miller, 1956; Tolman, 
1948). These primitive conditions placed inherent limitations 
on the scope and reliability of research findings, as the tools 
at hand could not fully capture or accurately measure the 
complexities of human cognitive processes and behaviors. 

The use of computers enabled the presentation of stimuli 
and the recording of responses with greater accuracy and 
speed, supporting more complex experimental designs and 
sophisticated data analysis, thereby enriching the insights 
gleaned from such studies as decision-making studies in 
Choice Task environments (Newell et al., 2004), memory 
tests (Brunetti et al., 2014), etc. 

Virtual Reality (VR) has been recognized as a potential 
tool in behavioral research for over two decades (Loomis et 
al., 1999). However, until recently, VR was limited to a small 
number of specialized labs due to technological limitations 
and the lack of accessible hardware and software. 
Advancements in technology have now made VR a viable 
tool for a wide range of behavioral researchers. 

One of the most significant developments is the availability 
of powerful software engines, such as Unity (also known as 
Unity3D), which enable the creation of rich, immersive 3D 
environments. Unity, a popular game engine used for 
developing video games, animations, and other 3D 
applications, has seen a surge in popularity among 
researchers. 

Unity offers well-developed systems for creating realistic 
graphics, simulating physics, and incorporating particles and 
animations. However, it lacks features specifically designed 
to cater to the needs of human behavior researchers. 
Recognizing this gap, we aimed to develop an open-source 
software resource that would allow researchers to harness the 
power of Unity for conducting behavioral studies. 

Our goal is to provide a tool that empowers researchers to 
create and customize 3D environments tailored to their 
specific research questions, without requiring extensive 
programming knowledge. By leveraging the capabilities of 
Unity and integrating features relevant to behavioral 
research, we hope to facilitate the widespread adoption of VR 
in the field, leading to new insights and advancements in 
understanding human behavior. 

The integration of VR technology into behavioral research 
has introduced a new level of immersion and control that 
previously was unattainable with conventional methods. 
VR's ability to simulate complex and realistic environments 
offers researchers a powerful tool to investigate human 
behavior with an unprecedented degree of validity. This 
technology enables the manipulation of environmental 
variables in controlled settings not imaginable before, 
allowing for the exploration of human behavior in contexts 
that are difficult, dangerous, or impossible to replicate in 
reality and modeling human reliability (Kheiri et al., 2023; 
Parsons & Rizzo, 2008; Slater, 2009). 

Moreover, VR provides a novel platform for studying 
complex social interactions and cognitive processes, 
facilitating the examination of phenomena like empathy, 
social cognition, and decision-making within highly 
immersive, interactive environments (Blascovich et al., 2002; 
Fox et al., 2009). 
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The synergy between VR and eye-tracking technologies 
embodies a significant methodological enhancement in 
psychological research. Traditional and screen-based eye-
tracking methods have provided invaluable insights into 
attention and cognition; however, they are often limited by 
the constraints of static environments, two-dimensional 
stimuli, the size of the display and the participants’ distance. 
VR-based eye tracking rises above these limitations, offering 
a robust, dynamic, three-dimensional research environment 
that captures more naturalistic eye movements and behaviors. 

In summary, the transition from pen-and-paper tests to 
advanced computer-based and now to VR-assisted 
experiments signifies a monumental shift in human research, 
enabling more nuanced, accurate, and impactful 
investigations. As these technologies continue to evolve, 
their integration promises to deepen our understanding of 
cognitive and behavioral phenomena, paving the way for 
innovative applications in psychology, education, and 
beyond.  

In this paper, we present a series of tools that enable more 
researchers to conduct their studies in VR. We present the 
new environment we developed using Unity that enables 
researchers to easily conduct their current 2D-designed 
experiments in VR. This tool offers several advantages over 
traditional physical experimental setups. 

Flexibility In Display Size 
Researchers can adjust the display size and the distance to the 
screen to meet the specific requirements of their studies. The 
experiments with screen-based eye tracking are limited to the 
capabilities of the eye tracker. Conventional screen-based eye 
trackers have limitations when it comes to tracking users' 
gazes across multiple screens and are often cost-prohibitive 
for large displays (27-inch or larger). Although wearable eye 
trackers have been extensively utilized by researchers in this 
area (Kocejko et al., 2015; MacInnes et al., 2018) to 
overcome these challenges, they present their own set of 
issues. 

One of the primary difficulties with wearable eye trackers 
is the complexity of accurately mapping eye gazes to display 
pixel coordinates. This process can be time-consuming and 
requires specialized software and calibration techniques. 
Additionally, wearable eye trackers often require special 
lenses for participants who wear eyeglasses, further 
increasing the overall cost of the research setup. 

Motivated by these challenges, we sought to develop a 
more cost-effective and accurate method for eye tracking 
using VR technology. By leveraging VR, we aim to address 
two key issues: 

1. Simplifying the process of mapping eye gazes into
pixel coordinates, thereby improving the accuracy
and reliability of the collected data.

2. Reducing the financial investment required for
wearable eye trackers, making eye-tracking research
more accessible to a wider range of researchers and
institutions.

Our VR-based eye-tracking solution offers a promising 
alternative to traditional screen-based and wearable eye 
trackers. By harnessing the capabilities of VR technology, we 
can provide researchers with a more affordable, accurate, and 
user-friendly tool for conducting eye-tracking studies across 
multiple screens and large displays. 

Enhanced Experiment Design 
Our VR environment allows researchers to manipulate 
environmental variables in ways that are difficult to replicate 
in a real-world setting. VR technology and its derivatives are 
mature enough to be used in various settings, driving a surge 
in research across diverse professional environments like 
medicine, architecture, the military, and industry. This 
expansion of VR research brings to light the critical 
importance of meticulous experimental design, particularly 
the need for careful control of variables to ensure valid and 
reliable results. While VR offers researchers the ability to 
create highly immersive and interactive simulated 
environments, it also introduces a range of unique challenges 
in controlling potential confounding factors.  

For instance, Bogacz et al. (2020) demonstrated that the 
choice of input device significantly impacts user behavior in 
a VR cycling simulation. Their study, comparing keyboard 
controls with an instrumented bicycle, revealed distinct 
differences in speed, acceleration, braking, and even head 
movements, highlighting the potential for input device 
choices to confound findings related to cognitive processing 
and decision-making (Bogacz et al., 2020). Additionally, 
(Chirico et al., 2018) explored the impact of different VR 
environments on the complex emotion of awe, emphasizing 
the importance of carefully designing control conditions to 
isolate the specific effects of the target stimuli. They found 
that even seemingly neutral VR environments can elicit 
emotional responses, underscoring the need for rigorous 
control over environmental variables to ensure accurate 
interpretations of results (Chirico et al., 2018). 

Furthermore, research suggests that the level of user 
engagement in a VR task can influence their neural activity, 
particularly within the occipital alpha (α) frequency band 
(Klimesch et al., 1998). This finding highlights the 
importance of controlling for factors that might influence 
user engagement, such as task difficulty, instructions, and 
feedback, as variations in engagement could potentially 
confound results related to cognitive processes and emotional 
responses. 
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Also, the VR environment can be tailored quickly and easily 
to create the optimal conditions for multiple research 
purposes. And finally, our VR-based experimental setup is 
far more portable than setups reliant on physical displays, 
facilitating easier transportation and set up at various 
locations. 

Improved Eye-Tracking 
We show that eye-tracking within our VR environment can 
be more precise and reliable than traditional screen-based 
methods due to users’ ability to move their heads freely and 
keep the fixation point at the center of the display. Research 
has shown that in immersive VR environments, users tend to 
move their heads to center interesting objects in their vision 
(Han et al., 2017; Han et al., 2019). This behavior is 
consistent with the "stare-in-the-crowd" effect, which is 
preserved in VR and can be influenced by factors such as 
social anxiety (Raimbaud et al., 2023). These findings 
suggest that users may keep their gaze point at the center of 
the screen in VR, particularly when interacting with virtual 
agents or exploring virtual environments.  

This introduction of our VR tool highlights its potential to 
transform how research is conducted, offering a versatile and 
sophisticated platform for experimental design. This tool is 
designed to replicate traditional screen-based experiments in 
a simulated environment in VR. 

Alongside the environment, we are also introducing an 
analysis tool called VR Analysis Tool (VRAT), our new 
Python-based analysis tool, designed to work seamlessly with 
our VR platform. VRAT records on-screen activity, precisely 
tracking and saving gaze coordinates to generate detailed 
heatmaps of visual attention. After experiments, researchers 
can define their Areas of Interest (AOIs), and VRAT will 
label the collected gaze data that falls within these specified 
zones of the AOIs. 

Additionally, we enhanced the capabilities of our 
previously developed tool, VisiTor, that enables cognitive 
models to interact with computer User Interfaces. With the 
latest enhancements, VisiTor now has the capability to 
control the VR headset and its controllers and interact with 
the developed environment.  

The integrated application of these advanced tools 
revolutionizes the experimental design process, offering an 
unparalleled level of validity and accuracy in eye-tracking 

data at a significantly reduced cost when compared to 
traditional methods. The affordability of VR headsets 
equipped with eye-tracking capabilities—like the Oculus 
Quest Pro or the HTC Vive Eye, priced at approximately 
$1,500—contrasts with the more expensive traditional 
screen-based eye trackers, which can exceed $4,000. Even 
the cheapest wearable eye trackers (e.g., pupil lab core) cost 
over $3700.  Followed by employing VRAT for data analysis 
and leveraging VisiTor for developing accurate cognitive 
models, researchers can simulate and study human behavior 
with unprecedented fidelity and efficiency that was not 
possible before. 

Methodology 

VR Environment for Behavioral Research 
The integration of computer technology in cognitive and 
behavioral research has significantly enhanced the precision 
and efficiency of experiments, particularly in areas like 
decision-making within choice-task environments 
(Bagherzadeh & Tehranchi, 2023). Additionally, the 
adoption of various input devices has made experiments more 
interactive and immersive, broadening the research scope and 
enhancing participant engagement. The transition to digital 
has also increased the reach and inclusivity of research, 
enabling the collection of data from diverse global 
populations through online platforms. 

These methods have their shortcomings. Controlling all the 
conditions in physical environments is not easy. The setup is 
usually fixed, and it is not easy to replicate the environment 
in another location. Additionally, conventional screen-based 
eye trackers struggle with head movements (Hermens, 2015) 
and are limited by screen size constraints (eye trackers 
commonly support up to 27-inch (16:9 aspect ratio) displays 
and 60 cm distance between a user and the display). 
Moreover, data accuracy in screen-based eye trackers is 
significantly affected by direct sunlight or natural light 
exposure. Research by Hansen and Pece (2005) and 
Holmqvist and Andersson (2017) illustrates how infrared 
radiation from both sunlight and certain artificial lights can 
impair the efficacy of eye-tracking systems.  

To address these challenges, we employ VR Headsets 
equipped with eye trackers, ensuring consistent 
environmental conditions, element placements, and 

Figure 1: Participants point of view of the environment (left) and the environment design in Unity (right). 
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interactions for all participants. However, creating VR 
environments for behavioral experiments requires an 
advanced understanding of game engines and programming. 
Our solution involves an accessible environment for 
researchers, enabling them to execute studies within VR. We 
cast the computer's display content into a VR environment. 
The display is customizable, and the researcher can set the 
distance and the screen size to their desired measurements. 
The Participants’ point of view and the Unity design window 
are shown in Figure 1. 

We have implemented a pipeline, converting the 3D 
participants' eye gaze vectors into pixel coordinates on the 
screen if they are looking at the screen. Hence, in the pipeline, 
if the eye gaze vector hits the screen, we translate the location 
of the hit into precise pixel coordinates that are on the display. 
The gaze coordinates are saved in a CSV file, readily 
accessible for further examination by researchers. 

VRAT for Analysis 
Accurate eye gaze data are essential for meaningful analysis. 
However, without proper contextualization, these data are of 
little value. A critical aspect of analyzing eye movements is 
the integration of eye gaze data with display recordings. The 
conventional video recorder falls short as it fails to 
synchronize the eye gaze timestamps with corresponding 
video frames, risking inaccurate gaze-to-frame correlation 
and compromising the integrity of the analysis. 
Our complementary analysis software, VRAT, integrates 
seamlessly with our environment. It will initiate the recording 
process simultaneously with the activation of the eye-
tracking process. Hence, it ensures precise synchronization 
between eye-tracking data and video recording. Once an 
experiment concludes within the Unity platform, both eye-
tracking and video recording are terminated immediately. 
Also, VRAT offers advanced features for detailed post-
analysis, including the capability to overlay gaze points 
directly onto video frames of the content of the 2D display 
and generate a heat map video of the casted display. Areas of 
Interest (AOIs) can be defined with just a snapshot in VRAT 
and a column to the gaze data CSV file will be added that 
specifies the incidence of gaze points within AOIs (if any), 
alongside providing the functionality of creating a bounding 
box around the AOIs when they appear in the recording. 
Unlike other analysis tools that require manual AOI bounding 
in every frame, our tool uses advanced pattern-matching 
techniques and only requires a snapshot of the AOI which 
provides a significant advantage in tracking dynamic AOIs 
that might get resizes or move around during the eye-tracking 
session, thereby enhancing the analytical robustness and 
efficiency. 

VisiTor (Vision + Motor): A Tool to Enable 
Interaction in VR 
As cognitive modelers, our ultimate goal is to develop a 
cognitive model that replicates participants' behavior. The 
participants' movements in VR environments go beyond 
conventional means of interaction (such as mouse 

movements, clicks, keyboard inputs and attention shifts). VR 
introduces a complex layer of interactivity, where each head 
movement or interaction can lead to distinct visual scenes and 
states. Also, the means of interactions extend to VR 
Controllers and in some cases, tracking hands’ movements.  

As the first step, we extend the capabilities of our 
previously developed tool VisiTor (Bagherzadeh & 
Tehranchi, 2022) which enables cognitive models to interact 
with computer environments by providing mouse and 
keyboard inputs/outputs. VisiTor has already demonstrated 
its applicability in various contexts, such as simulating user 
behavior in a driving simulation game "Desert Bus for Hope" 
(Wu et al., 2023), modeling learning in a probabilistic game 
developed in HTML (Bagherzadehkhorasani & Tehranchi, 
2023b), and mimicking motor impairments in typing tasks 
(Bagherzadehkhorasani & Tehranchi, 2023a).   

With the new extensions, VisiTor can enable cognitive 
models to move the headset (changing position and head 
rotation), and key presses within the defined environments. 
VisiTor is powered by Python and communicates with the 
environment over TCP or Shell which makes it compatible 
with all cognitive architectures. This tool enables cognitive 
modelers to develop models that can interact with our virtual 
environment.  

Through the seamless integration of our VR environment, 
VRAT, and VisiTor, we have established a pipeline that 
empowers cognitive modelers to conduct their conventional 
2D experiments in VR, analyze user behavior with VRAT, 
and create interactive cognitive models with VisiTor.  

VR vs. Screen-Based Eye-Tracking: 
Performance  

In this section, we will propose an empirical one-to-one 
comparison experiment that can showcase differences in eye-
tracking in VR compared to traditional screen-based methods 
across various screen sizes. The analysis can highlight the 
differences in accuracy and precision of VR-based eye 
tracking in comparison to traditional methods in different 
screen sizes and distances. We aim to provide an interface 
that can underscore the technological advancements and the 
improvements in participants’ experience, thereby providing 
a compelling case for the adoption of VR technology in 
cognitive modeling and behavioral research. 

Experiment Design 
To assess the accuracy and precision of the eye trackers, we 
developed two distinct evaluation settings: one utilizing 
Python for 2D displays and another using Unity for VR. The 
evaluation protocols employed in both environments were 
designed to assure consistency for direct comparison. The 
procedure starts by calibrating the eye-tracking systems. 
Following calibration, the evaluation phase starts. The screen 
transitions to black, and a circle target measuring 10 pixels in 
radius, appears at the center (960,540-pixel coordinates). 
Participants are instructed to focus their gaze on the circle 
throughout its display duration. There is a one-second pause 
before gaze data collection begins, ensuring participants have 
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adequate time to fixate on the target. Subsequently, gaze data 
are recorded for a two-second interval. 
After this initial measurement, the target circle (radius = 20 
pixels) relocates to various predefined coordinates 
sequentially: bottom right corner: (40,40), bottom left corner: 
(1880,40), top left corner (1880,1040), and finally top right 
corner: (40,1040), with the same data collection procedure, 
followed at each location. An illustrative Figure 2 shows the 
point of view of the participants in the evaluation 
environment within both the PC and VR settings for clarity. 
For the computer-based environment, participants are 
positioned 70 cm from the monitor and advised to maintain 
their posture to limit movement-induced accuracy variances. 
Despite these instructions, slight posture adjustments are 
anticipated due to the natural discomfort associated with 
prolonged static positioning. In the VR setting, the eye-
tracking system is integrated within the headset, allowing 
participants more freedom to move without jeopardizing data 
integrity. Nonetheless, it is crucial for the experimenter to 
ensure the headset is securely fitted to each participant's head 
to prevent slippages or movements that could affect the 
tracking precision and accuracy.  

Procedure 
For this study, three male grad students at Pennsylvania State 
University, aged between 25 and 30, participated in the 
evaluation experiment. They went through the evaluation 
process five times across three different screen sizes (24 
inches, 30 inches, and 35 inches diagonally) using a screen-
based eye tracking system. Subsequently, they underwent the 
same evaluation sequence within a VR environment, using 
virtual screens of equivalent sizes. 

The screen-based eye tracking assessments utilized the 
GazePoint GP3 HD system (150Hz refresh rate, 0.5 – 1.0 
degree of visual angle accuracy, Compatible with 24″ 
displays or smaller). It is one of the most used screen-based 
eye-tracking systems in research, while the Oculus Quest Pro, 
equipped with integrated eye tracking, served as the VR 
headset of choice.  Unfortunately, Meta does not provide any 
information about their eye-tracking specifications. At the 

time of writing this paper, GP3 HD costs $2,450.00 while 
Quest Pro is only $999.  

Results 
We conducted the screen-based tests using three different 
1080p monitors corresponding to the specified sizes. It was 
observed that the screen-based eye tracker demonstrated 
inconsistent tracking capabilities, particularly with the largest 
screen size (i.e., 35-inch), leading to a significant data loss. 
Consequently, we deemed the accuracy and precision data for 
the 35-inch screen size as not applicable (NA). The results of 
the tests are summarized in Table 1 and Table 2.  
Table 1 provides insights into the overall accuracy and 
precision of the screen-based eye-tracking system. Here, 
accuracy is defined as the pixel distance average Euclidean 
distance between the recorded gaze points and the intended 
focal point, while precision refers to the standard deviation of 
these distances. 
The data suggests that measurement outcomes in screen-
based systems vary significantly from user to user and this 
impact intensifies as screen sizes increase. Consequently, 
these findings suggest that VR-based eye tracking offers 
more consistent performance across users, which is 
particularly advantageous for research focused on eye 
movement phenomena like saccades and fixations, where 
uniform system performance is critical. 

Table 1: Overall accuracy and precision of different 
methods of eye tracking across participants for screen size 

30-inch in VR and Computer-Based (CB) eye tracking
systems. 

Participants method Overall 
Accuracy 

Overall 
Precision 

P 1 
VR 88.5 14.8 
CB 71.2 47.6 

P 2 
VR 95.6 12.0 
CB 1058.3 258.7 

P 3 
VR 73.6 14.15 
CB 229.5 40.23 

Figure 2: Participants' point of view of the accuracy and precision evaluation system in Virtual Reality (left) and Screen-
Based system (right), the white dot is the target circle where users need to follow and keep their gaze on it. 
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Table 2: The average accuracy and precision (across 
participants and points) for different screen sizes in VR and 

Computer-Based (CB) eye-tracking systems. 

Method Screen 
size 

Across 
participants 

accuracy 

Across 
participants 

precision 
VR 24 144.8 32.4 
CB 24 94.2 41.8 
VR 30 85.9 13.7 
CB 30 462.62 115.15 
VR 35 101.1 43.7 
CB 35 NA NA 

Table 2 suggests that VR eye tracking seems to be more 
consistent across casted various screen sizes in VR, 
underscoring a key advantage over traditional screen-based 
systems. As screen size grows, traditional eye trackers exhibit 
declining accuracy, struggling notably with very large 
displays (35 inches and above). In contrast, VR eye-tracking 
systems maintain their tracking efficacy irrespective of 
screen size. This advantage stems from the ability of VR 
users to move their heads, positioning target points centrally 
within their field of vision more naturally (Khan & Lee, 
2019), as opposed to the strain of eye movements towards 
screen extremities required with large physical monitors in 
our study, the average angle between the user's eye gazes and 
the center of their vision was measured to be 11 degrees for 
evaluation point at the corners of the casted screens (almost 
indifference to screen size) while this number for our screen-
based system was 23 for 24-inch, 28 for 30-inch and 32 for 
35-inch monitors. Thus, based on our limited observation,
VR not only enhances eye-tracking accuracy but also
alleviates the physical strain on participants, offering
improved user experience and data reliability.

Conclusion and Future Works 
This paper is trying to bridge the gap between behavioral 
experiment design and VR. Designing studies in VR requires 
game-engine knowledge and advanced programming skills, 
which discourage researchers from conducting studies in VR. 
Hence, we designed an environment in VR in which 
researchers can conduct their computer-based experiments in 
VR. We integrated our environment with VRAT, an analysis 
tool capable of generating insightful visualizations and 
quantifiable outputs along with extending VisiTor to enable 
cognitive researchers to develop models that simulate users’ 
behavior in VR.  

Our study suggests that VR eye-tracking systems offer 
enhanced accuracy and precision over traditional screen-
based eye trackers, particularly as screen size expands. 
However, it is important to note that our sample size was 
small, which limits the generalizability of our findings. This 
preliminary evidence indicates a potential trend where VR 

technology could provide more consistent and reliable 
measurements of eye movements across various screen sizes 
and users. 

Through a comparative analysis between screen-based and 
VR environments, we demonstrated that VR eye tracking 
alleviates several limitations inherent in conventional 
methods. Specifically, the ability for participants to move 
their heads within a VR environment, maintaining target 
points at the center of their vision, significantly enhances 
tracking accuracy and user comfort, particularly for larger 
virtual screen sizes. 

As we look to the future, the potential applications of VR-
based eye tracking in cognitive science, psychology, user 
experience research, seem to be promising. By embracing 
these advanced technologies, researchers can achieve more 
insights into human visual attention and cognition, ultimately 
unlocking new possibilities for understanding and interfacing 
with human behavior. However, VR environments have their 
own shortcomings, motion sickness is the most known issue 
with VR headsets. Specially, through long sessions. 
However, with the ever-increasing interest in VR, more 
research (Becker & Ngo, 2016; Curtis et al., 2015; Nie et al., 
2019) is being done to tackle this issue. 

Due to the applicability of the 3D design, the next 
generation of behavioral studies will be conducted in VR and 
Cognitive architectures should support and simulate different 
means of interactions. VisiTor is the first step toward this 
path. This tool is integrated with our environment and will 
provide a way to translate Cognitive models’ interaction into 
actionable movement in VR. In the near future, we plan to 
publish VisiTor controller package, which will enable 
cognitive models to interact with VR environments 
operatable by SteamVR. 
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Abstract 
A fundamental issue in cognitive science concerns the 
interaction of the cognitive “how” operations, the 
genetic/memetic “why” processes, and by what means this 
interaction results in constrained variability and individual 
differences. This study proposes a single GEVL model that 
combines complex cognitive mechanisms with a genetic 
programming approach. The model evolves populations of 
cognitive agents, with each agent learning by chunking and 
incorporating LTM and STM stores, as well as attention. The 
model simulates two different verbal learning tasks: one that 
investigates the effect of stimulus-response (S-R) similarity on 
the learning rate; and the other, that examines how the learning 
time is affected by the change in stimuli presentation times. 
GEVL’s results are compared to both human data and EPAM 
– a different verbal learning model that utilises hand-crafted
task-specific strategies. The semi-automatically evolved
GEVL strategies produced good fit to the human data in both
studies, improving on EPAM’s scores by as much as factor of
two on some of the pattern similarity conditions. These
findings offer further support to the mechanisms proposed by
chunking theory, connect them to the evolutionary approach,
and make further inroads towards a Unified Theory of
Cognition (Newell, 1990).

Keywords: learning; chunking; genetic programming; GEMS; 
CHREST; learning; long-term memory; short-term memory. 

Introduction 
Understanding intelligent organisms requires answering two 
questions. The first of these is “How?”   The “how” question 
is what the brain is tasked to solve: how to navigate by stars, 
how to weave a spider web, how to learn to recognise a 

predator or a danger, how to learn in general? In order to solve 
the numerous “how” questions, the brain has to process 
sensory input data, recognise objects, store, update and 
retrieve memories – it must form internal representations of 
the world and utilise them in its computations. In psychology, 
understanding of the “how” question is tackled both by 
cognitive-based models (which unravel the mechanisms that 
underlie cognition, starting with high-level cognition and 
behaviour levels) and neuroscience-based models (which 
focus on the lower-level neural functions). 

The other fundamental question is “Why?” For example, 
why does an organism navigate by stars or weave a spider 
web? The answer is: it does so to spread the replicators that 
brought about this organism and its behaviour (not to be 
confused with merely spreading the said organism’s 
offspring). The replicators may include the purely genetic 
kind (i.e., the DNA), but, in some cases, also the 
informational/cultural type (i.e., “memes”) (Dawkins, 1976, 
1982; Hunter, 2018; Ridley, 2016).  

In fact, the two questions are intertwined, with an 
organism’s “how” strategies being influenced both by its 
more basic level “how” mechanisms and by the “why” 
selection pressure.  

It is typical for psychological models to focus on the “how” 
question (see Kotseruba and Tsotsos (2020) for a review of 
over 40 recent cognitive models). These models produce 
complex simulations of interacting cognitive or neural 
structures (such as the LTM, STM, selective attention, 
chunks, or, synapses and networks of neurons). The functions 
of the models are hand-tuned for task specific behaviour (e.g., 
Lieto, 2019; Richman, Simon, & Feigenbaum, 2002).  
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Other models start with the “why” question. They use 
genetic algorithms or genetic programming as a way to search 
and optimise agents’ cognitive “how” strategy space (e.g., 
Brave, 1996; Lane et al., 2014). This implies that the task- 
specific behaviour is not hand-tuned by the model creators, 
but is semi-automatic (the initial program state is hand-
crafted, but the subsequent mutation, generation and 
selection of programs is fully automatic). However, while the 
resultant program/strategy set of an evolved agent’s may be 
long and complex, the inherent cognitive structures are often 
rudimentary – e.g., lacking simulations of LTM and 
perceptual mechanisms (for example, see Bartlett et al., 2023; 
Gunaratne & Patton, 2022).  

The aim of this paper is to bridge the “Why?” and the 
“How?” approaches by integrating a complex cognitive-
based psychological model and a genetic programming 
system into a single whole. This makes it possible to keep the 
inherent complexity of the psychological structures and 
mechanisms, while adding the automaticity of task-specific 
strategy discovery. To achieve this aim, we will combine the 
CHREST cognitive architecture with GEMS, an environment 
for semi-automatically evolving cognitive models. 

The Cognitive-Based CHREST Model 
CHREST (Chunking Hierarchy and REtrieval STructures) 
(Gobet, 1993, 2000; Gobet & Lane, 2012; Gobet & Simon, 
2000) is a formal cognitive model based on one of the most 
established theories in cognitive psychology – the chunking 
theory (Chase & Simon, 1973; Gobet et al., 2001; Simon, 
1974). 

The core concept of the chunking theory – a chunk – can 
be defined as a meaningful unit of information constructed 
from elements that have strong associations between each 
other (e.g., a group of digits making up a phone number). 
Thus, chunking is the process of forming and updating 
chunks in the LTM (Gobet, Lloyd-Kelly, & Lane, 2016; 
Simon, 1974). Although the chunks themselves vary between 
people due to personal differences, chunking mechanisms are 
largely invariant across domains, individuals, and cultures 
(Chase & Simon, 1973; Gobet et al., 2001; Miller, 1956; 
Simon, 1974). 

Beyond verbal descriptions, chunking mechanisms have 
been formalised into computer programs – first EPAM 
(Feigenbaum and Simon, 1962) and now CHREST 
(Chunking Hierarchy REtrieval STructures) (Gobet, 1993, 
2000; Gobet & Lane, 2012; Gobet & Simon, 2000).  

CHREST is an idealised self-organising cognitive system 
that simulates human learning. Chunks are operationalized as 
nodes in a graph and chunking is the process of adding new 
data to the LTM. This is done via two psychologically 
plausible cognitive processes: discrimination and 
familiarisation. Discrimination is the process of adding a new 
node to the LTM network. Familiarisation updates existing 
nodes with new information. Thus, learning is influenced 
both by the environmental stimuli and the data that have 
already been stored (Gobet & Lane, 2012). CHREST’s STM 

structure allows for additional ways to create links between 
chunks, such as linking chunks across visual and verbal 
modalities, or linking stimuli and responses within a single 
modality. 

Moreover, chunking theory postulates time costs for its 
core cognitive operations, with discrimination taking ten 
seconds, familiarisation taking two seconds, and recognition 
of a pattern requiring around one hundred milliseconds. More 
generally, CHREST’s learning may be described by a power 
law function, with repetitions of a task leading to diminishing 
improvements in performance accuracy and speed (with 
some caveats – e.g., single-shot learning being also possible, 
depending on the presented stimulus and chunks already 
stored in the LTM). 

EPAM, CHREST and their derivative models were used to 
predict and postdict behaviour in verbal learning research 
(Feigenbaum, 1959; Feigenbaum & Simon, 1984; Richman 
& Simon, 1989; Richman et al., 2002) and accounted for 
context effects in perception, various aspects of concept 
formation (Bennett, Gobet, & Lane, 2020; Lane & Gobet, 
2012), problem solving (Lane, Cheng, & Gobet, 2000), 
acquisition of syntactic categories (Freudenthal et al., 2016), 
emotion processing in problem gambling (Schiller & Gobet, 
2014), developmental trends and cognitive decline due to 
ageing (Mathy et al., 2016; Smith, Gobet, & Lane, 2007), 
expert behaviour (Gobet & Simon, 2000; Richman et al., 
1996; Richman, Staszewski, & Simon, 1995; Simon & 
Gilmartin, 1973), and the list goes on. 

For further details of the chunking theory and CHREST see 
Gobet and Lane (2012). 

The Genetic Side – GEMS 
GEMS (Genetically Evolving Models in Science) is a 
modelling framework that is used to create cognitive models 
(Bartlett et al., 2023; Lane & Gobet, 2013). This system 
integrates insights from computational cognitive science, 
experimental psychology, and evolutionary computation to 
produce cognitive models in the form of computer programs. 
These models undergo evaluation on a simple cognitive 
architecture that mimics the execution of cognitive processes 
in the brain. The basic architecture of GEMS is presented in 
Figure 1. 

Figure 1. Overview of GEMS and its interaction with 
CHREST. 
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GEMS relies on Genetic Programming (GP) to explore the 
search space of candidate cognitive models. Initially, a 
predetermined number of candidate models are generated 
randomly. Subsequently, the GP algorithm iteratively 
combines and modifies these models using processes like 
mutation and crossover, guided by fitness evaluations based 
on the fit between the predictions of the models and the 
experimental data. By evolving models iteratively across 
multiple generations, GP ultimately proposes several 
typically successful solutions to the problem under 
consideration. 

GP depends on a set of operators, serving as fundamental 
building blocks essential for constructing cognitive models 
within our meta-modelling system. These operators, akin to 
basic functions or operations implemented as programming 
functions, play a crucial role in accurately simulating 
cognitive processes by processing information across the 
components of the cognitive architecture. The selection of 
these operators is carried out by domain experts, carefully 
assigning relevant semantics and timings based on the 
relevant research literature. The choice of operators is also 
contingent on the experiment being simulated; for instance, 
for a short-term memory task, long-term memory operators 
may not be necessary. 

GP generates multiple programs by combining these 
operators. A model evaluation environment is necessary to 
rate the quality of these programs, known as fitness 
evaluation in the language of GP. Our system diverges from 
most other GP systems at this point. We simulate 
experimental conditions and provide real data to these 
models. Consequently, these models act like humans 
undergoing psychological experiments under tightly 
controlled laboratory conditions. They undergo the same 
experimentation, and their responses, response times, and 
other relevant variables are measured. These measurements 
are then compared with those of human subjects. Importantly, 
our objective is not to evolve highly efficient models but 
rather to evolve models that closely simulate human 
behaviour. Therefore, the closer the resemblance to human 
data, the higher the fitness of the model. 

At the end of a run of the GP system, it yields a population 
of good quality solutions. We have incorporated several post-
simplification and analysis functionalities into the system to 
further simplify these models and cluster them based on their 
similarities. However, all this is contingent on the 
requirements of the experiment one is trying to simulate.  

Verbal learning 
Verbal learning involves teaching participants lists of paired 
stimulus-response (S-R) nonsense syllables to uncover the 
fundamental laws of learning. Famous examples of verbal 
learning research include the “magic number 7 (plus or minus 
two)” study that established the STM capacity to be around 
seven chunks (Miller, 1956), and the study of the primacy-
recency effect (where people were found to make fewest 
mistakes at the beginning and at the end of a memorised 
sequence) (McCrary & Hunter, 1953). Another, less known, 
but no less significant contribution of the verbal learning 
research, was how it was used to develop and shape the 
mechanisms of cognitive models such as EPAM and 
CHREST. Indeed, Richman et al. (2002) reported that various 
versions of EPAM have captured at least 20 regularities that 
were picked up by research into human rote learning. For 
example, the “intralist similarity” effects (Hintzman, 1968, 
1969) were successfully simulated by   EPAM: humans (and 
EPAM) produced more errors in S-R learning trials when the 
stimuli – nonsense consonant trigrams – were similar to each 
other (e.g. “ZIK” and “ZYJ”) than when they were dissimilar. 
It also successfully simulated forgetting, in the shape of 
“oscillations” that occur during the learning of a single list 
and in the shape of “retroactive inhibition” that happens when 
learning a second list disrupts memory of a first list 
(Feigenbaum & Simon, 1962; Thune & Underwood, 1943).  
   EPAM also accounted for the primacy-recency serial 
position curve that describes people’s tendency to remember 
first and last items better than middle-of-the-list ones 
(Feigenbaum, 1963; McCrary & Hunter, 1953) (see Figure 
2). Finally, single-trial learning (Rock, 1957) was also 
explained and postdicted by EPAM (Gregg & Simon, 1967) 
– it was dependant on the complexity/simplicity (as
determined by EPAM’s LTM network) of the stimuli and
upon the attention strategy of the participant.
   EPAM’s cognitive time cost parameters explained humans’ 
constant learning time that was independent of the number of 
stimuli presentations (Bugelski, 1962; Richman et al., 2002). 
   The above research was important for establishing 
rigorously defined links between major cognitive structures 
and learning. However, one of its shortcomings was its 
reliance on learning strategies that were handcrafted by 
psychology experts. For example, EPAM’s (and CHREST – 
which inherited most of EPAM’s mechanisms) default S-R 
learning strategy was pre-defined as “learn stimulus as little 
as possible, before switching attention to the response; learn 
the response fully” (e.g., only learn letter “B” from the “BAJ” 
stimulus, but learn the response “WOJ” fully). Despite the 
hand-crafting, the models’ fit to human data was often 
lacking; for example, the number of learning trials between 
the EPAM and the human data differed by as much as a factor 
of two (see Table 3).  

The Present Study 
The current study aims to replicate the verbal learning tasks 
reported by Underwood (1953), Bugelski (1962) and 

Figure 2. EPAM simulation of primacy-recency serial 
position curve. Adapted from (Feigenbaum & Simon, 
1962) 
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simulated by EPAM (Richman et al., 2002). Crucially, the 
bridging of CHREST and GEMS approaches will allow us 
not only to integrate the “how“ and the “why” aspects of a 
cognitive system, but also to move away from hand-crafting 
task-specific attentional and learning strategies, and to  
optimise the fit of the models to the human data.  
   
Table 1. S-R syllables used in the intralist similarity task. 
 

 

Method 

Training and Testing 
The human data for this project were taken from previous 
research: the investigation of the effect of pattern similarity 
on learning rates (Underwood, 1953), and the study into the 
effect of stimuli presentation time on the learning rate 
(Bugelski, 1962). The EPAM data were taken from Richman 
et al. (2002). 

The stimulus-response patterns were as follows. There 
were 3 u 10 S-R pairs: Low-Low, Medium-Medium, and 
High-High. The low similarity stimuli and responses 
contained 20 different consonants, the medium similarity  

 
stimuli and responses contained 10 different consonants, and 
high similarity stimuli and responses contained 6 different 
consonants (see Table 1).  

Procedure 
In order to automatically generate verbal learning strategies, 
CHREST was integrated with GEMS to produce GEVL – 
Genetically Evolving Verbal Learner.  Every trial consisted 
of a population of evolved models being presented with a S-
R pair, and selecting a list of verbal-learning operators. The 
operators included attend stimulus, attend response, 

recognise stimulus, recognise and learn stimulus, recognise 
and learn response, learn the link between the stimulus and 
the response, repeat operation, and wait for one or two 
seconds (see Table 2). The models were trained on “per 
condition” basis (see below), with population size 500 and 50 
generations; the mutation rate was set to 0.2 (the latter was 
empirically selected to improve diversity in the population of 
strategies); there were independent runs for all conditions. 
The fitness was a sum of recall errors and the absolute 
difference between the number of trials taken by humans and 
GEVL.     
   We replicated the verbal learning experiments on pattern 
similarity and constant learning time, by Underwood (1953) 
and Bugelski (1962) respectively. Underwood’s pattern 
similarity experiment involved five conditions: Low-Low, 
Low-Medium, Low-High, Medium-Low, High-Low. Each 
condition had a set of corresponding ten S-R pairs. Just like 
the human participants in the original studies, the models 
were presented with a stimulus (from one of the S-R pairs) 
for two seconds. If the models did not provide the correct 
response, they would be presented with the stimulus and 
response for four seconds. This trial cycle would repeat until 
the models provided correct responses for each of the ten 
stimuli.  
   The constant learning time simulations replicated 
Bugelski’s experiment with human participants. There were 
five experimental conditions that varied the stimulus 
presentation time: 6 sec, 8 sec, 10 sec, 12 sec, and 19 sec. The 
models were presented with a list of ten S-R pairs, one pair at  

 
a time, with each pair being presented for the duration that 
corresponded to the experimental condition. The 
experimental trial was repeated until the models learnt correct 
responses for all the stimuli. 

Results 
The results of the best GEVL verbal learning models are 
presented in Table 3 and Table 4. GEVL was able to achieve 
good fit to human data in Underwood’s pattern similarity 
study. A sample strategy for the Low-High condition is 

SIMILARITY
Stimuli Low XIL, TOQ, WEP, DUF, MIZ, JUK, NAS, HOV, BIR, GAC

Medium HIZ, VEC, VIR, JUW, HUL, FEC, YOR, JAL, FOZ, YAW
High HUX, HEX, YAL, YOR, JIR, YOL, JAX, JIX, JER, HUL

Responses Low VOD, HAX, CEM, KIR, SIQ, FEP, BAJ, LOZ, TUW, YUG
Medium HIZ, VEC, VIR, JUW, HUL, FEC, YOR, JAL, FOZ, YAW
High HUX, HEX, YAL, YOR, JIR, YOL, JAX, JIX, JER, HUL

Table 2. Overview of GEVL operators. Each operator type had a time cost (in milliseconds, ms) as follows:  input (100 ms), 
output (140 ms), LTM (2000 ms for familiarisation, or 10000 ms for discrimination), syntax (0 ms). 

Operator Function Type
PROG-X a sequence of 2, 3 or 4 subprograms Syntax
REPEAT2 repeats a subprogram 2 times Syntax
ATTEND-STIMULUS place the stimulus value into input slot 1 Input
ATTEND-RESPONSE place the response value into input slot 2 Input
REC-AND-LEARN-ST calls CHREST's recognise-and-learn-pattern function to learn a stimulus LTM
REC-AND-LEARN-RES calls CHREST's recognise-and-learn-pattern function to learn a response LTM
RECOGNISE-ST calls CHREST's recognize-pattern function to locate a pattern in long-term memory LTM
LEARN-AND-LINK calls CHREST's learn-and-link-two-patterns function to associate stimulus with response LTM
RESPOND retrieve the linked pattern using the stimulus and assign it to the model's output slot Output
WAIT-X advances model-clock (in ms): 1000 or 2000 Time
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presented in Figure 3. GEVL achieved a near constant 
presentation time to trials ratio in its simulation of the 
Bugelski task. A sample strategy for the Bugelski task is in 
Figure 4. The r2 is 0.99 for both experiments; for the 
Underwood task, RMSE was 0.37; for the Bugleski task, 
RMSE was 0.24. 

As a type of sensitivity analysis, we used GEVL with 
mismatching S-R pairs and conditions (e.g., optimising for 
High-Low human result, when using Low-Low stimuli). The 
resulting fit was poor (the models never reached 30 trials, but 
topped out at 23 trials). This shows that the psychological 
constraints embodied in GEVL impose limits on its ability to 
fit the “human data”. This also shows that the models did not 
merely resort to padding strategies with time delaying 
operations, but discovered important learning strategies. 

We should note that we are reporting only the results with 
the best models, with there being many models that achieved 
similarly high fit. 

Please see https://github.com/Voskod/GEVL for the code 
and the best models for all the experimental conditions. 
 
(PROG4 

 (PROG4 (LEARN-AND-LINK) 
(PROG4 (RECOGNISE-ST) (ATTEND-STIMULUS) 

(PROG3 (RESPOND) (ATTEND-RESPONSE) 
(ATTEND-STIMULUS)) 

                  (REC-AND-LEARN-ST)) 
                 (REC-AND-LEARN-ST) (RESPOND)) 
                (PROG4 (RESPOND) (ATTEND-RESPONSE) (LEARN-

AND-LINK) 
                 (ATTEND-STIMULUS)) 
                (WAIT-1000) (REPEAT2 (ATTEND-RESPONSE) 

(ATTEND-RESPONSE))) 
 
Figure 3. One of the strategies in the final population of 
models that learnt S-R pairs in the Low-High pattern 
similarity condition (Underwood’s experiment). 

 
 (PROG4 
  (REPEAT2 
                 (REPEAT2 (REC-AND-LEARN-RES) 
                  (REPEAT2 (ATTEND-RESPONSE) (RESPOND))) 
                 (PROG2 (ATTEND-STIMULUS) (REC-AND-LEARN-

RES))) 
 (REPEAT2 

 (PROG3 (LEARN-AND-LINK) 
                  (REPEAT2 (REC-AND-LEARN-RES) (WAIT-1000)) 
               (PROG3 (WAIT-2000) (RECOGNISE-ST) (REC-AND-

LEARN-RES))) 
(LEARN-AND-LINK)) 

                (PROG3 (REC-AND-LEARN-RES) (REC-AND-LEARN-
RES) 

                 (REPEAT2 (REC-AND-LEARN-RES) (WAIT-1000))) 
                (REPEAT2 
                 (REPEAT2 (WAIT-2000) 
                  (PROG3 (LEARN-AND-LINK) (WAIT-2000) (LEARN-

AND-LINK))) 
                 (PROG2 
                     (PROG3 (RECOGNISE-ST) (REC-AND-LEARN-RES) 
                      (LEARN-AND-LINK)) 
                     (REC-AND-LEARN-RES)))) 

 
Figure 4. One of the strategies for Bugelski’s constant 
learning experiment, for the 19-second condition. 

Table 3. The effect of the S-R pattern similarity on the 
number of learning trials in humans, EPAM VI and GEVL. 
Human data are from Underwood (1953), EPAM VI data are 
from Richman et al. (2002). 
  

Condition People EPAM VI GEVL 

Low-Low 23.2 13.4 23.0 

Low-
Medium 

22.4 13.0 22.0 

Low-High 24.4 13.0 24.0 

Medium-
Low 

25.5 15.3 26.0 

High-Low 30.7 16.0 31.0 

 
 
Table 4. The effect of S-R presentation time on the number 
of learning trials in humans, as well as EPAM VI and 
GEVL simulations. Human data are from Bugelski (1962), 
EPAM VI data are from Richman et al. (2002). 

 
 

Presentation 
Time 

People EPAM VI GEVL 

6 sec 10.2 9.3 10.0 
8 sec 8.8 7.2 9.0 

10 sec 5.8 5.9 6.0 
12 sec 4.7 5.0 5.0 
19 sec 3.3 3.5 3.0 

 

Discussion 
There are several key strengths and contributions of the 
current study. First, our approach integrated a cognitive 
model (with complex simulations of the LTM and STM) and 
a genetic programming environment, thus allowing to capture 
individual differences in learning. Our model demonstrated 
that there may be multiple solutions that satisfy a particular 
set of constraints. This is fully in line with research on 
individual differences in psychology – there is no one 
cognitive system in nature, there is inherent variability. Of 
course, this variability is constrained. For example, 
individual bees vary in their social behaviour, as do humans, 
but the intraspecies variability is bounded by species-specific 
physiological and cognitive structures (Crespi, 2014, 2017; 
Rubenstein & Hofmann, 2015). In our case, the evolved 
agents shared the basic cognitive mechanisms and structures 
(as operationalised by CHREST), but differed in their 
approaches to S-R learning. For example, one model in the 
final population had a S-R learning strategy that contained 22 
cognitive operations, while another model contained 31 
operations. This study is a rigorous demonstration of how the 
informational environment may shape both the cognitive 
strategies and the population of cognitive agents. 
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   Secondly, our GEVL model moved away from hand-
crafted learning strategies that were used in previous verbal 
learning research. Indeed, while EPAM prescribed rigid 
attentional shifts in S-R tasks (Richman et al., 2002), our 
model developed a wide range of strategies. For example, 
while EPAM was preconfigured to always learn just the first 
letter of the “Low” stimulus before learning the “High” 
response fully. On the other hand, GEVL’s “Low-High” 
strategies were much more varied, with attention oscillating 
between stimuli and response multiple times. 
  Third, GEVL did a good job with simulating human data 
with regard to the number of trials needed to learn the 
patterns. For example, humans learn the “High-Low” set of 
S-R pairs in around 31 trials, while EPAM model takes 
approximately 16 trials – despite its hand-crafted verbal 
learning task-specific strategies. This is in contrast to GEVL, 
which produces a group of strategies that take around 31 trials 
(in general, for the pattern similarity task, EPAM’s RMSE 
was 11.26 and r2 was 0.77, versus GEVL’s 0.37 and 0.99 
respectively). With that said, it is important not to overstate 
the automatic nature of GEVL as the initial state of our model 
is also hand-crafted (i.e., the CHREST cognitive architecture, 
the GEMS environment for evolving models, and the choice 
of cognitive operators). 
   Another strength of GEVL is that the model is not a “black 
box,” but is readily interpretable – both in terms of its 
underlying structures and the produced sets of cognitive 
strategies. On a related note, it is an interesting research 
question if the current study could be replicated with, e.g., a 
deep learning transformer. On the cognitive side, the deep 
learning model would need to implement an equivalent of 
chunking (including its timing aspects). On the evolutionary 
side, the deep learning model may need training data in the 
form of cognitive models (which may be difficult as these are 
not known in advance), or utilise reinforcement learning. 
Alternatively, a deep learning model may be used to replace 
only one of GEVL’s components (i.e., either cognitive or 
evolutionary). The advantage of genetic programming is that 
it is efficient (for the types of problems discussed in the 
current paper) and that it works directly from the grammatical 
definitions of the models. However, it is an open question of 
how it would compare to other approaches – for the current, 
as well as the more complex tasks.  
   One potential criticism is that our models produced 
suboptimal learning strategies in order to fit the longer 
durations of human learning. There are two ways of 
answering this criticism. On the one hand, this may indeed be 
unrealistic and deserves further investigation. On the other 
hand, suboptimal learning routines have long been known in 
psychology – e.g., as “satisficing” (Simon, 1991). Moreover, 
the suboptimal attention shifts displayed by GEVL may be in 
line with research into saccadic eye movement and the 
underlying attention function (Cajar et al., 2016). 
   Another potential criticism of the current modelling 
approach is “overfitting” – changing free parameters to 
achieve better fit may lead to poor generalisability beyond the 
currently simulated data (Tetko, Livingstone, & Luik, 1995). 

This study followed the advice of Simon (1992) and 
attempted to address the issue by doubling the data 
explained/free parameters used ratio – the same free 
parameters were used for both pattern similarity and constant 
learning tasks. One future extension to the current study 
would be to replicate EPAM’s simulation of other verbal 
learning experiments without resorting to hand-crafting task-
specific strategies. Potential use of other cognitive 
architectures (e.g., ACT-R, SOAR, LIDA and so on) in 
combination with the GEMS environment is similarly 
intriguing, as is “cross-breeding” of operators that may come 
from multiple architectures to simultaneously populate a 
single GEMS evolutionary pool.  
   Finally, it is important to emphasise that the seemingly 
trivial and contrived verbal learning simulations are not an 
end in themselves. As was discussed above, the basic 
mechanisms that were established in verbal learning and 
other similar experimental paradigms helped to develop 
various cognitive models that subsequently went on to 
simulate highly complex human behavior in multiple 
domains (e.g., Bennett et al., 2020; Freudenthal et al., 2016). 
We anticipate that this trend will continue with GEVL. 
   To conclude, our study further integrates 
genetic/evolutionary aspects with cognitive models (thus 
bridging the “how?” and “why?” questions) and automates 
task-specific strategy discovery. Our findings offer further 
support to the   mechanisms proposed by chunking theory, 
connect them to the evolutionary approach, and make further 
inroads towards a Unified Theory of Cognition (Newell, 
1990). 
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Abstract 

Affect dynamics, or the study of changing patterns of 
emotional responses across time, has emerged as a key field of 
research in Mathematical Psychology. Traditionally, Affect 
dynamics research has relied on the Experience Sampling 
Method (ESM), a data gathering technique in which 
participants describe their feelings, thoughts, and behaviors at 
various times throughout the day. This technique studies 
Intensive Longitudinal Data (ILD) using Mixed Linear or 
Nonlinear Models (MLM) or Vector Autoregressive Models 
(VARs) (VAR). These theories characterize emotion in terms 
of time and complexity. However, they fail to recognize the 
underlying unity of emotional dynamism: the transition 
between affects. Although emotions follow one another, the 
transition only considers the dyadic relationship between the 
current state and the immediately following future state. In this 
paper, we will show how to use and implement Discrete Time 
Markov Chains to evaluate each transition between the current 
and the future emotional states, while neglecting earlier 
transitions. Researchers can use Markov chains to quantify the 
likelihood of transitions from one emotional state to another 
over time, allowing a short-term understanding of the 
dynamics of affect. 

Keywords: Affect dynamics; Markov Chain; stochastic 
model; Russell circumplex model; psychometrics 

Introduction 
Affect dynamics, or the study of the changing patterns of 
emotional experiences throughout time, has emerged as a 
critical topic of inquiry in the psychological sciences 
(Hamaker et al., 2015; Waugh & Kuppens, 2021). This 
discipline studies how emotions evolve and interact to 
influence human behavior, decision-making, and well-being 
(Puccetti et al., 2021). Traditional models have explored 
affect dynamics from a variety of perspectives, including 
psychological theories of emotion regulation, computing 
models mimicking emotional states, and statistical methods 
for examining temporal patterns of affective experiences 
(Borghesi, Chirico, et al., 2023; Borghesi, Murtas, Mancuso, 
et al., 2023; Lazarus et al., 2021). 

Historically, the field relied on linear and time-invariant 
models to convey the essence of emotional shifts. Despite the 
progress made with these current models, one fundamental 
difficulty remains: accurately capturing the complexity and 
non-linear nature of emotional dynamics. Emotions, by 
definition, are dynamic and fleeting, making them difficult to 

categorize or progress linearly. Traditionally, affect 
dynamics analysis has relied on the Experience Sampling 
Method (ESM), a data gathering technique in which 
participants describe their feelings, thoughts, and behaviors 
at random times throughout the day. This method has 
produced useful longitudinal insights into self-reported 
emotions at precise time intervals, revealing emotional 
variability in response to various contexts and stimuli. The 
mathematical modeling most used are Mixed Linear Model 
(MLM) or Autoregressive Models (AR) and Vector 
Autoregressive Models (VAR). These models consider the 
long-term history of emotions, describing in a way more the 
concept of mood dynamics.  

Hence, to investigate the short-term affect transition, we 
propose an implementation of Discrete Time Markov Chains. 
Markov chains allow for the modeling of emotional state 
transitions as stochastic processes, with the likelihood of 
shifting from one state to another set irrespective of 
observable or unobserved transitions. This strategy considers 
both the emotional changes that participants reported and the 
fact that some changes did not occur at all. Thus, Markov 
chains open up new avenues for understanding emotional 
complexity, bypassing the constraints of standard 
experimental models and providing a strong instrument for 
investigating the true structure of human emotional 
experiences. Enter Markov chains, a mathematical construct 
that exists at the intersection of probability theory and 
stochastic processes. Markov chains offer a solid framework 
for simulating random processes in which the future state 
depends solely on the present state and not on the sequence 
of events that came before it. This trait, known as the Markov 
property, makes Markov chains ideal for modeling the 
sequential and stochastic nature of emotional transitions. The 
application of Markov chains to affect dynamics is a novel 
step forward, providing a new lens through which to 
investigate the complex web of emotional states. Markov 
chains' capacity to simulate complicated stochastic processes 
enables the analysis of emotional transitions in a granular and 
flexible manner in response to the changing nature of 
affective experiences.  

The use of Markov chains in the study of affect dynamics 
emphasizes not only the interdisciplinary nature of modern 
psychology research but also the potential for mathematical 
models to provide new insights into the human emotional 
experience. Using Markov chain principles, researchers may 
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build sophisticated models that anticipate emotional states 
across time, providing a dynamic view of emotional 
evolution that reflects the complexity and variety inherent in 
human affect. 

Statistical Models in Affect Dynamics: A 
Journey from Intensive Longitudinal Model to 

Markov Chains 
Intensive Longitudinal Data (ILD) is used to study 

affective processes to capture significant 
dynamics. Depending on the process, daily, moment-to-
moment, or even second-to-second measurements may be 
required (Bolger, Davis, & Rafaeli, 2003; Trull & Ebner-
Priemer, 2013). These measurements can be obtained 
through a daily diary, ambulatory assessment, experience 
sampling, observations, or laboratory measurements. 
Smartphones, accelerometers, and intelligent shirts have 
simplified the collection of ILD, making intensive 
longitudinal studies a viable alternative to traditional research 
methods like cross-sectional and panel. 

The ILD range considers the data's scope (individual vs. 
group) and complexity (single vs. multiple variables), to the 
nature of the affective processes (stable vs. changing, linear 
vs. complex interactions), the temporal aspect of data 
collection (discrete vs. continuous timing), the type of 
variables involved (categorical vs. numerical), the analytical 
approach (time-based vs. frequency-based analysis), and the 
focus of the analysis (process modeling vs. summary 
statistics). 

Hence, the mathematical modeling most used are Mixed 
Linear Model (MLM) or Autoregressive Models (AR) and 
Vector Autoregressive Models (VAR).  

MLM also known as hierarchical linear models, allow for 
modeling data that come from multiple levels of grouping 
(for example, repeated measurements, which are the lower 
levels, nested within individuals, which are the higher levels). 
In an MLM, changes over time can be modelled as fixed 
effects, while variability between individuals can be captured 
as random effects.  

The basic formula for an MLM for ILD might be: 

yit=β0+β1×Timeit+u0i+u1i×Timeit+ϵit 

where yit is the outcome for individual i at time t, β0 and β1 
are the coefficients of fixed effects, u0i and u1i are the random 
effects for individual i, and ϵit is the residual error. 

These models are used to analyze time series and are 
particularly useful for modeling the temporal dependence 
between observations. In an AR model, the current 
measurement is predicted from past measurements. In a VAR 
model, this approach is extended to multiple temporal 
variables, allowing for examining how each variable is 
influenced by its own past measurements as well as by the 

past measurements of other variables. An AR model of order 
p, AR(p), for a time variable y at time t is defined as: 

yt=c+ϕ1yt-1+ϕ2yt−2+...+ϕpyt−p+εt 
where: 

c is a constant, 
ϕ1,ϕ2,...,ϕp are coefficients representing the influence of 
past observations on the current observation, 
εt is the error term (white noise) at time t. 

These models capture the temporal dependency within a 
single time series, allowing for analyzing how past values 
influence future values. 

Vector autoregressive (VAR) Models extend the 
autoregressive approach to multivariate systems. VAR model 
of order p for a vector of k time variables yt is defined as: 

yt=c+A1yt-1+A2yt−2+...+Apyt−p+εt 
where: 

c is a vector of constants, A1,A2,...,Ap are matrices of 
coefficients representing the influence of past 
observations on the current vector of observations, εt is a 
vector of multivariate error terms at time t. 

When considering multivariate linear models, which 
consider the ratings of multiple emotions to explain and 
impact previous ones, a complex relational model is created. 
This model might obscure the concept of transitions between 
emotional states since it encompasses a network of 
interactions rather than clear-cut transitions. The proposal to 
analyze emotional transitions specifically, considering pairs 
of emotions and employing Discrete Time Markov processes, 
aims to address this gap. This approach allows to capture the 
probabilistic nature of these transitions based on the current 
state without the necessity for the preceding states to directly 
influence the future beyond the immediate past. 

The Discrete Time Markov processes model, distinct from 
AR and VAR models or MLM, provides a framework 
suitable for examining the series of emotional transitions, as 
it relies on the assumption that the future emotional state 
depends only on the present state. This aligns with the 
intuitive understanding of emotional transitions where each 
state is a discrete event influenced by the immediate past, 
enabling a clearer analysis of the emotional trajectory of an 
individual. By focusing on pairs of emotions (or duplexes in 
mathematical terms) and applying discrete Markovian 
processes, the analysis can capture the essence of emotional 
transitions. This approach respects the temporal sequence of 
emotions while providing specific insights into the dynamics 
of emotional transitions, thus offering a more tailored 
understanding of affect dynamics in relation to mental 
flexibility and environmental stimuli. 

Mathematical Model of Discrete Time Markov 
Chains 

A Discrete Time Markov Chain is a mathematical model used 
to describe a process where a system transitions from one 
state to another in a sequence of steps that occur at discrete 
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points in time. This model is characterized by a series of 
random variables X1, X2, X3, …, each representing the state 
of the system at a specific time step. The key feature of a 
Discrete Time Markov Chain is the Markov property, which 
states that the probability of transitioning to any future state 
depends only on the current state and not on the sequence of 
events that preceded it. Mathematically, this property can be 
expressed as: 

 
P(Xn+1=x ∣ X1=x1, X2=x2, … , Xn=xn) = P(Xn+1=x ∣ Xn=xn) 
 
for any state x and any sequence of states x1,x2,…,xn, where 

n represents the step number in the Markov chain. This means 
that the future behavior of the process can be determined 
entirely by its present state, making the system's history 
irrelevant for predicting its future state transitions. The 
transition probabilities between states are typically 
represented in a matrix form, known as the transition matrix, 
where each entry indicates the probability of moving from 
one state to another. 

In the exploration of stochastic processes, discrete Markov 
chains stand out for their unique property of time 
homogeneity and memory lessness. This fundamental 
characteristic assert that the probability of transitioning from 
one state to another solely depends on the current state and 
not on the sequence of events that preceded it. 
A Discrete Time Markov Chain is defined by a set of states, 
S, and a transition probability matrix, P. Time homogeneity 
is encapsulated in the axiom: 

 
P(Xn+1=j ∣ Xn=i) = P(X1=j ∣ X0=i)=Pij 

 
for all states i, j in S, and for all n in natural numbers. This 
implies that the probability of transitioning from state i to 
state j remains constant over time. The transition matrix P, 
where each element Pij represents the probability of moving 
from state i to state j, is central to the description and analysis 
of a Markov chain. 
The initial state of the Markov chain is described by a 
probability distribution vector π0, where π0(i) = P(X0 = i). The 
vector π0 encapsulates the probabilities associated with each 
state at the beginning of the process, a priori probability. 
The evolution of a Markov chain is characterized by the 
progression of states over discrete time steps, called steady 
state (πn). The transition probabilities dictate the dynamics of 
this stochastic process.  
Mathematically, the state distribution at step n, denoted as πn, 
is obtained through the relation: 

 
πn=π0Pn 

 
where Pn represents the nth power of the transition matrix P. 
This fundamental relationship underscores the process's 
discrete nature and the Markov property. It highlights how 
the initial distribution, combined with the transition matrix, 
dictates the state probabilities at any future step. 

A cornerstone theorem in the theory of Markov chains states 
that any irreducible and aperiodic Markov chain, defined on 
a finite state space S with a stochastic transition matrix P, 
converges to a unique stationary distribution π, where: 

 
lim
n→∞

(Pij)
n = πj ∀ i,j ∈ S 

 
This theorem underscores the long-term behaviour of 
Markov chains, revealing that, regardless of the initial state, 
the chain converges to a stationary distribution, illustrating 
the system's equilibrium properties. 
Furthermore, the characteristics of Markov chains such as 
irreducibility, periodicity, and recurrence are critical in 
determining the long-term behavior. A Markov chain is 
irreducible if every state is reachable from every other state, 
aperiodic if the greatest common divisor of the lengths of all 
possible loops for each state is one, and a state is recurrent if 
it is guaranteed to return to itself within a finite number of 
steps with probability one. 
 

Application of Markov Chain in Affect 
Dynamics 

The application of Markov chains in the field of affect 
dynamics offers a novel approach to understanding the 
complex nature of emotional state transitions over time. By 
representing affective states as discrete, distinguishable states 
within a Markov model, researchers can analyze the 
probabilities associated with transitioning from one 
emotional state to another. This approach not only captures 
the stochastic nature of emotional changes but also aligns 
with the temporal granularity of affective fluctuations 
observed in empirical data (Borghesi, Chirico, et al., 2023; 
Cipresso et al., 2023). 
Considering the Russell Circumplex model, affect can be 
categorized into four quadrants based on valence and arousal 
dimensions. This approach breaks down emotions into finer 
nuances, situating them within a two-dimensional space of 
valence (pleasant-unpleasant) and arousal (activated-
deactivated). Each quadrant represents a unique blend of 
these two dimensions: high arousal-positive valence (happy, 
excited), high arousal-negative valence (angry, anxious), low 
arousal-positive valence (relaxed, content), and low arousal-
negative valence (sad, depressed) (Posner et al., 2005; 
Russell, 2017). For example, if a person is currently in a state 
of high arousal and positive valence, the Markov chain can 
predict the likelihood of their next state based on historical 
transition data. Will they remain in this happy state, or 
transition to a more relaxed state (low arousal-positive 
valence), or perhaps shift to a high arousal-negative valence 
state due to an external stressor? By quantifying the transition 
probabilities between these states, Discrete Markov chains 
offer a mathematical model to capture the fluidity and 
dynamism of human emotions. Considering the four distinct 
affective states, namely stress (A), engagement (B), boredom 
(C), and relax (D) reflecting a separate emotional condition, 
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emerging 12 possible transitions, divided in horizontal, 
vertical and oblique one, as Figure 1 demonstrates.  

Figure 1: Transitions of 4 affect states: AB, BA, CD, DC, 
AC, CA, BD, DB, AD, DA, BC, CB 

In this case, the Markov chain is represented by a transition 
matrix P, which is a 4x4 matrix where each element pij 
represents the probability of transitioning from state i to state 
j. For our four emotional states, the transition matrix is:

P=[

𝑝𝐴𝐴 𝑝𝐴𝐵 𝑝𝐴𝐶 𝑝𝐴𝐶
𝑝𝐵𝐴 𝑝𝐵𝐵 𝑝𝐵𝐶 𝑝𝐵𝐷
𝑝𝐶𝐴 𝑝𝐶𝐵 𝑝𝐶𝐶 𝑝𝐶𝐷
𝑝𝐷𝐴 𝑝𝐷𝐵 𝑝𝐷𝐶 𝑝𝐷𝐷

] 

Here, each pij is a probability, so each element in the matrix 
must satisfy 0≤pij≤1, and the sum of the probabilities in each 
row must equal 1, reflecting the total probability of 
transitioning from any given state to all possible states, 
including remaining in the same state.  

Markovization Process 

Incorporating questionnaire responses or physiological 
data into a Markov chain involves a methodical approach to 
quantify affect transitions. This process involves converting 
raw data into a format compatible with the stochastic nature 
of Markov chains, which we achieve using normalization 
indexes. Following, a formal and mathematical example to 
elucidate how this could be implemented. 

Consider conducting an Experience Sampling Method 
(ESM) study over seven days, querying participants five 
times daily about their current emotional state. Given the four 
defined states (A, B, C, D), participant can respond with one 
of these states at each query, resulting in a total of 43 
responses. First, compile the responses into a frequency 
matrix, counting the number of transitions from each state to 
every other state, including self-transitions. The frequency 
matrix F might look like this: 

F=[

𝑓𝐴𝐴 𝑓𝐴𝐵 𝑓𝐴𝐶 𝑓𝐴𝐶
𝑓𝐵𝐴 𝑓𝐵𝐵 𝑓𝐵𝐶 𝑓𝐵𝐷
𝑓𝐶𝐴 𝑓𝐶𝐵 𝑓𝐶𝐶 𝑓𝐶𝐷
𝑓𝐷𝐴 𝑓𝐷𝐵 𝑓𝐷𝐶 𝑓𝐷𝐷

] 

where fij represents the frequency of transitions from state 
i to state j observed in the study. Here a subject example 
matrix, in which we count the number of transitions (Table 
1): 

Table 1: Absolute transition matrix 

Engagement Stress Relax Boring Total row 

Engagement 16 1 0 0 17 

Stress 1 0 1 1 3 

Relax 3 2 16 1 22 

Boring 0 0 1 0 1 

Next, normalize this matrix to convert frequencies into 
probabilities. This is done by dividing each element in a row 
by the total sum of elements in that row, resulting in the 
transition matrix P: 

F=

[

𝑓𝐴𝐴
∑ 𝑓𝐴𝑗𝑗

𝑓𝐴𝐵
∑ 𝑓𝐴𝑗𝑗

𝑓𝐴𝐶
∑ 𝑓𝐴𝑗𝑗

𝑓𝐴𝐷
∑ 𝑓𝐴𝑗𝑗

𝑓𝐵𝐴
∑ 𝑓𝐵𝑗𝑗

𝑓𝐵𝐵
∑ 𝑓𝐵𝑗𝑗

𝑓𝐵𝐶
∑ 𝑓𝐵𝑗𝑗

𝑓𝐵𝐷
∑ 𝑓𝐵𝑗𝑗

𝑓𝐶𝐴
∑ 𝑓𝐶𝑗𝑗

𝑓𝐶𝐵
∑ 𝑓𝐶𝑗𝑗

𝑓𝐶𝐶
∑ 𝑓𝐶𝑗𝑗

𝑓𝐶𝐷
∑ 𝑓𝐶𝑗𝑗

𝑓𝐷𝐴
∑ 𝑓𝐷𝑗𝑗

𝑓𝐷𝐵
∑ 𝑓𝐷𝑗𝑗

𝑓𝐷𝐶
∑ 𝑓𝐷𝑗𝑗

𝑓𝐷𝐷
∑ 𝑓𝐷𝑗𝑗 ]

This resulting matrix P is the stochastic matrix for the 
Markov chain, with each element pij representing the 
probability of transitioning from state i to state j. To smooth 
data, reducing the impact of minor variations and eliminating 
zeros that might indicate improbable transitions or missing 
data, a Dirichlet smoothing was applied in the normalization 
process. αj is the smoothing parameter for state j: α=0.5 for 
more frequent states (e.g. the total row of Engagement and 
Relax) α=0.1 for less frequent states (e.g. the total row of 
Stress and Boring). Hence, the normalization takes account 
of the α parameters and absolute frequency of transition: 

𝑃𝑖𝑗 =
𝑓𝑖𝑗 + 𝛼𝑗
𝑁i + ∑ 𝛼𝑗𝑗

Here the final probability transition matrix (Table 2): 

Table 2: Probability transition of matrix 

Engagement Stress Relax Boring Total row 

Engagement 0.868 0.079 0.026 0.026 1.00 
Stress 0.324 0.029 0.324 0.324 1.00 
Relax 0.146 0.104 0.688 0.063 1.00 
Boring 0.071 0.071 0.786 0.071 1.00 

In addressing physiological data for constructing Markov 
chains, we encounter a substantial challenge: transitioning 
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from the categorical data of questionnaires to the continuous 
measurements typical of physiological parameters. In this 
context, the laboratory approach becomes essential as it 
allows for precise measurement of induced affective state 
transitions. 

Consider, for example, the use of image blocks from the 
International Affective Picture System (IAPS) or an 
equivalent emotional elicitation tool. In an experimental 
design, we can induce measurable affective transitions 
through changes in image blocks. Unlike the Experience 
Sampling Method (ESM), where the state transition may 
remain uncertain, in a controlled environment, we can 
accurately identify when and how each affective transition 
occurs. To translate these data into a Markov matrix, we 
proceed as follows: 

• Temporal Segmentation: Define specific periods for 
each image block and for transitions between 
blocks. For instance, we might consider the last few 
seconds of a block as the transition moment and the 
middle moments of the blocks as representative of 
stable affective states. 

• Measurement and Calculation of Indexes: For each 
temporal segment, we calculate relevant 
physiological indices such Standard Deviation (SD), 
Relative Standard Deviation (RSD), Root Mean 
Square of Difference (RMSSD) proposed by Pirla et 
al., (2023). These indices should be calculated 
separately for each transition period and each stable 
affective state. 

• Normalization and Markovization: We convert the 
index values into relative probabilities to reflect the 
likelihood of transitioning from one affective state 
to another. For example, if an index shows a 
significant change between the end of one affective 
state and the beginning of another, this indicates a 
higher transition probability, which can be 
normalized across all observed transitions. 

• Construction of the Transition Matrix: We organize 
the normalized probabilities into a Markov 
transition matrix, where each row represents an 
initial affective state and each column an arriving 
affective state. The sum of probabilities in each row 
will equal 1, reflecting the stochastic nature of the 
transitions. 

This approach provides a newly mathematically 
framework for affective transitions, allowing for precise 
analysis of emotional dynamics in response to controlled 
stimuli.  

Affect Markov Indexes 

From the Markovian chain model, which encapsulates the 
dynamics of affect transitions as informed by both subjective 
experiences and physiological responses, a multitude of 
indexes can be extracted to analyze and understand the 

nuances of these transitions. These indexes, derived from the 
Markov transition matrix, provide both descriptive and 
predictive insights into affect dynamics. The descriptive one 
includes probabilities for vertical, horizontal, and oblique 
transitions, each representing different types of emotional 
changes. These transitions are categorized as follows: 

• Vertical transitions (involving changes primarily in 
the arousal dimension without significant changes in 
valence): pAC,pCA,pBD,pDB (e.g., AC from stress to 
boredom or BD from engagement to relax). 

• Horizontal transitions (involving changes primarily 
in the valence dimension without significant 
changes in arousal): pAB,pBA,pCD,pDC (e.g., AB from 
stress to engagement or CD from boredom to relax). 

• Oblique transitions (involving simultaneous 
changes in both arousal and valence dimensions): 
pAD,pDA,pBC,pCB (e.g., AD from stress to relax or BC 
from engagement to boredom). 

Additionally, in the context of Markov chains, we had also 
to consider internal variability within each affective state, 
corresponding to the transitions within the same state (e.g., 
AA, BB, CC, DD), also named state trait transition.  

However, the Markov matrix not only provides descriptive 
indices of the transitions, but it can also provide predictive 
indices, which explain after n steps (hypothetically n state 
transitions) with what probability the subject will be in one 
of the different states, also called steady states (𝜋n). The 
steady state distribution provides valuable insights into the 
long-term behavior of the system, offering insights into the 
equilibrium distribution of states after a large number of 
transitions. 

The steady states depend by two factors: the initial state 
vector (𝜋0) and the subject-specific transition matrix. The 
initial state vector (𝜋0) posits an a priori probability of the 
subject's presence in one of the four quadrants, serving as the 
starting point for the Markov chain: i.e. the subject before 
being subjected to stimuli is equally likely to be in one of the 
four affective states. Our initial state vector considered 
equiprobability between initial affective states. Through 
iterative multiplication (e.g., 10 steps) of the initial states 
vector and the transition matrix, we arrive at the steady states. 
Thus, the steady states serve as an updated version of the 
original matrix, modifying the initial equilibrium based on 
the empirical affective transitions experienced by the subject: 
They describe the likelihood of discovering one of the four 
states after attempting ten different hypothetical transitions. 
The iterative process between the initial states vector of 
probability and the transition matrix, culminating in the 
steady states, underscores the dynamic interplay between 
predisposition and experience in shaping the affective 
journey of individuals.  
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Conclusion 

Markov processes provide the concentrated and exact 
modeling of transitions between emotional states, making 
them ideal for understanding how people go from one 
emotion to another with a focus on the current transition, 
regardless of previous sequences. Autoregressive (AR) and 
Vector Autoregressive (VAR) models can capture temporal 
dynamics, however they may not accurately characterize 
precise transitions between emotional states. In contrast, 
Markov processes simplify the analysis by confining the 
reliance to the immediately previous states, making the model 
more understandable and interpretable in the emotional 
context. The finding that people can experience numerous 
emotions at the same time, with one predominating and 
affecting the next, is consistent with the Markovian process 
theory. These models reflect the probability-based character 
of emotional transitions, stressing the present emotion's 
importance in deciding the future state. Using Markov 
processes to study pairs of emotions allows for a more 
individualized and thorough investigation of people's 
emotional trajectories, which may be very useful in clinical 
and psychological research settings.  
However, it is vital to remember that every model has limits, 
and a model's applicability is determined by the study's 
unique aims and the nature of the data. Furthermore, the use 
and interpretation of Markov processes require a precise 
characterization of emotional states as well as reliable data 
gathering. Overall, the suggested strategy is well-founded 
and promises to deliver unique insights into emotional 
dynamics, signifying a substantial step forward over more 
standard methodologies in future research initiatives. Future 
studies could significantly benefit from implementing 
Hidden Markov Models (HMMs) to delve deeper into the 
complexities of emotional transitions. Unlike traditional 
Markov models that directly correlate observed emotional 
states to transition probabilities, HMMs introduce an 
additional layer of abstraction by positing that observable 
behaviors are influenced by hidden, unobserved states. 
Finally, the use of continuous stimuli, such as those provided 
by Virtual Reality, offers a promising avenue for studying 
affect dynamics under controlled, yet highly immersive and 
realistic conditions. VR technology enables the simulation of 
complex, dynamic environments where users can experience 
a wide range of emotionally evocative scenarios in a safe and 
controlled setting. This immersive approach allows for the 
continuous monitoring of emotional responses to nuanced 
and evolving stimuli, which can be particularly beneficial for 
understanding how individuals navigate through emotionally 
charged environments or situations (Borghesi, Murtas, 
Mancuso, et al., 2023; Borghesi, Murtas, Pizzolante, et al., 
2023). 
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Abstract

Even when talking about novel things and without a fully
shared vocabulary, people can come to understand each other
through communicative turn taking (what we call communica-
tive alignment). State-of-the-art computational models cannot
yet explain this capacity, because (1) empirically corroborated
models only work under shared knowledge and vocabularies,
and leave out interactive processes needed to overcome mis-
alignment; (2) models that do include misalignment and inter-
active processes cannot account for communicative successes
under real-world conditions; and (3) models that overcome the
limits in (2) use a theoretical ‘hack’. In this paper, we add a
challenge to the list: the interactive processes in both models of
type (2) and (3) are intractable. We explore the robustness and
implications of this theoretical challenge for models of com-
municative alignment in general.
Keywords: communication; interaction; computational com-
plexity; intractability

Introduction
Consider the fruit platter in Figure 1. Now imagine a friend
asks you: “Could you pass me the dragon fruit?” If you have
never seen a dragon fruit before you may have no idea what
they mean. In an attempt to understand them, you could in-
quire, “Is that the prickly fruit in the bowl?” In that case, they
may respond: “No, I mean the pink one.” After this exchange,
you know which fruit they want and in future contexts you
will likely also understand their request.

People’s capacity to interactively come to mutual under-
standing (Dingemanse et al., 2015; Schegloff, Jefferson, &
Sacks, 1977; H. H. Clark & Schaefer, 1987), even in the ab-
sence of a fully shared vocabulary (Quine, 2013), is remark-
able.1 We call this capacity communicative alignment. It has

1We conceive of this capacity as something that people can do

Figure 1: A fruit platter with potentially unfamiliar fruits.

been experimentally demonstrated that communicative align-
ment is possible even when people talk about completely un-
familiar objects (e.g., using the Tangram task (H. H. Clark &
Wilkes-Gibbs, 1986; Holler & Wilkin, 2011) and the Frib-
bles (Barry, Griffith, De Rossi, & Hermans, 2014; Eijk et al.,
2022); see Box 1). So far, this feat defies a computational
explanation for several reasons.

First, empirically corroborated computational models of
pragmatic communication only model a slice of the ca-
pacity, i.e., only one utterance (“Could you pass me the
dragon fruit”) and one inference (“Is that the prickly one?”)2

under minimal enabling conditions. For instance, these conditions
include that both speakers commit to trying to reach mutual un-
derstanding and are engaging in good faith. If one of the actors
violates these conditions (e.g., by engaging in ill-faith, deception
(Dynel, 2020), or epistemic injustice (Pohlhaus, 2012)), then suc-
cessful communicative alignment may be blocked. This does not
mean that the capacity for communicative alignment is not real or
robust, but it does need minimal conditions to operate properly.

2In fact, these models will not even capture this slice intact. The
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(Hawkins, Frank, & Goodman, 2017), whereas communica-
tive alignment may require a series of interactions before mu-
tual understanding is achieved. Second, recent extensions
of such models that attempt to include communicative turn-
taking do not yet show the empirically observed patterns of
convergence and communicative successes (van de Braak,
Dingemanse, Toni, van Rooij, & Blokpoel, 2021). Third,
models that seem to overcome the limitations in the former
type of models do so by using what we consider a theoret-
ical ‘hack’, i.e., assuming that the receiver can always dis-
ambiguate their inferred referent by pointing at it (a.k.a. os-
tension; “Is that ?”) rather than making a potentially am-
biguous request to try to get more information (“Is that the
prickly one?”). While ostention is sometimes possible and
used in naturalistic communication, it is neither always nec-
essary nor always available as an option.3 Still, people can
communicatively align even in those cases.4

Uncovering these problems in state-of-the-art models must
be seen as a positive instance of the theoretical problem-
finding paradigm (Adolfi, van de Braak, & Woensdregt,
2023). The value of this type of theoretical problem-finding
cannot be overstated. “[T]heoretical problem-finding al-
lows us to pinpoint where our understanding is lacking
[...]”(Adolfi et al., 2023). While most of cognitive science
focuses on empirical problem-solving, there is at present
no comparable attention to theoretical problems, leaving the
study of cognitive capacities sometimes theoretically under-
informed. Therefore it is important to lay out the full land-
scape of theoretical problems relevant to a phenomenon be-
fore trying to tackle any one of them individually. Failing to
do this risks us fooling ourselves into thinking we have solved
all theoretical problems for this phenomenon, while some still
may lurk in the dark. Those hidden, invisible problems can
lead to the false impression that full explanations for cogni-
tive capacities have been found.

In this paper, we contribute to theoretical problem-finding
in accounts of communicative alignment by identifying an-
other, complementary theoretical obstacle in models of com-
municative alignment: intractability. While points (1)–(3)
are all different problems, they all fall under the umbrella of
cognitive scope violation (as defined by Adolfi et al., 2023).
That is, models that experience these problems undergeneral-
ize the cognitive capacity. In contrast, intractability is a prob-
lem experienced by models that overgeneralize the cognitive
capacity (van Rooij, 2008; Blokpoel, 2018).

Intractable models assume computational resources that
grow excessively fast (e.g. exponentially) as a function of
the input size. This makes them computationally implausi-
ble for all but the smallest toy scenarios (van Rooij, Evans,

inferences do not involve an interaction as portrayed in the example,
but instead take the form: “I think it’s !”

3E.g. ostension is not possible when talking on the telephone,
when talking about objects that are not physically present and/or
when communicating abstract concepts.

4Other models, e.g. Steels (2015), often exclude these cases and
assume objects are always available to ostensively point at.

Müller, Gedge, & Wareham, 2008; van Rooij, Blokpoel,
Kwisthout, & Wareham, 2019). Take as an example the
fruit platter scenario (Figure 1). Given an input with a ‘vo-
cabulary’ of 10 words and a ‘context’ of 10 fruits, an in-
tractable model postulates computations that require 210⇥10 =
1.267.650.600.228.229.401.496.703.205.376 basic compu-
tation steps. Even assuming that a human can perform a hy-
pothetical 500 quadrillion computations per millisecond, it
would still take 2.535.301.200 seconds (or about 80,3 years)
to compute the intended fruit. A far cry from the time scales
realized in natural conversation (Stivers et al., 2009). Even
when one can specify the necessary and sufficient compu-
tations, they are seemingly inevitably computationally in-
tractable. As such, such a model cannot explain the speed of
communicative alignment which greatly undermines its ex-
planatory value.

The remainder of this paper is organized as follows. First
we present a formalization of an existing model of commu-
nicative alignment that includes ostension—that is, includ-
ing the theoretical ‘hack’ mentioned earlier (van de Braak et
al., 2021). Second, we present a mathematical proof of in-
tractability, with full mathematical proof details in the Ap-
pendix5, and explain how this also implies intractability of
a model extension without the ‘hack’. Hence, we can con-
clude both types of model embody this same theoretical prob-
lem. Subsequently, we present robustness checks for the in-
tractability results and draw out their implications. We close
by reflecting on the general challenge that these results pose
and how they shine a light on what current explanations of
communicative alignment cannot yet explain. This illumina-
tion of the problem landscape provides clear theoretical goals
for theorists of communication. Intractability is present even
in models with theoretical ‘hacks’, showing how important
this investigation of the problem landscape really is.

Computational-level model of communicative
alignment

We analyze a computational-level (Marr, 1982) model of
communicative alignment (van de Braak et al., 2021). It
builds on Rational Speech Act (RSA) models (Frank & Good-
man, 2012; Hawkins et al., 2017). RSA models assume
that pragmatic inference (i.e., the ability to disambiguate the
meaning of utterances) is central to referential communica-
tion. Consider the referents (things that can be talked about)

and , and the utterances pink and prickly. When in-
terpreting pink, people have the capacity to understand that
it refers to despite the utterance being ambiguous—both
fruits can be considered pink.6 This basic principle, however,
presupposes that people share a common understanding of
what the utterances can mean: a shared lexicon that encodes
which utterances refer to which referents (see Table 1).

In natural communication this full lexical alignment is gen-

5The appendix is available at https://osf.io/xe9bn
6How? Because if was the intended referent, one would have

said prickly and not pink.
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Box 1: Communicative alignment

To illustrate the phenomenon of (non-ostensive) com-
municative alignment, consider this collaborative game
(adapted from Eijk et al., 2022). One player secretly
chooses one the 8 Fribbles. Then both players work to-
gether so that the other player can infer which Fribble was
secretly chosen. Players can communicate freely, but they
cannot point at the Fribbles. To experience communicative
alignment we recommend playing this game with another
person or, alternatively, read the dialogue and try to dis-
cover the secret Fribble.

Player 1: “The Fribble kind-of looks like a waiter.”
Player 2: “Uh, does it have a round tray?”
Player 1: “No, not the one with the trumpet. It has a square
tray with legs and a small dish on top.”

prickly no yes
pink yes yes

Table 1: A simple lexicon encodes utterance-referent rela-
tions.

erally not available and needs to be built through interaction
(Hutchins & Hazlehurst, 1995; Hayashi, Raymond, & Sid-
nell, 2013; Kitzinger, 2012; Dingemanse et al., 2023) before
mutual understanding can be achieved (Box 1). In the model
by van de Braak et al. (2021) two communicating agents al-
low for the possibility that each utterance can, for their in-
terlocutor, refer to any of the referents. This enables the
agents to flexibly adapt and align (Eijk et al., 2022; Kemp-
son, Chatzikyriakidis, & Howes, 2017; Rasenberg, Özyürek,
& Dingemanse, 2020). This flexibility is modeled by agents
that infer the meaning of an utterance relative to all possible
lexica L (Table 2). This inference combines an agent’s pref-
erence for particular meanings, modeled as a prior over all
possible lexica Pr(L), with the interactional history h, leading
to a posterior distribution over all possible lexica Pr(L | h).

. . . pi yes no
pr no yes

pi yes no
pr yes yes

pi yes yes
pr yes no

. . .

Table 2: Excerpt from all (2⇥2)2 = 16 simple lexica (pi for
pink and pr for prickly).

The posterior probability of each possible lexicon Pr(L |h)
is the model’s main computational principle (Appendix A):

POSTERIOR LEXICON DISTRIBUTION (semi-formal)
Input: Prior (preference) over all possible lexica Pr(L)
and the interactional history h.
Output: The posterior probability of each possible lexicon
Pr(L | h), given that utterances and referents are pragmati-
cally inferred.

This computation is the focus of the complexity analysis and
it is part of all main model sub-components. The inferences

in each of these components are relative to (the probability
of) each possible lexicon:

1. Producing an utterance given an intended referent (INFER
DISTRIBUTION OVER SIGNAL and SIGNAL SAMPLER7)

2. Inferring a referent given an utterance (INFER DISTRIBU-
TION OVER REFERENT and REFERENT SAMPLER)

3. Inferring if the agent believes they have achieved mutual
understanding (PERCEIVED UNDERSTANDING).

See Figure 2 for an illustration of the model and the relation-
ships between the model components.

We next introduce the PERCEIVED UNDERSTANDING
computation. It will serve as an illustration for the complexity
proofs. PERCEIVED UNDERSTANDING characterizes how,
given an observed utterance u, agents decide if they perceive
their inference to be certain. If many referents are probable
then certainty is low and, vice versa, if only a few are prob-
able then certainty is high. With low certainty, agents decide
to continue the conversation (red arrows, Fig. 2). The infer-
ence is relative to the history h and all possible lexica L and
it uses POSTERIOR LEXICON DISTRIBUTION Pr(L | h) as a
sub-computation.

PERCEIVED UNDERSTANDING (semi-formal)
Input: Prior over all possible lexica Pr(L), the history h,
an observed utterance u, and a certainty threshold h.
Output: Is the certainty of the inferred referent of u high?
That is, is the entropy H(Pr(r | u,h))< h? Here, the prob-
ability over referents is relative to all possible lexica and
the history, and the distribution over all possible lexica is
as defined in POSTERIOR LEXICON DISTRIBUTION:

Pr(r | u,h) = Â
L

Pr(r | u)Pr(L | h)

Earlier, we introduced the notion of ostensive communi-
cation: unambiguous communication through e.g. explicit
pointing. Van de Braak et al. (2021) have proposed two
models for communicative alignment. One model assumes
ostension, the other does not. The difference between the
models lies in the history h of each turn ti. Ostensive his-
tory stores the initiator’s utterance (e.g., ‘dragon fruit’) and

7These components are named with the more general term signal.
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PERCEIVED
UNDER-
STANDING

INFER SIGNAL
DISTRIBUTION

SIGNAL
SAMPLER

PRODUCTION

INFER SIGNAL
DISTRIBUTION

SIGNAL
SAMPLER

PRODUCTION

INFER REF.
DISTRIBUTION

REFERENT
SAMPLER

INTERPRET

INFER REF.
DISTRIBUTION

REFERENT
SAMPLER

INTERPRET

Responder

history h history h

Initiator

“prickly?”

“prickly?”

intention

referent R={ , , }

PERCEIVED
UNDER-
STANDING

“ah, yes!”

“dragon fruit”

initiator bias Pr(L) responder bias Pr(L)

possible lexicons L=

signal S={“dragon”, “prickly”,…}

Figure 2: An overview of the computational model. Ar-
rows denote input-output relations. Note the two model vari-
ants, ostensive and non-ostensive, where the non-ostensive
model uses the INTERPRET SIGNAL sub-component because
the referent is not explicitly and unambiguously given (blue
arrows). Red arrows indicate perceived non-understanding,
the green show perceived understanding.

their inferred referent ( ). Non-ostensive history stores the
initiator’s utterance (e.g., ‘dragon fruit’) and the responder’s
repair request (e.g., ‘prickly?’) (see also Fig. 2).

Consequently, the computation underlying Pr(L | h) in
POSTERIOR LEXICON DISTRIBUTION is different. The non-
ostensive agents require additional inference to interpret the
responder’s repair request, which is given for free in the os-
tensive model (see Fig. 2, and Appendix A.2).

Computational complexity analysis
First, we briefly introduce complexity-theoretic concepts and
techniques at an conceptual level after which we illustrate
intractability of PERCEIVED UNDERSTANDING. Then, we
cover results for all components of the model, for which in-
tractability proofs are derived from the intractability of PER-
CEIVED UNDERSTANDING. For more formal details, we
kindly refer the reader to Appendix B.1 and articles and text-

books (Garey & Johnson, 1979; van Rooij et al., 2008; San-
jeev & Barak, 2009; van Rooij et al., 2019).

Intractability proof
We prove intractability for PERCEIVED UNDERSTANDING
(PU) by reduction from a known intractable problem, viz.
3-satisfiability (3SAT), in two steps:

1. Prove that a tractable transformation algorithm A exists
from any 3SAT input to a PU input.

2. Prove that the output given by PU is the correct output for
3SAT.

Given the reduction constituted by (1) and (2), PU must be
intractable. This follows by contradiction (Fig. 3). Sup-
pose that PERCEIVED UNDERSTANDING could be solved
tractably. Then one could compute 3SAT tractably, viz. via
the ’shortcut’ through algorithm A and PU. This is impossible
since 3SAT is intractable, hence PU must be intractable.

(¬u1⋁u3⋁u6)⋀
(u2⋁¬u4⋁u6)⋀
(¬u2⋁u3⋁¬u5)

A

yes/no

yes/noPU

3SAT

Figure 3: PERCEIVED UNDERSTANDING cannot be tractable
(green), as this would contradict 3SAT’s intractability (red).

Key to the proof is the algorithm A. To illustrate its design,
we first define 3SAT (from van Rooij et al., 2019):

3SAT
Input: A set of Boolean variables U = {u1, . . . ,un} and
a set of clauses C = {c1, . . . ,cm}, where each clause has
exactly three literals.
Output: Is there a truth assignment t : U ! {true, f alse}
such that all clauses C are satisfied?

This computational problem takes as input a logical predi-
cate of any length, e.g., (u1 _u2 _¬u3)^ (¬u2 _u3 _u5), and
outputs ‘yes’ if there exists a truth value assignment to all lit-
erals ui such that the predicate is true, e.g., (T_ F_¬T)^
(¬F_T_F) = T .

Transformation A takes any 3SAT input and creates a
matching input for PERCEIVED UNDERSTANDING, such that
PU outputs an answer for 3SAT. The transformation exploits
the fact that all possible lexica represent all possible binary
strings. These strings can encode all possible 3SAT candi-
date solutions. This prior probability function Pr(L) is con-
structed to give a non-zero probability to a lexicon L 2 L if
it encodes the 3SAT instance, and if the candidate solution is
correct (Fig. 4). This setup ensures that PU outputs yes if and
only if 3SAT would output yes, proving intractability.

Results
In this section we present an overview of the complexity-
theoretic results. For full mathematical details and formal
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yes, Pr( )>0
no, Pr( )=0

correctness
encoded instance
candidate solution

verify( {)=, ,

verify( ), ,

Figure 4: An illustration of the transformation algorithm A.
The prior probability over all possible lexica evaluates en-
coded candidate 3SAT solutions.

proofs, we refer to the reader to Appendix B. Within the Os-
tensive Communication model, the following results apply:

Result 1 PERCEIVED UNDERSTANDING is intractable (Ap-
pendix B.2).

Result 2 INFER DISTRIBUTION OVER REFERENTS and IN-
FER DISTRIBUTION OVER SIGNALS are intractable (Ap-
pendix B.3).

Result 3 REFERENT SAMPLER and SIGNAL SAMPLER are
intractable (Appendix B.4).

Furthermore, Results 1, 2 and 3 hold under a wide range of
conditions that seemingly simplify the computational model,
yet do not remedy intractability. This emphasizes that the
intractability is a foundational property of the model and not
an artifact. Table 3 shows this robustness of our results.

Model component his
tor

y
h en

tro
py

h or
de

r
n pr

ior
Pr
(L
)

PERCEIVED
UNDERSTANDING

any 1 � 0 O(nc)

PERCEIVED
UNDERSTANDING

|h|� 1 0 < h � 0 O(nc)

INFER
DISTRIBUTION
OVER REFERENTS

any – � 0 O(nc)

INFER
DISTRIBUTION
OVER SIGNALS

any – � 0 O(nc)

REFERENT
SAMPLER

|h|= 1 – � 0 O(nc)

SIGNAL SAMPLER |h|= 1 – � 0 O(nc)

Table 3: Robustness of the intractability results for the main
parameters of each model component.

Intractability Results 1, 2, and 3 generalize to the Non-
ostensive Communication model under the same conditions
as listed in results 1, 2, and 3.

Corollary 1 PERCEIVED UNDERSTANDING, INFER DIS-
TRIBUTION OVER REFERENTS, INFER DISTRIBUTION
OVER SIGNALS, REFERENT SAMPLER and SIGNAL SAM-
PLER in the Non-ostensive Communication model are in-
tractable (Appendix B.6).

Interpretation of results

Results 1, 2, and 3 show that the Ostensive Communication
model is intractable, implying that it cannot explain the speed
of communicative alignment in the real world. Furthermore,
the intractability is not contained in a single sub-component
of the model. Rather, all main sub-components of the model
are intractable (see Figure 2). To explain how communicative
alignment can occur on realistic time scales one would have
to revise all sub-components.

Any such revision cannot be simple. In addition to the in-
tractability results, Table 3 illustrates that the intractability is
robust relative to a range of parameters, conditions and vari-
ations. Parameter robustness implies that one cannot make
any assumption on the parameters within the specified bounds
that would render the model computationally tractable.

History h. Results 1, 2, and 3 are robust for the history
h. Specifically, the sub-computations are intractable when h
contains at most one element, implying that within this model
no realistic assumption on the content of h can make the sub-
components tractable. More information in the history is not
going to make the intractability go away.

Entropy threshold h. Entropy characterizes the level of
certainty that agents need to perceive understanding. Re-
sult 1 is robust for an entropy threshold h > 0, assuming
|h| � 1. Specifically, PERCEIVED UNDERSTANDING is in-
tractable for h = 1 and also intractable for all other h > 0
given there has been at least a single turn in the history. Al-
lowing for arbitrary levels of uncertainty is not going to make
the intractability go away.

Order of reasoning n. Results 1, 2, and 3 hold for any
order of reasoning n � 0. Even when agents do no pragmatic
reasoning (i.e., n = 0) the model is intractable (see also van
de Pol, van Rooij, & Szymanik, 2018) .

Prior Pr(L). Results 1, 2, and 3 assume a polynomial-time
computable prior function. Thus, the model’s intractability is
not due to an intractable prior function, but core to the model
itself.

Sampling. Result 3 implies that optimal inference is not
causing the model’s intractability, as it is not possible to use
(non-optimal) sampling as a method to get around the in-
tractability.

Non-ostensive Communication. Corollary 1 indicates
that Results 1, 2 and 3 and the conditions also hold for the
Non-ostensive Communication model.
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Discussion
How people are able to understand each other even when talk-
ing about novel things and without a fully shared vocabulary
(what we call communicative alignment) is challenging to ex-
plain computationally. So far, (1) empirically corroborated
models only work under shared knowledge and vocabular-
ies, and leave out interactive processes needed to overcome
misalignment; (2) models that do include misalignment and
interactive processes cannot account for communicative suc-
cesses in real-world conditions; (3) models that overcome the
limits in (2) use a theoretical ‘hack’. With our analyses we
have added an extra theoretical challenge: models of type (2)
and (3) hide computational intractability in all their core com-
ponents (see Figure 2).

Our intractability results imply that so far these models
make unrealistic assumptions about the computational re-
sources available to real-world, embodied communicators,
who need to operate under limited resources. Here we ex-
plain why this problem is not a mere technicality that can be
brushed off, but a deep theoretical challenge that cannot be
easily dissolved. We remind the reader that this is a strength
of this theoretical problem: it can be robustly used to im-
prove our understanding of what we do not yet scientifically
understand (Adolfi et al., 2023) about communicative align-
ment and help carve/sculpt better, more explanatory theories
(Blokpoel, 2018).

To see why the proven intractability is not a mere tech-
nical quirk nor easy to ‘hack’ out of models, note that the
core intractability result holds for a wide range of parameters,
conditions, and variations of the models (see Interpretation
of Results). Moreover, the intractability cannot be removed
by common appeals to approximability heuristics or even ‘as
if’ explanations (van Rooij, Wright, Kwisthout, & Wareham,
2018). It is known that claims to approximability generally
run into intractability as well, because intractable problems
are not standardly approximable. Even when they are, the
fall short of criteria of approximation needed for cognitive
science explanations (van Rooij & Wareham, 2012). Ac-
cordingly, we have an inapproximability proof that show that
the probabilistic inferences postulated in the models cannot
be approximated by efficient sampling (Appendix B.4; (cf.
Sanborn, 2017; Kwisthout, 2018)). While heuristics gener-
ally are tractable by design, they necessarily cannot have any
guarantees for approximating with the computations postu-
lated at the computational level (van Rooij, Wright, & Ware-
ham, 2012). In other words, heuristics at the algorithmic level
can only ‘buy’ tractability by ‘cutting away’ parts of the phe-
nomenon as modeled at the computational level, meaning we
still fail to explain the original phenomenon.8

Trying to cope with intractability at the computational level
by ‘cutting away’ parts of the phenomenon is a more common

8While systematic ‘cutting’ could be done in a principled way
(using parameterized complexity analyses; see (van Rooij & Ware-
ham, 2007; van Rooij et al., 2019)), our results so far do not yet yield
constraints that can make the computational level model tractable.

strategy in the literature. These routes, unfortunately, lead at
best to an impoverished understanding of the phenomenon.
For instance, modeling ‘by the slice’ of communication can
be seen as an instance of buying tractability by distorting or
simplifying the phenomenon (e.g., models of type (1) men-
tioned earlier). Another is to assume ostension to always be
available (Hawkins et al., 2017), see also the Ostensive model
(model type (3)). Such approaches or ‘hacks’ yield a situa-
tion where the phenomenon is oversimplified and the model
conditions are overconstrained relative to the real world sit-
uations. Probably contrary to intuition, the ostension ‘hack’
does not even buy tractability (see Result 1). This does not
yet rule out that other intuitions may help yield tractability at
the computational level. We consider two more candidates.

First, we consider the intuition that interaction makes it
easier to have successful communication (van Arkel, Woens-
dregt, Dingemanse, & Blokpoel, 2020; Dingemanse, 2020;
A. Clark, 2006; Risko & Gilbert, 2016). At first glance, this
intuition may seem to contradict our proof results. However,
this reflects a map-territory confusion (cf. Guest & Martin,
2023; Guest, 2024). Namely, the intuition relates to the real-
world phenomenon (‘territory’), whereas intractability is a
property of a theoretical model (‘map’). Any (non-formal)
intuition requires further computational investigation. This
would entail defining what ‘easier’ means, as it could refer
to either fewer computational resources or higher probability
for successful communication. As it stands, the intractabil-
ity proof we presented implies that the model cannot explain
how interaction could lead to a reduction in computational re-
sources as intuited to be the case for the phenomenon. In fact,
it is exactly by trying to explain how people can communica-
tively align through interaction that intractability is revealed
in our models which emphasizes the theoretical challenge of
computationally explaining the intuition.

Second, we consider the intuition that in daily communi-
cation communicative alignment is easier because interlocu-
tors rarely, if ever, converge on overlapping lexica (Stolk,
Bašnáková, & Toni, 2022). The claim implicitly assumes
that the model requires agents to converge on overlapping
lexica. This is not the case, as agents in the model make de-
cisions based on their perceived understanding rather than on
any factual convergence. Hence, full (or even partial) lexi-
cal convergence cannot be responsible for the intractability
result. Furthermore, an incorrect assumption in this intuition
is that the intractability only arises from the full interaction
(presumably required for convergence) and thus that elimi-
nating the necessity for lexical convergence will make the in-
teraction computationally easier. However, the intractability
is present in every agent-level model component (see Results
1-3 and Figure 2), even before any interaction occurs. Thus,
incorporating this intuition in the model would not resolve the
intractability.

Of course, the above considerations do not exhaust all pos-
sible intuitions one may have about what would or would
not yield tractability at the computational level of explana-
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tion. We do hope that our discussion of them illustrates that
such intuitions often involve a confusion between explanation
(model) and explanandum (phenomenon), and how one can
oneself catch this confusion. Also, we hope to have illustrated
that even if the intuitions are correct those intuitions may not
translate directly or rigorously, for instance because they are
underspecified. Further, even when these intuitions could be
translated into the model, they still may not yield tractabil-
ity. Theoreticians who think they have identified a solution
to this intractability problem should be self-critical. Verify-
ing whether or not a model change yields (in)tractability re-
quires formal modeling and complexity-theoretic proof meth-
ods such as we have adopted in this paper.

We close by reflecting on implications of these results for
computational explanations of communicative alignment. As
we said from the start, theoretical problem finding is useful
as it shines a light on gaps in our scientific understanding.
Clearly, we do not yet scientifically understand how people
can communicatively align when lacking a fully shared vo-
cabulary. It is exactly by trying to figure out ways in which
these gaps can and cannot be filled that we advance our sci-
entific understanding, and progressively sculpt better, more
explanatory theories. Importantly, this process of filling the
gaps and sculpting better, more explanatory theories should
not be thought of as a recipe and there are no theoretical
‘quick fixes’ (Devezer, 2024; Rich, de Haan, Wareham, &
van Rooij, 2021). We invite theorists to take on the theo-
retical challenges and let them inform development of future
theories of communicative alignment.
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Abstract
Complex problem solving (CPS) is a fundamental capability
of humans. It is often studied through microworlds, with the
Tailorshop-scenario as a well-investigated prominent example.
This paper addresses several research questions for CPS in the
Tailorshop scenario: Firstly, it examines the impact of back-
ground knowledge vs. understanding underlying dynamics.
Secondly, it investigates the predictability of a participants’
performance, particularly when considering their assumptions
about the scenario’s mechanisms. Finally, it discusses the suit-
ability of the Tailorshop as a scenario for cognitive modeling
of CPS. Thereby, we discuss some of the measures that have
been proposed to assess CPS performance, considering CPS
from an perspective of predictive modeling. Based on our
results, we conclude that effective prediction of outcomes in
complex tasks necessitates uniform impact of actions through-
out, facilitating comprehension of both overarching strategies
and smaller adjustments crucial in real-world problem-solving
domains.
Keywords: Complex Problem Solving; Causal Map; Mental
Representations; Cognitive Modeling; Tailorshop

Introduction
In our everyday life, individuals regularly encounter com-
plex systems spanning societal, economic, and environmental
realms with many latent variables, requiring adept problem-
solving and decision-making skills. However, traditional
decision-making research often occurs in small controlled
settings, raising concerns about its relevance to real-world
complexities (Pitz & Sachs, 1984). To address this, complex
dynamic tasks, known as dynamic decision-making (DDM),
have been used to study Complex Problem Solving (CPS) be-
havior. DDM involves participants making decisions within
dynamic environments, observed as outcomes that may or
may not be affected by decisions made (Edwards, 1962).
Computer simulations, called microworlds, provide realis-
tic environments for studying complex problem-solving and
decision-making processes. These studies challenge cogni-
tive demands regarding goal elaboration, information search,
hypothesis formation and forecasting, which ultimately rely
on an individual’s planning and decision making capabili-
ties, but also creativity (Dörner & Wearing, 1995; Gonza-
lez, Vanyukov, & Martin, 2005; Funke, 2014). The mi-
croworld Tailorshop (e.g., Putz-Osterloh, 1981, 1983; Funke,
1988; Danner et al., 2011; Greiff, Stadler, Sonnleitner, Wolff,
& Martin, 2015) is an extensively studied computer-based
dynamic decision-making scenario for CPS. Participants as-
sume the role of a tailorshop manager for 12 months, tasked

with purchasing raw materials, managing production capac-
ity, and maximizing profit by selling shirts. The environment
comprises 24 variables, with 21 visible to participants and
12 directly manipulable. These variables are interconnected,
with modifications to one potentially impacting others in sub-
sequent simulated months (e.g., advertising influences cus-
tomer interest, which then affects sales). Tailorshop has been
utilized to explore problem-solving processes, intelligence,
and professional performance among others (Danner et al.,
2011). Success in Tailorshop is typically defined as a con-
sistent increase in company value over months, with the first
month excluded from scoring to enhance consistency with the
2-12 months score being a reliable predictor for success, as
found by previous studies (Danner et al., 2011; Greiff et al.,
2015). However, Greiff and Funke (2009) criticize the “one-
item-testing” of one large, complicated scenario as a severe
shortcoming of CPS research. They propose that the detec-
tion of individual differences could be facilitated by a formal
framework of linear structural equation systems — the Micro-
DYN approach. Instead of a single, complex system, subjects
engage with 8-12 items to explore, detect causal relations be-
tween variables, draw connections between them to represent
their mental model, and then adjust values to achieve target
outcomes.

In the light of the discussion in the current state of the
art, this paper presents a rigorous analysis of the Tailorshop
scenario from a predictive modeling perspective: (1) Inves-
tigating how prior knowledge and individual characteristics
influences behavior and assess their worth as a predictor; (2)
Search for action patterns that can serve as a base for model-
ing endeavours; and (3) discuss the predictability of partici-
pants’ performance and the suitability of the Tailorshop sce-
nario for predictive modeling of CPS as a whole. Thereby, the
structure of the paper is as follows: the next section presents
the experimental data, followed by an introduction to the
causal map analysis in Section 3. Section 4 outlines initial
implications drawn from our analyses and tests the relation-
ship between causal map information, strategies, participant
actions, and performance. Finally, a discussion addressing
the aforementioned key issues concludes the paper.

Experiment
Participants and Materials. We conducted an onsite study
in German in our lab involving 52 students at the Chemnitz
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Figure 1: Illustrative example for a causal map created in the
graphical user interface used by the participants to represent
the relationships between Tailorshop variables (cp. Table 1).

University of Technology. Participants were compensated
with either course credits or monetary rewards. The Tailor-
shop simulation was based on the implementation by Danner
et al. (2011)1. Similar to the drawing of variable connections
in MicroDyn (e.g., Greiff & Funke, 2009), we aimed at ob-
taining information about the understanding of the relation-
ships between variables (cp. Table 1) in the scenario. There-
fore, we developed a graphical interface that allowed partici-
pants to represent their understanding in the form of a causal
map (Figure 1 shows an illustrative example).

Procedure. Prior to the Tailorshop experiment, partici-
pants completed the German version of the Need for Cogni-
tion questionnaire (NFC; Beißert, Köhler, Rempel, & Beier-
lein, 2015) and a 7-question version of the Cognitive Reflec-
tion Task (Toplak, West, & Stanovich, 2014). They were then
introduced to the Tailorshop topic without explaining any of
its mechanisms. Subsequently, participants were presented
with variables within the causal map tool and asked to de-
lineate connections denoting relationships between them la-
belling these connections as positive or negative. Afterwards,
participants had an exploration phase of 6 simulated months
with the Tailorshop simulator. Following the exploration
phase, the scenario was reset, and participants performed a
12-month testing phase. Post testing, participants were asked
to construct another causal map to assess their comprehen-
sion. Then they were asked for their specific strategies and
rated variable relevance using a 5-point Likert scale. All col-
lected data and associated scripts are publicly accessible on
GitHub2.

Analyzing the Causal Maps
For the analysis 4 participants had to be excluded, since they
skipped a causal map, leading to a dataset containing the re-
sponses of 48 participants (30 female, 17 male, 1 diverse).

Causal Map Properties
Figure 2 shows the aggregated graphs from participants’
causal maps both before and after engaging with the Tailor-

1https://www.psychologie.uni-heidelberg.de/ae/
allg/tools/tailorshop/index.html

2https://github.com/brand-d/iccm2024-tailorshop

shop simulation. Only edges reported by at least 5% of par-
ticipants are depicted. Additionally, this figure includes re-
lationships derived from the Tailorshop implementation for
comparative analysis. For simplicity, the graphs representing
the causal maps of participants before and after interaction
with the Tailorshop will be referred to as Before and After for
the remainder of this paper.

Variables controllable by participants, denoted in lightblue,
are intentionally designed to be not influenced by other vari-
ables within the Tailorshop – in contrast to potential inter-
connections in the real world. Therefore, edges towards these
variables are represented as dotted lines in the graph. This
presentation form aims to highlight other edges directly com-
parable to the Tailorshop simulator.

The core discrepancy is between the Tailorshop graph and
participants’ causal maps. The simulator graph demonstrates
mostly direct connections to few key variables such as ac-
count, shirt, and material stock. However, participants’ causal
maps exhibit higher levels of indirection and interconnec-
tion: For instance, while workers are not directly linked to
costs, they are indirectly influenced by factors like salary,
even when denoted on a per-person basis. Moreover, the con-
nections in participants’ causal maps also cover real-world
connections that go beyond the scope of the simulation. For
instance, the influence of location on worker satisfaction is
identified, a soft factor relationship not covered by the simu-
lator. While the first differences are most likely caused by a
less formal understanding of the concepts, the latter is an ex-
pected problem of a real-world based simulation, since a sim-
ulation will automatically fall short in some aspects, which
can lead to some false assumptions by the participants. The
difference in interconnectivity is also visible with respect to
the number of incoming and outgoing edges (see Table 2).
The Tailorshop simulation has a few central nodes (e.g., the
bank account) where everything comes together, while other
nodes have no incoming edges at all (i.e., the variables con-
trolled by the participants), whereas no such extremes are vis-
ible in the participants’ graphs. The table also shows that the
differences between Before and After are slim, indicating that
no substantial structural changes occurred. Although subtle,
with some adjustments to the aforementioned problems (i.e.,
interactions between location and worker satisfaction is no
longer present) seemed to have taken place.

In order to quantify the changes between Before and After,
we calculated the similarity between the participants’ graphs,
and the tailorshop graph. If participants adjusted their as-
sumptions based on experiences with the tailorshop simula-
tion, the changes between Before and After should lead to an
increased similarity with the tailorshop graph. We used the
average of the cosine similarities between the adjacency vec-
tors for each node, leading to an overall similarity of .247 for
Before and .255 for After. This change was not significant
(Mann-Whitney-U: U = 1113.5, p = 0.781), which confirms
the observation that participants overall did not revise their
assumptions to a greater extend.
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(a) Before playing the scenario (b) After playing the scenario (c) Tailorshop Simulation

Figure 2: Causal maps before (a) and after (b) playing the tailorshop scenario alongside the graph depicting actual dependen-
cies in the simulation. Blue/Red edges indicate positive/negative relationships, respectively. Darker shades indicate a higher
proportion of the respective edge. Green nodes denote controllable variables, while blue nodes represent derived variables.
Edges to controllable variables are dotted. Edges reported by less than 5% of participants are omitted.

Table 1: Importance of a variable defined as the average num-
ber of paths leading to Company Value in the individual be-

fore and after graphs and in the Tailorshop implementation
(TS). Average relevance (Rel) of the respective variable re-
ported by the participants is included, variables controllable
by participants are excluded.

Var. Importance Rel.
Before After TS

Company Value (40.58) (38.35) (111) -
Bank Account 24.19 25.31 67 -
Customer Interest 9.06 8.69 9 4.27
Shirts Sales 15.58 15.62 36 4.69
Shirts in Stock 7.19 9.77 72 3.79
Raw Material Price 0.46 1.46 0 3.56
Raw Material Stock 0.96 4.23 32 3.98
Worker Satisfaction 11.0 7.15 14 2.85
Production Idle 2.9 3.83 0 3.30
Damage 3.33 3.1 12 3.25

The graphs obtained from the causal map can also allow for
estimates of a variables importance. Since the maximization
of the company value was the goal of the tailorshop scenario
and participants were instructed to try to do so, we evaluate
the importance of a variable with respect to company value.
As an importance metric for a variable, we used the number
of occurrences in all (cycle-free) paths leading to company
value, excluding those starting at the respective variable. Put
differently, since edges in the graph denote a positive or neg-
ative relationship between variables, the metric gives an es-
timate of the number of ways a variable influences the com-
pany value indirectly when another variable is changed. Ta-

Table 2: Overview of the graph connectivity comparing the
number of incoming and outgoing edges for the graphs from
the causal map and the implementation of the tailorshop.

Mean SD Min Max

Incoming
Before 1.46 1.01 0.46 5.19
After 1.39 1.18 0.29 5.79
Tailorshop 2.41 3.77 0 15

Outgoing
Before 1.46 0.36 0.52 2.31
After 1.39 0.33 0.52 1.96
Tailorshop 2.41 1.53 0 6

ble 1 shows the importance values for all derived variables
(i.e., variables not directly controllable) as well as the rele-
vance that participants provided at the end of the experiment.
Note that the bank account was excluded from the relevance,
since it was directly explained to be a part of the company
value, rendering its relevance trivial. Unsurprisingly given
the scenario, shirt sales was assigned the highest relevance,
which was also reflected by the importance (15.62 for After).
Apart from that, no clear correspondence between importance
and relevance was visible. However, the importances of the
participants’ graphs are generally in line with the importances
of the variables in the actual tailorshop simulation (Kendall’s
Tau between Before and TS: tb = 0.556, p = .029), indicat-
ing that the general concepts are comparable. The relevance,
on the other hand, seemed to be mostly focusing on directly
sales-related concepts (i.e., shirt sales, and the customer in-
terest), rating variables for production generally lower.

Causal Map and Performance
Since the assumptions participants have about the mecha-
nisms underlying the tailorshop scenario are likely to influ-
ence their actions, we investigated the connection between
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the causal maps and the performance in the tailorshop, as-
suming that participants with a Before graph more similar to
the actual tailorshop graph will achieve a better performance.
To assess performance, we considered the 11th month as a
reference point for the final performance, since participants
can skew the results by selling everything in the last month
(25% of participants stated that they considered that strat-
egy). Unlike Danner et al. (2011), we use the total difference
in company value, since participants were instructed to max-
imize it until the end of the run (and not consistently each
month). We argue that modeling should focus on a task as
closely related to the actual instructions as possible. Addi-
tionally, to normalize the values of the Tailorshop, we repre-
sented the performance as a proportion of the company value
change (i.e., by calculating per f = (cv11 � cv0)/cv0, where
cv11 is the company value at the end of month 11 and cv0
the initial company value). Subsequently, we proceeded by
splitting the participants into two groups based on the median
difference in company value between the beginning and the
last month. Here, the differences are more apparent: The high
performing group had an average similarity of .279 between
Before and the tailorshop graph, which increased to .319 for
After. In comparison, the low performing group started with
a similarity of .215, which decreased to .191. This indicates
that participants that already started out in line with the tailor-
shops mechanisms were able to further adjust their assump-
tions, while the low performing group seemed to struggle to
grasp the mechanisms. Based on these findings, we aimed
to predict the performance in two ways: 1) We used a Sup-
port Vector Regression (SVR; for an overview, see Awad &
Khanna, 2015) as a simple general-purpose model to predict
the performance in the tailorshop for all individual partici-
pants based on the Before graph, and 2) used the similarity
directly as an estimate for the tailorshop performance. First,
the SVR was trained and tested using a leave-one-out cross-
validation, to ensure that the limited number of participants
for a machine learning method is used efficiently. The adja-
cency matrix of the Before graph was used as the input, while
the performance value described beforehand was used as the
target. The Mean Absolute Error (MAE), the Root Mean
Squared Error (RMSE) and the coefficient of determination
(R2) were used to measure the performance. The median
and mean of the target values were added as baseline mod-
els, since they represent the optimal constants to minimize
MAE and RMSE, respectively.

The results are shown in Table 3. The results show that the
SVR was not able to leverage any of the information avail-
able in the graph, achieving a similar performance than the
mean and median. Including additional individual informa-
tion (CRT and NFC) did not improve the performance. Two
possible explanations for that hinge on fundamental attributes
of the present data: First, the coarse structure of the present
causal maps only reflect relationships, but do not capture the
meaning or importance of certain connections. Second, the
tailorshop simulation is a complex, non-linear scenario, that

Table 3: Results of a leave-one-out cross-validation analysis
for predicting the tailorshop performance. The table shows
the MAE, RMSE and R

2 for the Support Vector Regression
(SVR) based on the causal map graph provided before the
tailorshop, the SVR based on actions in the first month and
the mean and median target value as baseline predictors.

Predictor MAE RMSE R
2

Performance Mean 0.298 0.378 0
Performance Median 0.295 0.381 -0.018
SVR (Before graph) 0.293 0.379 -0.007
SVR (First Month Actions) 0.255 0.328 0.247

(a) Profitable Tailorshop group

(b) Unprofitable Tailorshop group

Figure 3: Comparison of the income, expense, and invest-
ment proportions of the two participant groups.

can provide greatly differing experiences even for partici-
pants with a rather similar overall behavior.

However, even when direct predictions based on the causal
map graphs were not possible, the similarity to the tailorshop
graph can still serve as a predictor of performance in terms
of correlation: If participants started with a graph more simi-
lar to the actual simulation, they should be able to make bet-
ter informed decisions, thereby increasing their performance.
The one-sided Spearman correlation between the similarity
of the Before graph to the tailorshop graph showed a sig-
nificant moderate correlation (r = .264; p = .035). Still, it
does not seem to provide enough information for the models
for individual predictions, but can be a useful utility metric.
Similarily, the CRT showed a significant correlation with per-
formance, while the NFC did not (One-sided Spearman rank
correlation: CRT: r = .245, p = .047; NFC: .062, p = .337).

Analyzing Strategies and Actions
Since the tailorshop scenario is a dynamic simulation, partic-
ipants experienced different situations depending on their ini-
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tial decisions, making it hard to be captured and predicted by
the limited causal map information. Therefore, we will now
turn to the analysis of actions and strategies that participants
used with respect to the resulting performance.

General Properties
Overall, 31.25% of the participants ended in debt, while only
10 participants (20.83%) had profitable tailorshops. For the
following analyses, we focus on the difference between the
profitable and all unprofitable tailorshops, not covering the
differences to the subgroup of unprofitable tailorshops that
ended up in debt specifically. First, the two groups are com-
pared in terms of their expense, investment and income strate-
gies. A breakdown thereof is shown in Figure 3. While the
difference for the income is mostly due to the necessity of tak-
ing a loan or using up the savings, it becomes apparent that
the profitable group very rarely relied on their savings over
the course of the simulation. When considering the expenses
and investments, the only major difference appears to be the
investment in machines, which takes up a substantially larger
proportion of the investments for the unprofitable group, and
was invested in additional sales outlets instead by the prof-
itable group. Overall, investment and expenses are rather sim-
ilar, hinting at a problem of finding the right point in time:
While comparable over the course of the run, the profitable
group seems to make better decisions from the beginning (as
indicated by the low proportion of used savings).

To gain a deeper understanding of the mechanisms causing
the differences, we investigated the behavior of both groups
on the level of actions and respective effects on the derived
variables. Additionally, we included the exploration phase
into the investigation, in order to see if participants with a bet-
ter performance used the exploration phase to learn a strategy
or had a better approach right from the beginning. Figure 4
shows the actions performed by both groups in each month
as well as the resulting changes to the observable derived
variables. From this, several findings are noteworthy: First,
both groups had a negative outcome in the exploration phase,
but used the phase by performing more drastic changes com-
pared to the test phase, which was possibly the cause for the
worse overall performance. Second, the first month showed
by far the biggest changes and seemed to contain all the ini-
tial investments and adjustments that were planned to set the
tone for the remaining months. Especially in the test phase,
no substantial adjustments to the extend of the first month
are made to any variable afterwards (besides selling every-
thing right at the end to boost the final results). Third, the
actions performed in the first month resembled the behavior
already present in the exploration phase, with minor adjust-
ments. This is corroborated by a significant strong correlation
between the performance in the exploration phase with the
performance in the test phase (One-sided Spearman’s rank
correlation: r = .879, p < .001).

Overall, a few clear but subtle differences between both
groups emerged: For one, both groups switch to the ma-
chines with more capacity, but the profitable group sells the

old machines more decisive. For another, the profitable group
seemed to avoid running in a supply shortage by investing
more in raw material, machine maintenance, new machines
and workers as well as salary compared to the unprofitable
group. Finally, the unprofitable group starts with expanding
outlets right away, which the profitable group is more hesi-
tant to do. After the first month, the actions reflect the general
situation: While the profitable group performs minor adjust-
ments to advertisement and shirt price, the unprofitable group
is forced to make cuts. While this is important for investi-
gating the participants’ ability to perform small-scale adjust-
ments, it is mostly a product by the decisions that were made
in the first month.

Predicting Performance
To predict the performance based on the actions, we rely on
the same methods as in the causal map analysis. Again, we
use the SVR, this time using the actions performed in the first
month as inputs. The results (see Table 3) show that the SVR
is now able to outperform (MAE = 0.255, RMSE = 0.328)
the baseline models (MAE = 0.295 for the median baseline
and RMSE = 0.378 for the mean baseline, respectively). Fur-
thermore, it now achieves a positive coefficient of determina-
tion (R2 = 0.247), indicating that, even for a simple general
model, the first month provides easily accessible information.

Similarly to the correlation between causal map similarity
and performance, we developed metrics aiming to correlate
well with performance based on the actions. We used two
simple heuristic strategies as metrics:

1. Upgrade machines (buy better machines, hire the respec-
tive workers, and sell the old machines), was calculated as
follows:
strategy1 = sign(D M100 + D W100) ⇤ sign(�D M50),
where sign is the signum function and DM100, DW100
and DM50 are the changes of the number of machines and
workers.

2. Avoid production loss (buy raw material and invest in re-
pair/maintenance), calculated as follows:
strategy2 = Material + Repair

Both of the metrics correlated significantly with perfor-
mance (Spearman’s rank correlation for S1: r = .310, p =
.016; for S2: r = .656, p< .001), indicating that a few actions
in the first month are already good predictors for the perfor-
mance. The present results suggest another explanation for
the limited success of using causal maps: Due to the task’s
reliance on initial actions, many assumptions about variable
interplay become irrelevant, whereas later decisions hard to
predict due to the self-reinforcing and complex nature of the
scenario.

Discussion
In the present article, we assessed three issues: First, we as-
sessed the importance of the knowledge and assumptions that
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(a) Profitable (b) Unprofitable

Figure 4: Average actions (changes to controllable variables) and the resulting observed variables for profitable/unprofitable
tailorshops during the exploration and test phase. Darker shades of blue/red denote higher increments/decrements, respectively.

participants have before interacting with the tailorshop sim-
ulation are for the performance and if a revision of the as-
sumptions is observable. For that, we obtained a causal map
representing the relationships between the variables of the tai-
lorshop before and after participants were interacting with the
simulation. Thereby, the causal maps showed no significant
signs that the initial assumptions were updated and could, de-
spite correlating moderately, not be used as predictors of tai-
lorshop performance when modeled using support vector re-
gression. Similarly, the results of the Cognitive Reflection
Task and the participants’ Need for Cognition had no sig-
nificant influence on the model. Finally, we found that the
performance during the exploration phase was strongly cor-
related with the performance in the test phase, which further
supports that no substantial changes to the assumptions were
made. While it was expected that a real-world inspired sce-
nario would be substantially impacted by real-world knowl-
edge, part of the results could be explained by a limitation of
the causal maps: The restriction to only represent positive or
negative dependencies is too coarse to describe the dependen-
cies that participants actually expect, introducing noise due to
ambiguity and the lack of expressiveness.

Second, the actions selected by the participants were in-
vestigated. The analysis showed that the first month was by
far the most dominant month, setting the tone for the whole
run. This is likely to cause most other factors to become irrel-
evant, especially since the scenario itself is highly dynamic.
Participants that made less fortunate actions in the first month
rarely recovered, which in turn can likely alter their strate-
gies. Although the first month is often excluded (Danner et
al., 2011; Greiff et al., 2015), which is a reasonable means if
the focus lies on the micromanagement feedback-loop during
the other months, we argue that this is not ideal for cogni-
tive modeling of complex problem solving. On the one hand,
participants were instructed that the scenario has a time limit

of 12 months, where only the company value at the end mat-
tered. This implies that each intermediate steps on its own
does not necessarily reflect the actual thought processes. The
fact that 25% of participants considered selling everything at
the end to boost the final result further corroborates that they
had, in fact, an overarching strategy. Since excluding the most
impactful month from the performance evaluation strips the
tailorshop almost entirely of its investment phase, in which
planning and the strategies of participants arguably matter the
most. Even when excluded, the first month will still alter the
whole scenario and thereby the behavior of the participants,
making it near impossible to predict. When predicting based
on the initial actions, the support vector regression performed
substantially better and outperformed the baselines. Further-
more, we were able to formulate simple strategies based on
the first month alone that can serve as highly correlating pre-
dictors for success in the tailorshop. For predictive model-
ing endeavours, this leaves the tailorshop scenario in a tricky
state, since most of the planning and adaption processes will
be hidden by the dominant initial decisions, which can set the
tone for the complete run in a complex non-linear scenario.

In conclusion, while we deem the use of complex prob-
lem solving in cognitive modeling important to extend its
boundaries further into the area of real-world scenarios, we
argue that the tailorshop gets trapped in its complexity, which
makes it prone for snowball effects based on early actions.
To this end, our results align with the critique by Greiff and
Funke (2009) on “one-item-testing”. Especially for cognitive
modeling, it is essential to rely on a complex tasks that is ei-
ther easily repeatable (i.e., by having multiple items), or is
less self-reinforcing, so that the actions performed by partici-
pants across all steps of the tasks have a similar impact. In the
end, overarching strategies have to be observed at the same
time as small step-to-step adjustments — since both are es-
sential components of real-world complex problem solving.
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between test intelligence and problem solving success].
Zeitschrift für Psychologie mit Zeitschrift für angewandte

Psychologie, 189(1), 79-100.
Putz-Osterloh, W. (1983). Über Determinanten komplexer

Problemlöseleistungen und Möglichkeiten zu ihrer Erfas-
sung [On factors for complex problem solving and possi-
bilities of their diagnosis]. Sprache & Kognition, 2, 100–
116.

Toplak, M. E., West, R. F., & Stanovich, K. E. (2014). As-
sessing miserly information processing: An expansion of
the cognitive reflection test. Thinking & Reasoning, 20(2),
147-168. doi: 10.1080/13546783.2013.844729

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

36



Dissecting the Drivers of Change Points in Individual Learning: An Analysis with

Real-World Data

Michael Collins (michael.collins.74.ctr@us.af.mil) NRC Postdoc at AFRL Dayton, OH, USA

Florian Sense (florian.sense@infinitetactics.com) InfiniteTactics, LLC Dayton, OH, USA

Michael Krusmark (michael.krusmark.ctr@us.af.mil) CAE, Inc. Wright Patterson Air Force Base, Ohio

Tiffany Jastrzembski (tiffany.jastrzembski@us.af.mil) Air Force Research Laboratory Dayton, OH, USA

Abstract

Many different theories of learning have been developed to
account for human performance over time, often accounting
for performance at an aggregate level. Understanding perfor-
mance at an individual level is often more difficult because
of multiple different factors (e.g., noise, strategy selection, or
change in memory representation), which are often not ac-
counted for in simple learning theories. One approach used
to explain the sudden changes in performance that are often
observed at the individual level is to integrate change detec-
tion algorithms with psychological models. This research has
shown that performance at the individual level can be under-
stood not by a single continuous process but instead by seg-
mented portions of multiple processes. Previous research has
posited different explanations as to what features drive the in-
ferences of change points. However, no paper has yet com-
pared different explanations’ ability to explain the variance in
inferred change points. In this paper, we use a simple model
of learning to account for performance in a real-world data set
with individuals performing multiple different games that tap
into different task attributes (i.e., memory, attention, problem-
solving) on the website Luminosity. We then conduct a sta-
tistical analysis to determine what drives change points in the
dataset. The results here allow for better clarification as to
what features are driving the inferences of change points at the
individual level.
Keywords: Learning, Change detection, Real-World data,
Cognitive Models

Introduction

One primary interest in psychology has been understanding
how individuals learn and retain information over time across
a range of tasks. Research on learning has spanned vari-
ous levels of complexity from simple paired associates tasks
(Newell & Rosenbloom, 2013) to complex tasks (Gray &
Lindstedt, 2017), illuminating how individuals learn and ac-
quire information about general domains (e.g., algebra) and
develop high levels of expertise (e.g., chess), (Newell & Si-
mon, 1972). To explain human learning across these dif-
ferent domains, multiple different models have been devel-
oped according to different features of memory (e.g., de-
cay, spacing effect, Kumar, Benjamin, Heathcote, & Steyvers,
2022), learning mechanisms (procedural vs declarative mem-
ory), and strategies (instance-based learning, Gonzalez, Dutt,
& Lebiere, 2013).

These different learning models often focus on average per-
formance across individuals. Although, the focus on account-
ing for average human performance certainly has a place in
psychology, it can lead to the development of models that
do not generalize to individual-level performance (Estes &

Todd Maddox, 2005; Heathcote, Brown, & Mewhort, 2000).
The difficulty in generalizing models developed to fit average
to individual performance stems from the fact that individual
performance often does not follow smooth, continuous per-
formance curves that best account for average performance,
but instead contain periods of improvement followed by sud-
den increases or decreases in performance. The sources of
variability in individual performance can be thought of as
stemming from different features: (1) individual differences,
such as learning rates (Lee, Gluck, & Walsh, 2019; Heathcote
et al., 2000), (2) problem-solving strategy (Gray & Lindstedt,
2017), or (3) learning mechanisms (Smith & Minda, 1998).

To account for the variability in performance at the indi-
vidual level, cognitive models have been paired with change
detection algorithms, to estimate change points in an indi-
vidual’s performance to account for shifts in the underlying
process (e.g., change in model - Lee et al., 2019; Tenison &
Anderson, 2016 or model parameters, Tenison & Anderson,
2016; Collins, Sense, Krusmark, & Myers, 2023 ). Change
detection algorithms are statistical approaches that attempt
to identify homogeneous segments within time series data
(Serre, Chételat, & Lodi, 2020). Previous research has shown
that the variability in individual performance is not best ex-
plained by simply noise but systematic variation in learning
trends (Gray & Lindstedt, 2017; Lee et al., 2019; Tenison &
Anderson, 2016; Collins et al., 2023). Though this prior re-
search has been able to explain individual performance at a
fine level of granularity, different explanations as to what fea-
tures of an experiment give rise to these estimated changes in
performance have been given. In this paper, we review three
different explanations as to why change points are inferred
and evaluate their ability to explain the estimates of change
points in a real-world dataset.

Explanations for Change Points

The research that has explored integrating change detection
algorithms with psychological models has provided different
explanations as to why changes are inferred while learning
(Gray & Lindstedt, 2017; Tenison & Anderson, 2016; Lee
et al., 2019). One explanation posited by Gray and Lindst-
edt (2017) is that sudden shifts in performance are the re-
sult of changes in the individual’s strategy on a particular
task. Changes occur during skill acquisition when individ-
uals explore and refine problem-specific strategies to solve a
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task which may allow the individual to improve their perfor-
mance compared to a previously used strategy. Positing strat-
egy exploration allows for models of learning to account for
performance profiles that include consistent improvements
as well as periodic increases or decreases in performance,
which can be understood as an individual trying a new strat-
egy. Given Gray and Lindstedt (2017)’s explanation of why
change points are inferred two predictions are made. First,
change points are dependent on the task. Second, change
points are equally likely to occur at any time while perform-
ing a task depending on the experience and motivation of the
individual while performing the task.

A second explanation for why changes occur posits that
sudden changes in performance are due to memory consoli-
dation. Tenison and Anderson (2016) argue that individuals
progress through three stages when learning to solve a par-
ticular problem: First the solution to a task is represented us-
ing purely declarative memory; next, the declarative informa-
tion is consolidated into a mix of declarative and procedural
memory representations; and finally, the task information is
compiled into procedural memory. Each of these phases of
learning is assumed to have a unique learning curve (Tenison
& Anderson, 2016; Kim, Ritter, & Koubek, 2013). Given
Tenison and Anderson (2016)’s explanation of change points,
two predictions are made. First, inferred change points are
dependent on a problem’s content, which must be able to be
consolidated from declarative to procedural memory. Second,
change points are more likely to be inferred early in perfor-
mance and then decrease over time as the individual moves
through the three stages of learning.

Finally, Lee et al. (2019) posit that sudden changes in per-
formance occur when individuals explore different strategies
due to inherent motivation or shifts in the payoff structure of
the environment. However, in contrast to Gray and Lindst-
edt (2017), Lee et al. (2019) assume that the number of in-
ferred change points is a function of the individual—not spe-
cific task or problem content. Based on this, two predictions
are made. First, the number of inferred change points should
vary between individuals and not be dependent on the task
or problem content. Second (like Gray & Lindstedt, 2017),
change points can occur at any point in time due to strategy
exploration.

The Current Work

In summary, the work reviewed above proposes that change
points occur for different reasons: the specific problem being
learned (Gray & Lindstedt, 2017), problem-content (Tenison
& Anderson, 2016), and participant (Lee et al., 2019). Previ-
ously, each of these explanations has been applied to differ-
ent experimental situations: Space Fortress, novel math prob-
lems, and decision-making tasks, respectively. However, no
attempt has been made to compare these different explana-
tions against each other on a single dataset. In this paper,
we compare the ability of the three different explanations to
best account for inferred change points applied to a real-world
dataset of individuals completing different games on Lumi-

nosity (Steyvers & Schafer, 2020). Specifically, our analyses
will zoom in on the following distinguishing points:

• Are the number of change points inferred across all game
plays on Luminosity best explained and predicted by either
the subject, game attribute or the specific game?

• How does the probability of a change point occurring
change over game plays?

The remainder of this paper is structured as follows. First,
we give an overview of the Luminosity dataset (Steyvers &
Schafer, 2020) used in this paper. Second, we outline the
learning model and procedure used to infer change points in
the individuals’ performance on Luminosity. Third, a series
of analyses based on the inferred change points is presented to
shed light on the above question. Finally, we explore the im-
plications of our results and outline areas of future research.

Method

Luminosity Dataset

Luminosity is an online learning platform where individuals
can play games to improve various cognitive abilities. The
dataset collected by (Steyvers & Schafer, 2020) consisted of
a record of up to the first 60 game plays of 36,297 individ-
uals playing 84 different games. All of the recorded data
from Luminosity was performed online as opposed to on a
mobile phone. A latent factor analysis was used to catego-
rize games as having one of six primary attributes: atten-
tion, problem-solving, memory, flexibility, speed, or math
(Steyvers & Schafer, 2020).

Participants The full Luminosity data (Steyvers &
Schafer, 2020) was composed of 36,297 individuals (Male
= 39%, Female = 50%, Unidentified = 11%) ranging from
18-91 years old with a range of education. For this paper, 214
participants were randomly sampled from the full dataset for
our analysis. A fairly small subset of the full dataset was used
in this because of the computational time required to run the
change detection algorithm.

Performance Measures On Luminosity, participants re-
ceived a score based on their (1) accuracy, (2) speed, and (3)
bonus points after each time they played a game. The Lu-
minosity dataset contained the participants’ raw performance
scores as well as normalized performance scores1. For the
analysis conducted in this paper, the normalized performance
scores were used so that performance across different games
could be compared.

Learning Model

Various learning models have been developed and compared
both for the Luminosity data (Kumar et al., 2022) and in con-
junction with change detection algorithms (Gray & Lindstedt,

1See Steyvers and Schafer (2020) for details on how performance
scores were normalized.
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2017; Tenison & Anderson, 2016; Lee et al., 2019). Here, we
use a well-established exponential learning model:

Performance = A�U ⇥ e�N⇥a (1)

The model’s fixed parameter (N) represents the number of
exposures on a particular task. While the model’s free param-
eters control the maximum performance value (A), the perfor-
mance intercept (U), and the rate of learning (a).

Model Fitting

For this paper, the above learning model was paired with a
change detection algorithm (Serre et al., 2020) fit individu-
ally to each game played by each participant using a genetic
algorithm. Genetic algorithms are a type of optimization al-
gorithm that mimic natural selection. They work by specify-
ing a ‘population’ of potential parameter values (i.e., possi-
ble change points) and then determining the ‘fitness’ of each
population (e.g., BIC, RMSD, r, likelihood, etc.). After the
fitness of a set of parameters (i.e. population) has been de-
termined, a new set of potential parameters is generated ac-
cording to mutation, cross-over, and fitness values based on
the previous population. The process of recursively modify-
ing and specifying a set of parameter values is repeated until
the algorithm converges on a solution. One key parameter
that needs to be set is the maximum number of change points
that can be inferred. Here, we used the total number of game
plays completed by the participant on a particular Luminosity
game.

This approach was combined with the cognitive model in
the following way: First, the genetic algorithm proposed a set
of potential change points that separated the participant’s per-
formance into different segments. Next, the learning model’s
three free parameters (A, U , a) and a parameter for the stan-
dard deviation of a normal distribution (SD) were fit sepa-
rately to each segment via maximum likelihood. Then, a fit-
ness value for the combination of proposed change points and
the learning model’s parameters was determined. Conver-
gence is declared if the fitness is not improved for ten consec-
utive iterations. We chose the BIC as our measure of fitness
because it takes into account (1) the number of free parame-
ters (i.e., number of change points and the learning model’s
free parameters), (2) the likelihood of the learning model’s
fit to each segment, and (3) the total number of game plays.
Each additional change point that is added thus adds five ad-
ditional parameters (the change point, A, U , a, and SD, which
is used to compute the likelihood). The BIC ensures that the
increased complexity of adding more change points is war-
ranted by a proportional increase in ‘fitness.’

Results

Overall Fit and Inferred Change Points

First, we review the model’s fit to the participants’ perfor-
mance across all Luminosity games and the number of in-
ferred change points inferred across all games. The model’s
fit was assessed using correlation (r) and root mean squared

error (RMSD). Overall, the learning model paired with the
change detection algorithm was able to fit the participants’
performance very well (r = .95, RMSD = 8.56) (Figure 1).
An examination of the average normalized performance over
time reveals a standard average performance curve with low
initial performance that increased over time reaching a per-
formance plateau (Figure 1).

Figure 1: Average human performance (black line) across all
game plays and the model’s fit (dashed red line and ribbon +/-
95% CI).

Next, we examined the total number of inferred change
points across all of the games played on Luminosity. As
can be seen in Figure 2 at least one change point was in-
ferred (M = 2.84, SD = 2.12) for the majority of the partici-
pants (90.9%). Furthermore, the distribution of the number of
change points is highly skewed, showing that a large number
of change points was uncommon.

Figure 2: Histogram of the number of inferred change points
per game across all participants.

Sources of Variance in Change Points

Addressing our first key question directly, we want to deter-
mine which features explain variance in the occurrence of
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change points. To this end, we used the sequence of game
plays associated with each user playing the various games
and fit a logistic mixed-effects regression model. The de-
pendent variable was the binary result of the change detec-
tion algorithm: Was a change point inferred for this game
play? As a first step, we fit an intercept-only model that in-
cluded random intercepts for each of three variables that cor-
respond to the possible sources of variance outlined in the
introduction: the user, the game, and the primary attribute
(e.g., ‘memory’) associated with each game. We compared
the intercept-only model with random effects for all three
variables to the intercept-only model with no random effects
as well as all possible combinations of said effects. Both the
AIC and BIC favor the model that includes both user- and
game-specific random intercepts. This model narrowly out-
performs the model that also includes random effects for the
primary attribute ( BIC 77,959 vs. 77,970 and AIC 77,929
vs. 77,930). By looking at the adjusted intra-class correla-
tion (ICC) values (Lüdecke, Ben-Shachar, Patil, Waggoner,
& Makowski, 2021) for the intercept-only models, we learn
how much of the variance in whether a change point is in-
ferred is attributable to the random effects. ICC values are
0.218 for the user-game model and 0.219 for the model with
all three random effects, confirming that there is a tiny advan-
tage of the full model2.

Given prior research, however, the model likely needs to
be extended to account for the likelihood of change points as
a function of practice (i.e., game plays). Speaking directly
to our second key question: Change points were more likely
to occur during earlier game plays (see black dots in Figure
3). The model fit shown in Figure 3 is an extension of the
intercept-only model above to which we added fixed effects
for game play number (scaled but shown on the original scale
for clarity). Further model comparison suggests that adding a
quadratic term for game play number further improves model
fit (AIC: linear = 77,329 vs quadratic = 77,057; BIC: linear =
77,369 vs quadratic = 77,108). Adding a third-degree poly-
nomial was not warranted. The depicted model is the end
result of a further model comparison step in which we tested
the different random effects structures in the presence of the
quadratic term of game play number. The comparison con-
firmed the results based on the intercept-only model: Both
user- and game-specific random effects explain significant
amounts of variance in change point occurrence but adding
attribute-based effects only has a tiny benefit that is not war-
ranted given the added complexity.

Taken together, this set of model comparisons speaks to
previous explanations given for change points. We see that
change points do indeed occur more frequently early on,
which would be in line with the assertion by Tenison and An-
derson (2016). However, in these data, an uptick in the prob-
ability of a change points is apparent in the final game plays,

2For reference, the ICC values for the models that only include a
single random effect each are: user = 0.085; game = 0.112; attribute
= 0.032.

Figure 3: The ratio of inferred change points per game play
(black line) and the linear mixed model’s fit (red line).

which is why the quadratic term in the model improved the
fit markedly. This in turn goes against the purely negative
relationship between change points occurrences and time, as
proposed by Gray and Lindstedt (2017) and Lee et al. (2019).
Furthermore, this analysis also provides some insight into the
dominant sources of variability in the occurrence of change
points. There is no strong evidence that the primary attribute
of the task (e.g., memory vs attention) provides significant
explanatory power while both user- and game-based sources
of variance do.

Predicting the occurrence of change points

For the final analysis, we will adopt a predictive rather than
explanatory approach (Shmueli, 2010). The goal of this anal-
ysis is to shed more light on the sources of variance that are
leveraged when the goal is to predict whether a change point
will be inferred on the next trial. This is not unlike the mixed-
effects regression approach in the previous section. Here,
however, we will leverage a gradient-boosted decision tree
ensemble that can learn and leverage non-linear relationships
between the predictors without requiring us to specify them in
advance. The feature importances extracted from the trained
model are our primary interest.

Specifically, we trained an XGBoost classifier using log-
loss (max depth = 6; h = 0.2; rounds = 100; using the imple-
mentation from Chen et al., 2024). As above, the outcome
measure was whether a change point is inferred for a given
game play number. As predictors, we one-hot encoded the
users, games, and primary attributes. Additional predictors
were the game play number, the lagged normalized perfor-
mance (we included lags one through three as predictors),
as well as sliding window mean performances (with window
sizes three and nine; all based on lag-1 performance to avoid
data leakage).

We trained the model on 80% of the data (log loss = 0.177)
and evaluated it on the 20% hold-out set (log loss = 0.192)
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to verify that it generalized. From the trained model, we ex-
tracted the gain for each feature as a metric of feature im-
portance. Because we were primarily interested in groups
of features (e.g., how important are users as a grouping rel-
ative to games as a grouping), we used model-based feature
aggregation: First, we scaled the gain values so they sum to
1; then we summed all scaled gain values for each group-
ing to get an aggregate importance value. For example, there
are 84 games. Their labels were turned into 84 one-hot en-
coded predictive features, each of which was associated with
a gain value (i.e., feature importance). Summing the scaled
gain values for all 84 games gives a value of 0.20, which is
the proportion of overall importance attributable to the feature
category ‘game.’ The proportions of model-based feature ag-
gregations are shown in Figure 4. The exception in this graph
is game play, which is only a single feature3. We can see
from the graph that performance-based features are most im-
portant, the top three of which are the lag-1, sliding window
mean with size 9, and lag-2 (proportions: 0.129, 0.078, and
0.075, respectively).

Broadly speaking, this predictive modeling approach con-
firms the explanatory analyses above. Both user- and
game-based features are more important than the primary
attribute—which contributes to the predictive power but not
much4. Game play is the single most important predictor,
which is in line with the results in Figure 3. Notably, the per-
formance in preceding trials—which is what the lagged val-
ues represent—is the most important category of predictors.
Naturally, the change detection algorithm that determines the
change points that are predicted here depends on the preced-
ing performance values. Hence, it is not too surprising that
the pattern of scores just before the change point contain pre-
dictive information. One downside of using a machine learn-
ing model like XGBoost that can learn arbitrary mappings be-
tween the predictors is that the final model usually contains
non-linear, higher-order interactions between features that are
difficult to disentangle.

Discussion

Previous research attempting to understand learning at an in-
dividual level has explored integrating change detection algo-
rithms with psychological models of learning (Gray & Lind-
stedt, 2017; Lee et al., 2019; Tenison & Anderson, 2016).
Pairing change detection algorithms with models of learning
has allowed psychological models to better account for the
variability found in individual performance. However, de-
spite the improved ability to account for individual perfor-
mance, varying explanations as to what features are most as-
sociated with inferred change points (participant, problem-
type, or problem) and when they will be inferred (i.e., early

3We did not include specific transformations or polynomials as
in the previous analysis because the tree ensemble is well-equipped
to learn any (potentially non-linear) patterns directly from the data.

4The two most important attributes are ‘problem solving’ and
‘math’ with proportions 0.021 and 0.010, respectively. All other
attributes have values < 0.01.

Figure 4: Model-based feature aggregation extracted from the
trained XGBoost model.

on in performance or uniformly over time) have been given.
For this reason, we compared these different explanations to
see which features could best explain the variance in inferred
change points in a real-world dataset. Our analysis focused on
what features of the data would best explain and predict the
inferences of change points across individuals’ performance.

Our results revealed that the variation in inferred change
points could be understood by previously proposed explana-
tions (Gray & Lindstedt, 2017; Tenison & Anderson, 2016;
Lee et al., 2019) to varying degrees. We found that the
most relevant features for explaining the variability in change
points were user and game, in line with the explanations given
by Gray and Lindstedt (2017) and Lee et al. (2019). Little ev-
idence was found that problem-type accounted for meaning-
ful variation across the inferred Luminosity dataset, which
went against the prediction made by Tenison and Anderson
(2016). These findings were corroborated by the predictive
modeling approach, which also identified user and game as
being markedly more important than problem-type (i.e., pri-
mary attribute).

Furthermore, we examined how the probability of change
points changed over game plays. We found that there was
a non-linear relationship between change points and game
plays, with most change points being inferred during early
game plays and a slight uptick during later game plays. The
initial high number of change points during initial game plays
is consistent with the explanation given by Tenison and An-
derson (2016). However, the slight but significant increase
in inferred change points during later game play is consistent
with the explanation given by Lee et al. (2019) and Gray and
Lindstedt (2017).

Finally, using a gradient-boosted decision tree ensemble,
we found that the change points inferred by that change de-
tection algorithm could be predicted, using a variety of differ-
ent features, such as prior performance, game play, game, and
user. This result further supports the notion that the inferred
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change points are systematically identifiable and predictable
based on past performance.

Limitations and Future Research

Several limitations and lines of future research should be ac-
knowledged. First, the inference of change points will always
depend on the model and change point algorithm selected.
For this paper, a simple learning model was chosen to fit the
participant’s performance. However, more complex cognitive
models of learning (e.g., PPE, Collins et al., 2023) might be
able to better account for performance over longer periods
leading to the inference of fewer inferred change points. Sec-
ond, this paper focused solely on learning over time based on
the number of exposures to a particular game. However, other
cognitive mechanisms such as memory decay also play a role
in learning over time and have shown to be relevant for ac-
counting for performance over time on Luminosity (Kumar et
al., 2022; Collins et al., 2023). Future research should explore
the robustness of these findings when using different change
detection algorithms and more complex models of learning to
see if the findings reported in this paper can still explain the
inferred change points across individuals’ performance

Conclusion

Incorporating change detection algorithms with psycholog-
ical models allows for models to better account for large
amounts of variability in human performance. The benefit
of this approach is that more nuanced theories can be evalu-
ated at an individual level to better understand human learn-
ing. However, incorporating change detection algorithms
with psychological models also increases the complexity of
models. Our results found that the explanations previously
given can explain the variability in inferred change points in
a real-world dataset to various degrees. These findings both
support the conclusions of previous work and also provide an
opportunity for model development to better explain human
learning at an individual level.

Acknowledgments

We would like to thank Steyvers and Schafer (2020) for col-
lecting and making the Luminosity dataset public.

References

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.,
Cho, H., . . . Yuan, J. (2024). xgboost: Extreme gradi-
ent boosting [Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=xgboost (R
package version 1.7.7.1)

Collins, G. M., Sense, F., Krusmark, M., & Myers, T. (2023).
Modeling change points and performance variability in
large-scale naturalistic data. MathPsych/ICCM.

Estes, W. K., & Todd Maddox, W. (2005). Risks of draw-
ing inferences about cognitive processes from model fits to
individual versus average performance. Psychonomic bul-
letin & review, 12(3), 403–408.

Gonzalez, C., Dutt, V., & Lebiere, C. (2013). Validating
instance-based learning mechanisms outside of act-r. Jour-
nal of Computational Science, 4(4), 262–268.

Gray, W. D., & Lindstedt, J. K. (2017). Plateaus, dips, and
leaps: Where to look for inventions and discoveries during
skilled performance. Cognitive science, 41(7), 1838–1870.

Heathcote, A., Brown, S., & Mewhort, D. J. (2000). The
power law repealed: The case for an exponential law of
practice. Psychonomic bulletin & review, 7(2), 185–207.

Kim, J. W., Ritter, F. E., & Koubek, R. J. (2013). An inte-
grated theory for improved skill acquisition and retention
in the three stages of learning. Theoretical Issues in Er-
gonomics Science, 14(1), 22–37.

Kumar, A., Benjamin, A. S., Heathcote, A., & Steyvers, M.
(2022). Comparing models of learning and relearning in
large-scale cognitive training data sets. npj Science of
Learning, 7(1), 24.

Lee, M. D., Gluck, K. A., & Walsh, M. M. (2019). Un-
derstanding the complexity of simple decisions: Modeling
multiple behaviors and switching strategies. Decision, 6(4),
335.
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Abstract 
This paper investigates the computational mechanisms 
underlying a type of metacognitive monitoring known as 
detached mindfulness, a particularly effective therapeutic 
technique within cognitive psychology. While research 
strongly supports the capacity of detached mindfulness 
to reduce depression and anxiety, its cognitive and 
computat ional underpinnings remain largely 
unexplained. We employ a computational model of 
metacognitive skill to articulate the mechanisms through 
which a detached perception of affect reduces emotional 
reactivity. 

Keywords: metacognition; mindfulness; affect; emotion; 
proceduralization; ACT-R; Common Model 

Introduction 
The attempt to build a Unified Cognitive Architecture 
(Newell, 1994) that can replicate human-like 
intelligence must necessarily account for the routine 
interplay between affect and metacognitive processes. 
Historically, cognitive modeling research has focused 
predominantly on knowledge-based processing such as 
reasoning, vision, and AI problem-solving, with little or 
no computational account of the critical role of emotion 
and metacognition.  
 This need for increased computational understanding  
is underscored by the fact that perseverative patterns of 
negative emotion, such as depression and anxiety, are 
the largest causes of cognitive disability worldwide 
(World Health Organization, 2022). Consequently, there 
has been a global push to develop metacognitive 
techniques that allow individuals to engage with their 
emotions adaptively. A particularly effective 
metacognitive technique is referred to as ‘detached 
mindfulness’ (Wells, 2005). This technique focuses on 
developing one’s perception of the momentary changes 
of affective states, shown to significantly reduce feelings 
of distress, emotional reactivity, and to improve overall 
cognitive functioning (Hammersmark et al., 2024).  
 While decades of clinical research strongly supports 
the effectiveness of metacognitive strategies and 
detached mindfulness in particular, their underlying 
cognitive and computational mechanisms remain 
largely unexplained. This paper will investigate the 
cognitive and computational constituents that underpin 
detached mindfulness and its therapeutic benefits. 
Specifically, we will discuss the metacognitive 
mechanism by which the perception of affective 

fluctuations deactivates emotional reactivity.  
 For this purpose, we will employ the Common Model 
of Cognition (CMC), originally the ‘Standard 
Model’ (Laird, Lebiere, & Rosenbloom, 2017), which 
provides a unified framework for investigating the 
fundamental elements of cognitive and metacognitive 
phenomena. By utilizing the Common Model, and 
specifically ACT-R (Anderson & Lebiere, 1998) in this 
investigation, we intend to address important questions 
largely unexplored in cognitive models: How does 
metacognitive training in detached mindfulness reduce 
perseverative styles of negative emotions? By what 
computational mechanism does perceiving the 
momentary changes in affect disengage emotional 
reactivity such as meta-emotions? 
 First, we will overview the relevant literature on 
metacognition and mindfulness techniques. Second, we 
outline the computational mechanisms involved in a 
model of metacognitive skill learning. Third, we apply 
this model of metacognitive skill learning to detached 
mindfulness to clarify its underling components and the 
precise mechanism by which it reduces emotional 
reactivity as reported in the literature.    

Metacognition   
We propose that an active mechanism of detached 
mindfulness fundamentally relies on a form of 
automatized metacognition. The common conception of 
metacognition refers to the monitoring and control of 
cognitive processes (Flavell 1979; Fleming, Dolan, & 
Frith, 2012).  Metacognitive control refers to the active 
regulation of cognitive processes or states to either 
activate or inhibit them (Proust, 2013; Wells, 2019). 
The regulation of one’s own cognitive processes can 
involve various processes such as attention, emotion, 
planning, reasoning, and memory (Efklides, Schwartz, 
& Brown, 2017; Pearman et al., 2020). Metacognitive 
monitoring refers to the capacity to recognize and 
identify cognitive states. It involves the perception of 
internal mental states such as thoughts and feelings in 
order to regulate those states or direct behavior.  
 Studies demonstrate that metacognitive monitoring 
can be developed and improved through training (Baird, 
Mrazek, Phillips, & Schooler, 2014). For instance, 
attentional processes can be developed and enhanced 
through the repeated practice of attention-based tasks 
(Posner et al., 2015). Metacognitive training such as 
mindfulness techniques is integral to both Cognitive 
Behavior Therapy (CBT; Dobson, 2013) and 
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Metacognitive Therapy (MCT; Normann & Morina, 
2018) and facilitates improved control over maladaptive 
thoughts and emotions (Wells, 2011, 2019; Hagen et al., 
2017). The benefits of mindfulness training rely partly 
on its enhancement of metacognitive sensitivity, which 
is the extent to which one is able to perceive their own 
mental processes or states, including thoughts, feelings, 
and emotions (Fleming & Lau, 2014). Improved 
metacognitive sensitivity has the effect of lowering 
one’s metacognitive threshold — the minimal level of a 
stimulus required for a person to be aware of some 
mental state and make a judgment about it (Charles, 
Chardin, & Haggard, 2020; Pauen & Haynes, 2021). 
The metacognitive threshold can also be lowered by 
way of attentional training, such as detached 
mindfulness and meditation, which allows one to 
perceive a weaker signal strength from internal 
cognitive states (Fox et al., 2016). While this has been 
effectively modelled within ACT-R (Conway-Smith & 
West, 2023) it is not the main focus of this paper. 

Metacognition as mindfulness 
Scientific interest in mindfulness practice has become a 
target of interdisciplinary research and has grown 
exponentially over the past few decades (Van Dam et 
al., 2018). Metacognition and mindfulness are often 
used interchangeably within cognitive psychology 
(Holas & Jankowski, 2013). Mindfulness psychology 
contends that a significant degree of emotional distress 
and pathological symptoms are caused by the illusory 
perception of affective experience being more 
permanent than it actually is. This perceptual illusion 
has been explained as the result of poor metacognitive 
sensitivity that obscures the detection of affective 
fluctuation (Brown & Ryan, 2003; Grossman et al., 
2010). To address this metacognitive deficiency, 
detached mindfulness has emerged as a uniquely 
effective therapeutic technique (Wells & Matthews, 
1994; Hammersmark et al., 2024). This involves 
participants learning to observe moment-to-moment 
changes in mental states, including subtle emotional 
fluctuations, and allowing these states to occur without 
engaging with or reacting to them. 
 This non-reactive state of awareness is also referred 
to as ‘equanimity’. In mindfulness therapies that do not 
promote equanimity, awareness alone is often 
insufficient to increase subjects’ psychological well-
being (Cardaciotto et al., 2008). Detached mindfulness 
is most closely aligned with Vipassana meditation (in 
the tradition of S.N. Goenka), an old and popular 
technique that largely focuses on cultivating equanimity 
i.e., perceptual sensitivity to variations in affect and
physical sensation (Kakumanu et al., 2018). Regular
practice of this technique has shown to improve
executive functioning, response inhibition, and control
over emotional reactions such as meta-emotions
(Andreu et al., 2019).

Meta-emotion 
Meta-emotions are emotions that automatically react to 
other emotions (Jäger & Banninger-Huber, 2015; 
Predatu, David & Maffei, 2020). For instance, a primary 
negative emotion (sadness) can cause a greater 
secondary negative emotion (despair) which may cause 
an even greater tertiary negative emotion (depression). 
Meta-emotions are instances of positive feedback, in 
which an emotional response to a primary emotion 
intensifies the overall emotional experience, leading to 
an amplified response. Meta-emotions occur as low-
level reactive processes that are largely unconscious 
and involuntary, making them difficult to intervene in.  
 While therapeutic practices aim to control the 
resulting effects of meta-emotions such as anxiety and 
depression, techniques such as detached mindfulness 
and Vipassana aim to address the source, which is 
considered the false perception of affective 
permanence. To date, we lack a mechanistic 
understanding of precisely how detached mindfulness 
breaks through the illusion of affective permanence and 
disengages emotional reactivity. To clarify this  
mechanism, we will apply a model of metacognitive 
skill learning that articulates the components involved 
in this process and how they interact. Central to this 
e x p l a n a t i o n i s a p r o c e s s r e f e r r e d t o a s 
proceduralization, a framework that is common among 
skill theories. We will first discuss the relevant 
components of metacognition and their expression in 
the cognitive architecture ACT-R. We will then explore 
how the components of proceduralization function to 
produce the therapeutic mechanism active in detached 
mindfulness. 

Components of metacognition   
There are at least two types of cognitive representations 
that can engage in metacognitive monitoring and 
control processes — declarative knowledge and 
procedural knowledge. Metacognitive knowledge, or 
meta-knowledge, is considered a form of declarative 
knowledge (Schraw & Moshman, 1995; McCormick, 
2003; Wells, 2019). Meta-knowledge takes the form of 
an explicit metarepresentation that is propositionally 
formatted and refers to a cognitive property, e.g.: “I am 
focused” (Shea et al., 2014; Proust, 2013). Meta-
knowledge can also take the form of a metacognitive 
instruction, which specifies a mental action to be 
performed (Wells, 2019). A metacognitive instruction, 
or meta-instruction, prescribes an action directed 
toward controlling some cognitive process, e.g.: “Focus 
on the current task.” Metacognitive knowledge is 
considered to be distinct from metacognitive skill, as it 
does not automatically lead to the deployment of 
metacognitive processes (Veenman & Elshout, 1999). 
  The execution of metacognitive instructions is 
performed by way of procedural knowledge. 
Improvements in metacognition are said to involve the 
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refining of procedural knowledge that people use to 
monitor and control their own cognitive processes 
(Brown & DeLoache, 1978; Schraw & Moshman, 1995; 
Wells, 2019). The various realms of metacognitive 
skills can be understood as different domains of 
procedural knowledge (Veenman et al., 2005).  

ACT-R   
Various theories of metacognition have been modelled 
within the ACT-R cognitive architecture (Reitter, 2010; 
Anderson & Fincham, 2014). ACT-R instantiates 
decades of research on how human cognition functions 
computationally. Its mandate is to depict the 
components necessary for human intelligence, which 
include working memory, perception, action, 
declarative memory, and procedural memory. These 
modules have also been correlated with their associated 
brain regions (Borst et al., 2015). 
 The ACT-R cognitive architecture fundamentally 
distinguishes between declarative and procedural 
knowledge, which accords with the literature on skill 
acquisition in philosophy and psychology (Squire, 
1992; Christensen, Sutton, & McIlwain, 2016). 
Declarative knowledge is formatted propositionally and 
structured within semantic networks. Procedural 
knowledge is commonly referred to by researchers as 
containing “procedural representations” (Anderson, 
1982; Pavese, 2019). Within ACT-R, procedural 
representations are computationally specified as 
“production rules” which are a dominant form of 
representation within accounts of skill (Newell, 1994; 
Taatgen & Lee, 2003; Anderson et al., 2019). 
Neurologically, production rules are associated with the 
50ms decision timing in the basal ganglia (Stocco, 
2018). Production rules, or “productions”, transform 
information and change the state of the system to 
complete a task or resolve a problem. A production rule 
is modeled after a computer program instruction in the 
form of a “condition-action” pairing. It specifies a 
condition that, when met, performs a prescribed action. 
A production is also thought of as an “if-then” rule.       
If the condition is satisfied, such as matching to 
working memory, then it fires an action (Figure 1).  

Figure 1: Production rules are formatted as a condition-
action pairing. IF the condition side matches to the cue in 
working memory, THEN it fires an action. 

 Affect have been modelled computationally within 
ACT-R as non-propositional representations in working 
memory, or “metadata” (West & Conway-Smith, 2019). 

These types of affective information, encompassing 
both emotional states and noetic feelings, are regarded 
essentially as patterns within working memory that can 
be accessed by production rules.   
 Production rules match to and fire off the content in 
working memory. Should any stimuli or pattern appear 
in working memory, productions that match this pattern 
will arise from procedural memory and fire a prescribed 
action. In this way, cues in working memory can 
prompt procedural knowledge to act within various 
domains; motor, cognitive, and metacognitive. It is 
these specific cognitive units that are developed and 
refined during the process of proceduralization. 

Proceduralization  
The concept of proceduralization is often used within 
the skill acquisition literature to explain the cognitive 
mechanisms involved in task learning (Fitts & Posner, 
1967; Dreyfus & Dreyfus, 1986; Kim & Ritter, 2015). 
It refers to the process by which a task becomes 
automated, allowing it to be performed more 
efficiently and accurately, with minimal conscious 
effort or attention. The process involves converting  
slow declarative knowledge into fast procedural 
knowledge which is then increasingly refined. Skill 
performance can be further improved by way of 
mechanisms such as time delayed learning, where faster 
productions are rewarded. Proceduralization plays a 
significant role in the cognitive processes involved in 
skill learning within domains such as motor skill, 
cognitive skill, and metacognitive skill (Fitts, 1964; 
Anderson, 1982).     

Metacognitive proceduralization 
Metacognitive proceduralization involves a mechanism 
by which human cognition can become more skillful at 
monitoring and controlling its own processes, such as 
attention, emotion, and metacognitive sensitivity 
(Conway-Smith, West, & Mylopoulos, 2023). Previous 
research has presented proceduralization as a 
mechanism that can lower the metacognitive threshold, 
allowing one to perceive increasingly weaker signals 
from mental states and more subtle changes in affect 
(Conway-Smith & West, 2023). It is hypothesized that 
proceduralization accomplishes this through the 
building and refining of simpler, faster production rules. 
Faster and less complex productions, particularly those 
that notice internal states, increase the chances of 
picking up fleeting or intermittent signals related to 
emotions and epistemic feelings, such as confidence 
and feelings of knowing (FoK). However, this model 
does not address the process by which it mitigates 
emotional reactivity. By extending this research on 
metacognitive proceduralization, we can investigate a 
mechanism whereby sufficient metacognitive 
sensitivity can be developed to deactivate meta-
emotions. 
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Metacognitive skill progresses through stages that are 
parallel to those within motor skill and cognitive skill, 
from an early stage of instruction-following to an expert 
stage that relies on automatic procedural knowledge 
(production rules).  

Figure 2: Three stages of metacognitive skill learning 
through the process of proceduralization (Conway-Smith, 
West, & Mylopoulos, 2023). 

Metacognitive training in detached mindfulness 
progresses through the following three stages (Figure 2): 

The novice stage involves the use of written or verbal 
meta-instructions to monitor or control some cognitive 
state (such as attentional training or meditation). In the 
case of metacognitive training in equanimity, meta-
instructions direct the novice’s attention toward the 
momentary changes of affective experience (feeling, 
sensation, or emotion). These meta-instructions are 
carried out by productions that retrieve them from 
declarative memory and execute them. Initial 
metacognitive performance is slow, effortful, error-
prone, and requiring a large degree of working 
memory.
The intermediate stage of metacognitive training 
involves the process of proceduralization, where the 
practice of meta-instructions result in the creation of 
faster production rules to accomplish the task. 
Specifically, repeated practice would lead to the 
compilation of task-specific production rules that 
bypass declarative knowledge. Because they are faster 
(due to bypassing declarative memory and possibly 
being less complex), these productions are more 
strongly rewarded and more likely to bypass the 
retrieval of instructions in the future. Metacognitive 
performance is achieved more quickly, with less effort, 
and more automatically. 
 

The expert stage involves a robust accumulation of 
production rules that have been refined and stored in 
procedural memory. These productions can be deployed 
automatically to act out monitoring and control 
processes quickly and effectively. These productions 
may be faster and less complex, resulting in a lower 
metacognitive threshold and an improved perception of 
affective experience. Metacognitive performance in this 
case demonstrates many characteristics of expertise, 
i.e., being fast, effective, automatic, and requiring
minimal working memory.

Deactivating meta-emotions  
Proceduralization, the development of task-specific 
production rules, assists in providing a computational 
account of how training to perceive affective variations 
(equanimity) results in the deactivation of meta-
emotions.   
 Recall that productions rules match and fire off the 
content of working memory at a default rate of 50ms. 
That is, productions require at least 50ms to detect a 
pattern held within working memory. Should a pattern 
be perceived as sufficiently stable for over 50ms, 
productions will automatically match and fire off that 
pattern. Hence, the timing of production rules may be 
considered a condition of the metacognitive threshold 
(and psychophysical thresholds more generally) as it 
provides a partial account of which properties of the 
stimulus are needed to evoke a response, i.e., strength 
of signal and perceived stability. 
 An analogous psychophysical threshold is well 
known in vision research, where a light that flickers 
rapidly enough appears to be constant (Landis, 1954). 
This visual illusion is exploited in film production, 
where still frames are sped up to 24 frames per second 
to give images the appearance of consistency. The 
visual threshold at which still images appear to be 
constant has been referred to as the “moment of 
fusion”. This visual threshold can be partially raised or 
lowered due to individual differences such as fatigue 
and age. For our purposes, the illusion of the flicker-
fusion phenomena is comparable to the illusion of 
affective stability, in that they both rely on a person’s 
inability to perceive change above a certain rate.  
 Similar to the visual threshold, an individual’s 
metacognitive threshold is variable and can be lowered 
through attention training to perceive weaker signals 
from internal cognitive states, such as subtle changes in 
affect. Proceduralization offers a mechanism for 
developing and refining production rules that are more 
sensitive to internal signals, so as to eventually break 
the illusion of affective consistency.  
 A key insight into precisely how the refined 
perception of affective change (equanimity) deactivates 
emotional reactivity comes from the timing of 
production rules.  
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Above the threshold
 

To the extent that a person’s metacognitive threshold is 
above the 50ms firing rate of production rules, they will 
perceive any pattern within working memory to be 
relatively stable. Should a negative emotion appear to 
be consistent over the 50ms threshold, productions have 
sufficient time to match and fire a secondary negative 
emotion in response to the first. Assuming the same 
conditions, the secondary negative emotion may be 
perceived and reacted to again, producing a tertiary 
negative emotion. As long as the metacognitive 
threshold remains, along with the illusion of affective 
consistency, production rules may fire automatically 
and the processes of emotional reactivity may repeat 
indefinitely.  

This explanation sheds light on a potential 
mechanism that produces the continuous increase in 
negative emotions as experienced within many 
psychological disorders. Increasing and persistent 
cycles of maladaptive emotions are among the most 
common symptoms of mental illnesses and are 
associated with Cognitive Attentional Syndrome (CAS; 
Wells, 2009). A nearly universal phenomenon in 
cognitive disorders, CAS is a style of negative 
processing marked by fixed, negatively-biased attention 
which causes maladaptive emotions to be preserved and 
heightened, resulting in a continual state of emotional 
distress. 

While there is a lack of computational explanations 
for the mechanisms underlying this style of maladaptive 
processing, the timing of production rules can help 
explain how negatively valenced emotions can be 
heightened through a process of positive feedback. 
Production rules also help explain the largely 
unconscious and involuntary nature of emotional 
reactions, underscoring the need for metacognitive 
training to develop productions that counteract them. 

Below the threshold
 

We propose that a key mechanism contributing to the 
deactivation of meta-emotions is the ability to 
perceive affective change below the 50ms firing rate of 
production rules. Reducing the metacognitive threshold 
below 50ms produces an effect similar to what occurs 
in the visual flicker-fusion illusion when the speed of 
the film is reduced below 24 frames per second. The 
illusion of consistency is broken and one perceives the 
rapid arising and passing of experience.   

This refined perception of affective variations inhibits 
production rules from matching to the constant 
fluctuations in working memory (Figure 3). In effect, 
production rules do not have enough time to identify the 
rapidly changing pattern of affect. In principle, as long 
as this metacognitive sensitivity remains, productions 
are unable to fire secondary emotional reactions.  

Lowering one’s metacognitive threshold below the 
50ms rate requires an expert level of metacognitive 
skill, as it necessitates the accumulation of production 

rules that are sufficiently refined. These expert 
production rules can better detect the subtle variations 
in affective experience, and the fleeting signals from 
other internal cognitive states. Conversely, should one’s 
metacognitive threshold again rise above 50ms, the 
affective pattern would appear sufficiently stable for 
emotional reactivity to resume. 

This account helps to art iculate how the 
subcomponents of mindfulness training assist in 
diminishing cycles of negative emotion within 
psychological disorders such as Cognitive Attentional 
Syndrome. Individuals who experience CAS are often 
caught in patterns of negative emotion without a normal 
exit condition from the informational loop (Wells, 
2019). From a computational standpoint, the 
development of production rules of the type discussed 
would provide an exit condition from maladaptive 
emotional loops that would otherwise persist. 

This analysis highlights the pivotal role of 
metacognitive training in emotional regulation, and the 
key mechanism by which metacognitive practices such 
as detached mindfulness enhance the ability to perceive 
emotions without immediately reacting to them. 

Figure 3. Above the 50ms threshold, an emotion is 
perceived as sufficiently stable for productions to match 
and fire secondary emotions. Below the 50ms threshold, 
the perception of emotional impermanence prevents 
productions from matching and firing secondary emotions. 

Other considerations 
Accounting for mindfulness with cognitive modeling is 
a multifaceted endeavour, and there are many other 
considerations. For example, there is the issue of buffer 
decay, or how long patterns of activity can remain 
within working memory. These issues would apply to 
representations of both thought and emotion. Another 
issue is the ability for productions to match to 
emotional states and to declaratively label them. A 
particular issue that arises here can be understood in 
terms of partial matching, or the fidelity of the match. If 
we take emotion to be a representation of neural activity 
then we would expect it to have gradations of 
variability. Since the ability to recognize emotions 
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would depend on our ability to match to these 
representational gradients, we would need to assume 
some form of fuzzy matching. This raises the possibility 
that some individuals could have more finely tuned 
productions and conceptual categories for matching 
emotions, while others may have broader, more fuzzy 
categories.  
 Finally, Conway-Smith and West (2023) argued that 
the capacity of production rules to speed up could 
increase one’s sensitivity to detecting shifts in 
emotion, and discussed various ways that this speed up 
could be modeled.  

Conclusion   
In this paper we have argued that Common Model type 
architectures can account for important aspects of 
mindfulness and meditation practices. In particular, we 
have employed the concept of metacognitive 
proceduralization to explore the mechanism by which 
detached mindfulness disengages meta-emotions. A 
complete model has yet to be constructed, as more 
theoretical work is required to determine a method of 
evaluation, considering there is presently no obvious 
data source with which to compare. One future 
possibility would be to better articulate the neural 
correlates of this model and to compare these to the 
neural imaging results of meditators.  
 By elucidating the computational processes involved 
in detached mindfulness and its influence on emotional 
reactivity, we contribute to a more comprehensive 
computational understanding that integrates both 
metacognitive monitoring and control within a unified 
framework. Meditation on the impermanence of affect 
is presently an edge case for the Common Model, one 
that will likely raise questions as to its capacity to 
simulate it. Our analysis demonstrates that the Common 
Model framework is able to interpret this practice in a 
way that accords with reports from practitioners, i.e., the 
stages of learning, their experiences, and their ability to 
apply it.  
 Moreover, by applying the ACT-R cognitive 
archi tecture to the s tudy of metacogni t ive 
proceduralization, we help bridge the gap between 
cognitive modeling and psychological practice. The 
exploration of metacognitive proceduralization within 
the framework of the Common Model, and specifically 
ACT-R, offers a novel approach to understanding and 
intervening in the cycle of negative emotional reactions. 
Our approach facilitates the exploration of previously 
underexamined facets of cognitive modeling, aiding in 
the development of a more complete and integrated 
cognitive architecture. 
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Abstract

Humans show difficulty in adapting to dynamic environments,
even in simple scenarios. Researchers have explored different
directions to address this issue, including the use of cognitive
models to predict human adaptive capabilities. This research
investigates the effectiveness of an intervention in helping peo-
ple improve adaptation to change. We conducted an exper-
iment involving a binary choice task, manipulating the pres-
ence of an intervention and the direction of change in outcome
payoffs. The change involved two situations: an increasing
condition in which one option improves over time and a de-
creasing condition in which one option deteriorates over time.
Our findings reveal that the intervention was effective only
in increasing conditions and that human adaptation was bet-
ter in decreasing conditions. We also construct an Instance-
Based Learning (IBL) cognitive model that tracks human be-
havior and makes one-step-ahead predictions of human deci-
sions. The results of the accuracy of this model’s predictions
suggest that the IBL model outperforms human participants
in adaptation, and it exhibits greater accuracy in predicting hu-
mans’ choices in Increasing rather than Decreasing conditions.
The potential of using IBL model predictions to inform inter-
ventions is discussed.
Keywords: Binary task; Dynamic scenarios; Instance Base

Learning; Model-Tracing; Adaptation.

Introduction

Binary choice tasks are widely used in foundational research
on experiential decision making (Hertwig & Erev, 2009; Erev
& Barron, 2005; Gonzalez & Dutt, 2011; Lejarraga, Dutt,
& Gonzalez, 2012). Previous research has explored human
adaptation to dynamic changes in such tasks, examining sce-
narios involving limited information about changing proba-
bilities or unawareness of the dynamics of evolving outcomes
(Cheyette, Konstantinidis, Harman, & Gonzalez, 2016; Avra-
hami, Kareev, & Fiedler, 2017; Plonsky & Erev, 2017; Mc-
Cormick, Cheyette, & Gonzalez, 2022; Konstantinidis, Har-
man, & Gonzalez, 2022). The findings consistently reveal
significant challenges in adapting choices to changing envi-
ronments. Notably, humans struggle to adjust their choices
to situations where options either improve or deteriorate over
time. Specifically, research has found that humans exhibit
inadequate exploration of possibilities, especially neglecting
initially inferior options (McCormick et al., 2022; Konstan-
tinidis et al., 2022).

Research suggests that the presence of full feedback (i.e.,
providing the forgone outcome in addition to the obtained
outcome), can be beneficial when adapting to evolving sce-
narios (Yechiam & Busemeyer, 2006; Lejarraga & Gon-

zalez, 2011; Yechiam & Rakow, 2012; Avrahami et al.,
2017; McCormick et al., 2022; Konstantinidis et al., 2022).
Other research findings suggest that being transparent about
the element of change (i.e., showing the value of the out-
come that changes over time), can improve human adapta-
tion (McCormick et al., 2022). However, research on ways to
improve adaptation is limited.

In this research, we designed an experiment to determine
the effect of a subtle but continuous intervention to improve
adaptation in changing environments. To replicate the find-
ings of previous research (McCormick et al., 2022; Konstan-
tinidis et al., 2022), we also use two directions of change: an
increasing condition in which one option improves over time
and a decreasing condition in which one option deteriorates
over time. An intervention is expected to provide support in
adaptation to change in situations where options improve over
time, by encouraging more exploration of the option that may
be initially inferior.

We also explore the contribution of cognitive models, par-
ticularly those derived from Instance-Based Learning The-
ory (IBLT Gonzalez, Lerch, and Lebiere (2003)), to under-
standing human adaptation in these situations (Lejarraga et
al., 2012; Konstantinidis et al., 2022). We construct an IBL
model to trace human choices and examine the ability of the
model to predict one-step-ahead decisions. Model-tracing is
a technique used to determine the need for feedback in tu-
toring systems (Anderson, Corbett, Koedinger, & Pelletier,
1995). This technique has been used in IBL models to align
the model’s memory with that of the human and to be able
to make predictions of the human’s choices (Cranford et al.,
2020; Lebiere et al., 2023). In this paper, we examine the
ability of the IBL model with tracing methods to accurately
anticipate human sequential decisions one step ahead. We
also explore how the intervention and the direction of change
manipulations may influence the accuracy of model-tracing.
We discuss how the IBL model could inform adaptive inter-
ventions.

Experiment: Direction of Change and

Interventions

Participants

A sample of 203 participants was recruited from Amazon
Mechanical Turk. The ages of the participants ranged from
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23 years to 69 years, with 82 females, 118 males, 2 non-
binary, and 1 other. Participants were randomly assigned to
one of four conditions: Direction of change (increasing and
decreasing) and Intervention (present and absent). Decreas-
ing with Intervention (n = 50), Decreasing no-Intervention
(n = 54), Increasing with Intervention (n = 51), or Increasing
no-Intervention (n = 48). Each participant received a base
payment of $2 and a bonus payment of 1 cent for every 100
points earned. Bonuses ranged from $1.78 to $3.88.

Design and Procedure

Participants first received a consent form to describe the in-
vestigation and the task, followed by a brief demographic
questionnaire and the payment rules. They were also required
to correctly answer two random attention check questions.
Failure to perform the two attention checks would result in
their removal from the task without compensation.

The task required participants to make 100 choices from
two possible options designated as buttons labeled A and B.
One of the options, stationary (A), gave an outcome of 0 or
500 points with a fixed probability of 50%, while the other
option, non-stationary (B), provided outcomes that increased
or decreased 10 points per choice in a range of [10�1000] or
received 0 points with a fixed probability of 50%. The labels
of buttons A or B were randomly assigned to the right or left
side and remained unchanged thereafter.

In the Increasing condition, the non-stationary outcome
starts as 10 points and increases by 10 points per trial to
a maximum of 1000 points. In the Decreasing condition,
the non-stationary outcome starts with 1000 points and de-
creases 10 points per trial to a minimum of 10 points. In
both these manipulations, the stationary and non-stationary
options have the same equivalent expected value over the
100 trails, EVstationary = EVnon�stationary = (0.50⇤0)+(0.50⇤
500) = 250. The non-stationary option’s expected value at
individual trials depends on the direction of the change. In
the Increasing condition, the option with the highest expected
value is the stationary one from trials 1 to 49. At trial 50,
both options have the same expected value, which we call the
switch point. From trials 51 to 100, the non-stationary option
has a higher expected value than the stationary option. The
decreasing condition has the reverse behavior. We call the
best option in each trial the “maximizing” option.

Participants always receive information about the result of
the option they select (e.g., “Your choice was: A and the out-
come of your choice was: 500”). They received additional
information on average outcomes of the previous 10 trials in
the Intervention conditions (e.g., “You have selected option A
10 times in the previous 10 trials and has given you an av-
erage of 500 points. While you have not selected option B in
the past 10 trials.”).

At the end of the task, participants answered three ques-
tions about their impressions of the option yielding higher
points on average for trials 1 to 50 and trials 51 to 100. Par-
ticipants in the intervention conditions responded to three ad-
ditional questions about their strategy and their views on the

usefulness of the intervention.

Metrics

The MaxRate per participant is the proportion of trials in
which a participant chose the maximizing option. MaxRate
is calculated per trial as the proportion of participants (out of
the total in each condition) who chose the maximizing option.
MaxRate is also calculated per block: in block 1, it is the pro-
portion of trials out of 49 (1�49) in which participants chose
the maximizing option, and in block 2 it is the proportion of
trials out of 50 (trials 51� 100) in which participants chose
the maximizing option.

The MaxRate per block helps to determine the level of
adaptation (from block 1 to block 2) per participant. We cat-
egorize participants into four types of choice behavior based
on their individual adaptation ability: Agile is a maximizer
in the first block who continues to maximize in the second,
Clumsy is a non-maximizer in the first block who shifts to
continue to choose the non-maximizing option in the second
block, Fortunate is a non-maximizer in the first block, who
through luck, continues to choose the same option and max-
imizes in the second block, and Rigid is a maximizer in the
first block who maintains the same choice, resulting in se-
lecting the non-maximizing option in the second block. Data
coding was performed according to the procedure described
in (McCormick et al., 2022).

Based on the answers to the post-questionnaire question
“What do you think the relationship was between the two op-
tions?”, made for each block separately, participant’s aware-

ness was coded as: “Aware” if: a) in block 1 Increasing or
block 2 Decreasing conditions they answered “A gave me
more points than B, on average” and b) in block 1 Decreas-
ing or block 2 Increasing conditions they answered “B gave
me more points than A, on average”. The remaining combi-
nations of answers and the participants who replied “A and B
gave me the same number of points, on average” were classi-
fied as “Not-Aware”.

Human Experiment Results
1

MaxRate. Figure 1 shows the MaxRate of the partici-
pants in the four conditions on the 100 trials and within the
two blocks. The average MaxRate under Decreasing no-
Intervention was 64% (ST D = 0.48) and 61% (ST D = 0.49)
for Decreasing with Intervention conditions. Under Increas-
ing no-Intervention MaxRate was 54% (ST D = 0.50) and
55% (ST D = 0.50) for Increasing with Intervention. This re-
sult replicates (McCormick et al., 2022; Konstantinidis et al.,
2022) in which Increasing conditions result in poorer adapta-
tion compared to Decreasing conditions. Also, visual inspec-
tion shows a weak effect of the Intervention in the Increasing
conditions.

A generalized logit mixed effects model with the direc-
tion of change, Intervention, and block as fixed effects and

1The statistical analysis, scripts, and dataset for all the results
can be found at: https://osf.io/7snra/.
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Figure 1: MaxRate performance per trial in each condition,
with B1 and B2 denoting the before and after of trial 50.

random intercepts for each participant confirms the expected
significant main effect of the direction of change, c2(1) =
13.81, p < .001. MaxRates are higher in the Decreasing
(M = 0.62, ST D = 0.20) conditions than in the Increasing
(M = 0.54, ST D = 0.25) conditions. None of the main
effects of Intervention (c2(1) = 0.10, p = .750) or block
(c2(1) = 0.07, p = 0.785) were significant. However, we
found a significant two-way interaction between the direction
of change and block, c2(1) = 17.65, p < .001. In block 1,
the MaxRates in the Increasing (M = 0.59, ST D = 0.21) and
Decreasing conditions (M = 0.58, ST D = 0.19) are not sta-
tistically different t(398) = �0.34, p > .0502. In contrast,
in block 2, the MaxRates are higher in Decreasing condi-
tions (M = 0.67, ST D = 0.21) than in Increasing conditions
(M = 0.49, ST D = 0.27), t(398) = 5.60, p < .001.

The two-way interactions between the Intervention and the
direction of change (c2(1) = 0.70, p = .402) and between the
Intervention and block (c2(1) = 0.64, p = .425) were not sig-
nificant. However, there was a significant three-way inter-
action between Intervention, direction of change, and block
c2(1) = 4.31, p = .038. The MaxRates in block 1 did not
show significant differences (all p > .050) regardless of the
presence or absence of an Intervention; but there was a sig-
nificant difference in MaxRates between Decreasing (M =
0.69,SD = 0.20) and Increasing (M = 0.46,SD = 0.27) con-
ditions, in block 2 when the Intervention was absent, t(398)=
5.43, p < .001 and no significant differences when the In-
tervention was present, t(398) = 2.50, p = .155: Decreasing
(M = 0.64,SD= 0.21) and Increasing (M = 0.53,SD= 0.27).
This result suggests that the presence of the Intervention
caused the Increasing condition to exhibit higher maximiza-
tion, comparable to the Decreasing with the Intervention con-
dition, implying a relative benefit of the Intervention in the
Increasing condition.

Individual Adaptation. Table 1 reports the proportions of
Agile, Clumsy, Fortunate, and Rigid participants. It also

2The Bonferroni correction was applied to adjust all p-values
when examining interaction effects to account for multiple tests.

presents summaries of Adaptive and Non-adaptive propor-
tions and the differences between Decreasing and Increasing
conditions and between the presence and absence of an Inter-
vention.

These analyses indicate a larger proportion of adaptive par-
ticipants in Decreasing compared to Increasing conditions.
Approximately half of the participants overall were adaptive,
and most of the effects of adaptation are due to the greater
proportion of adaptive participants in the Decreasing than the
Increasing conditions. It also shows a general ineffectiveness
of the Intervention. Figure 2 provides a more nuanced view.
It shows a slight positive effect of the Intervention in the In-
creasing conditions, where the proportion of Agile and For-
tunate type of participants is larger in the Increasing condi-
tion with Intervention compared to the Increasing condition
without intervention. In other words, the Intervention helped
some participants in the Increasing condition maximize in
the second block. Some were fortunate as they continued to
choose the same option they were choosing in the first block,
and others intentionally shifted to the maximizing option in
the second block (Agile).

Figure 2: Participant’s behavior split into four quadrants de-
noted by the dash lines at 0.5 using their individual MaxRate
performances before and after trial 50.

Awareness. The proportion of Aware participants per con-
dition suggests that more than 50% of the participants were
explicitly aware of the change in the choice environment:
72% in the Decreasing Intervention, 67% in the Decreasing
no-Intervention, 56% in the Increasing no-Intervention, and
55% in the Increasing Intervention conditions. These patterns
agree with the MaxRates findings regarding the effect of the
direction of change. Just like in the MaxRate results, indi-
viduals also report being more aware of the changes in the
Decreasing conditions than in the Increasing conditions, and
the Intervention did not affect such awareness.

The proportion of MaxRates of block 2 for Aware and
Not-Aware participants was analyzed using 4 Mann-Whitney
U tests. The results show significant differences among
Aware and Not-Aware participants. The Increasing condi-
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Table 1: Percentage of maximization pattern based on individual differences for participants in each condition.
Maximization

Pattern

Averaged over Direction of Change Averaged over Intervention
All

Inc. Dec.
Difference

(Dec. - Inc.)
Int. No Int.

Difference

(Int. - No Int.)

Agile 30.30% 54.81% 24.51% 42.57% 43.14% -0.57% 42.86%
Clumsy 9.09% 5.77% -3.32% 8.91% 5.88% 3.03% 7.39%
Total Adaptive 39.39% 60.58% 21.19% 51.49% 49.02% 2.47% 50.25%

Fortunate 23.23% 23.08% -0.15% 23.76% 22.55% 1.21% 23.15%
Rigid 37.37% 16.35% -21.02% 24.75% 28.43% -3.68% 26.60%
Total Non-Adaptive 60.61% 39.42% -21.17% 48.51% 50.98% -2.47% 49.75%

Difference
(Adaptive - Non-Adaptive) -21.22% 21.16% 2.97% -1.96% 0.50%

tions had higher MaxRates for Aware (M = 0.64,ST D =
0.18) than Not-Aware (M = 0.31,ST D = 0.25) participants,
U = 2080, p < 0.01; similarly to the Decreasing conditions
(MaxRates for Aware: M = 0.73,ST D= 0.17 and Not-Aware
participants: M = 0.54,ST D = 0.23), U = 1741, p < 0.01.
The Intervention conditions had higher MaxRates for Aware
participants (M = 0.70,ST D = 0.18) than Not-Aware partic-
ipants (M=0.39,ST D = 0.25), U = 1995.5, p < 0.01; simi-
larly to the no-Intervention conditions (MaxRates for Aware:
M = 0.68,ST D = 0.18 and Not-Aware participants: M =
0.42,ST D = 0.29), U = 1921, p < 0.01.

Instance-Based Learning Model and

Model-Tracing

An IBL binary choice model similar to that of previous re-
search (Gonzalez & Dutt, 2011; Lejarraga et al., 2012; Le-
jarraga, Lejarraga, & Gonzalez, 2014; Konstantinidis et al.,
2022) was implemented using PyIBL (Morrison & Gonza-
lez, 2023). In IBLT, a choice occurs by activating mem-
ories of past experiences (e.g., observed outcomes) associ-
ated with each option/decision. Memory activation is mod-
ulated by at least two processes (i.e., free parameters in the
model): memory decay and noise associated with the retrieval
of these memories. The activation of outcome i in each option
j on trial t is illustrated in the following equation (the com-
plete activation equation in ACT-R is in (Anderson & Lebiere,
1998)):

A j,i,t = s ln
✓

1� g j,i,t

g j,i,t

◆
+ ln Â

tp2{1,...,t�1}
(t � tp)

�d (1)

where d is a decay parameter, s is a noise parameter, g j,i,t
is a random sample of a uniform distribution (between 0 and
1), and tp denotes all previous trials in which the outcome i
was observed. Past research has found that successful adapta-
tion to choice environments is associated with higher levels of
decay d, (Konstantinidis et al., 2022), suggesting that poorer
memory leads to better adaptation.

The activation of each instance in memory determines the
probability of it being retrieved. This probability is calcu-

lated for each instance i on the activations of all the outcomes
observed in each option j:

Pj,i,t =
eAi,t/t

Â j eA j,t/t (2)

where t is a temperature parameter that controls the unifor-
mity of the probability distribution defined by this soft-max
equation with a default value of t = s

p
2. Finally, the model

chooses the option with the highest blended value V:

Vj,t =
n

Â
i=1

Pi,t xi (3)

where x is the value of the observed outcome i from option j,
P is the probability of retrieval of this outcome as defined in
Equation 2, and n is the number of unique outcomes in option
j.

As suggested in previous research (Lejarraga et al., 2012),
we created initial expectations using a prepopulation of mem-
ory instances, using 125 in the Increasing and 625 as out-
comes in the Decreasing conditions, to allow a fair start for
the stationary options. We also allowed the model to expe-
rience the two options, with the maximizing option always
being the first, and both reinforced with a low-value outcome
of 0. After this point, the model starts making predictions
according to the blended value (Equation 3).

Model Fitting and Model-Tracing Procedure

We estimated the best decay parameter by running model-
tracing for each participant using each of the 291 decay val-
ues within a range of [0.1� 3] with increments of 0.01. The
model tracing was performed with noise s = 0 and t = 1.

The value of decay that corresponded to the lowest Root
Mean Square Error (RMSE) between user decisions and
model predictions was selected as the ”best fitting” decay pa-
rameter for that participant. In the case of multiple RMSE
with the lowest value, the highest decay was chosen.

To run model-tracing, the IBL agent will have in memory
the exact past decisions of the participant. We remove the
noise parameter (s = 0) and set t = 1. In this way, the model
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will not produce noisy activations (Equation 1). We used the
best decay value that fits each individual’s data.

For each participant, we created an IBL agent using Py-
IBL (Morrison & Gonzalez, 2023) as previously described.
When the model starts making decisions, for each new predic-
tion it makes in each trial, we strengthen the decision experi-
enced by the participant. In practice, we replace the instance
corresponding to the prediction made by the model with an
instance that contains the decision and the outcome experi-
enced by the participant. This process allows us to predict the
next-trial decision and adjust the model’s memory with the
human’s exact experience.

Results

Delta MaxRate. To explore the maximization decisions of
the model and human, we analyze the difference in MaxRates
between the model and the human, called Delta MaxRate.

Figure 3 presents the aggregated Delta MaxRate per trial
(without trial 1 since the model’s choice is random). If a
model is able to predict the human maximization choices, the
Delta MaxRate would be around the zero line in both blocks.
However, although close to the zero line, we observe some
deviations between the model choice predictions and human
choices.

Figure 3: Proportion of Delta MaxRate per condition and over
trials (from trials 2 to 100.)

We observe that the MaxRate predicted by the models is
larger than the actual human MaxRate in block 1. In the
Increasing Intervention condition, Delta MaxRate was M =
0.20,ST D = 0.50, and M = 0.17,ST D = 0.50 in the Increas-
ing no-Intervention condition. In the Decreasing Intervention
condition, Delta MaxRate was M = 0.09,ST D = 0.55, and
M = 0.10,ST D= 0.55 in the Decreasing no-Intervention con-
dition. In other words, the model predicted the human max-
imization decisions more accurately in the Decreasing than
Increasing conditions in Block 1.

In contrast, the MaxRate predicted by the models is lower
than the actual human MaxRate in block 2, but closer to zero.
In the Decreasing Intervention condition, Delta MaxRate was
M = �0.07,ST D = 0.58, and M = �0.12,ST D = 0.58 for
Decreasing no-Intervention. In the Increasing Intervention

condition, Delta MaxRate was M =�0.02,ST D = 0.49, and
M = �0.01,ST D = 0.48 in the Increasing no-Intervention
condition. That is, the model was better than humans in Block
1 but adapted more poorly than humans in block 2, especially
in the Decreasing conditions.

Delta MaxRate for Individual Adaptation. Figure 4
presents the Delta MaxRate in blocks 1 and 2 for each par-
ticipant in our study. Participants who were not accurately
predicted by the model (i.e., the Delta MaxRate was greater
than or equal to 0.1) are reported in each of the quadrants as
an orange dot (close to zero No), while participants who were
correctly predicted (i.e., the Delta MaxRate was in the range
[0;0.09]) are reported as a green dot (close to zero Yes).

Figure 4: Proportion of Delta MaxRate (Model - Human) in
block 1 (X-axis) and block 2 (Y-axis) for each participant.

As is evident in the top-right quadrants, the model demon-
strates greater accuracy in predicting human MaxRate under
Increasing conditions compared to Decreasing conditions, es-
pecially under no Intervention. For example, under Increas-
ing conditions, the model improved the correct anticipation of
maximization choices from 31% in the no-Intervention con-
dition to 35% in the Intervention condition, while under De-
creasing conditions, the model improved the correct anticipa-
tion of maximization choices from 20% in the no-Intervention
condition to 30% in the Intervention condition.

Conversely, in the bottom-right quadrants, the model ex-
hibits reduced accuracy in predicting maximization behavior
for block 2. For example, under Increasing conditions, the
model correctly anticipates a smaller proportion of partici-
pants (4% and 15% for the presence and absence of Interven-
tion, respectively), while under Decreasing conditions, this
accuracy is higher (18% and 22% for the presence and ab-
sence of Intervention, respectively).

Model Synchronization per Trial. To explore more pre-
cisely how the model predicts each of the human choices (re-
gardless of whether they were maximizing choices or not), we
examine the synchronization between the model prediction
and each of the human choices. To calculate this one-step-
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ahead prediction of the model, for each participant in each
trial3 t, we determined whether the model prediction was the
same as the actual human action. If it was the same, the syn-
chronization value was 1; otherwise it was 0. We aggregated
Synchronization Rates (SyncRate) at various levels: averag-
ing the SyncRate per participant (i.e., the average synchro-
nization out of 99 trials), per trial, per block, or per condition.
Figure 5 shows the average SyncRate of all participants in
each trial by condition.

Figure 5: Proportion of synchronization between model and
human per condition and over trials (from trials 2 to 100.)

As observed in Figure 5, the model synchronized with hu-
man actions above chance. It was able to consistently in-
crease synchronization with human actions over the course
of the trials in the Increasing conditions, but synchronization
suffered slightly in the second block of the Decreasing con-
dition. Generally, the SyncRate was higher in the Increasing
conditions (75%, ST D = 0.14 for Increasing no-Intervention
condition, 73%, ST D= 0.12 for Increasing with Intervention)
than in the Decreasing conditions (66% for both Decreasing
conditions, ST DI = 0.13 and ST DNI = 0.10). An analysis
of SyncRates using a Kruskal-Wallis test revealed significant
differences between the conditions, H(3) = 18.39, p < 0.01.
Post hoc tests using Bonferroni corrections revealed signif-
icant differences between Increasing and Decreasing in the
absence of an Intervention (p = 0.008) and Increasing and
Decreasing in the presence of an Intervention (p = 0.032).

Discussion

How humans adapt their choices in dynamic environments to
maintain the best outcomes is an unresolved dilemma. This
paper investigates two factors that influence this choice adap-
tation: the direction of change and the presence of contin-
uous interventions. We also investigated whether computa-
tional IBL models can accurately capture human adaptive be-
haviors. Consistent with previous studies (McCormick et al.,
2022; Konstantinidis et al., 2022), participants in Decreasing
conditions showed better adaptation than in Increasing con-
ditions. This study augments these results by finding that a

3Except for trial=1, since the model selects an option randomly
and it cannot accurately predict the participant’s decision.

continuous intervention can help participants become more
agile and less rigid in the Increasing conditions, although it
did not influence the Decreasing conditions.

The lack of effect of the Intervention on improving the
adaptation of choices in the Decreasing conditions needs to
be further investigated. There are two reasonable explana-
tions for this result. First, it could be argued that the Interven-
tion did not improve people’s awareness of the change. This
interpretation is supported by our awareness results, which
indicate that participants who were aware of the change per-
formed better, regardless of whether they received an inter-
vention. This finding is also consistent with previous research
of (Lejarraga & Gonzalez, 2011), in which decision-makers
have been found to neglect the descriptive information dis-
played continuously after having had experience with the
task. Second, it is possible that participants felt overwhelmed
by the Intervention and the partial feedback received in each
trial. This, in turn, could have impaired their ability to pro-
cess informed judgments continuously. This explanation is
consistent with the research of (Gonzalez, 2005), in which the
authors found that people are often overwhelmed by process-
ing more information as feedback while making decisions in
a dynamic task.

Although modest, the positive impact of the Intervention
on the Increasing conditions suggests potential benefits for
participants struggling with adapting to rising trends. How-
ever, further research is warranted. Specifically, future studies
should explore the frequency and timing of the Intervention
and trigger conditions to enhance each participant’s adaptive
behavior. Future research should also explore the form or
content of the Intervention message.

As an immediate step, we plan to use our cognitive model
and its model-tracing capabilities to determine the frequency
and timing of the Intervention. The synchronization of the
model’s choices with human choices is an encouraging de-
velopment. Notably, the model consistently improves its syn-
chronization with human participants and is able to improve
its maximization predictions under Increasing conditions.

Using model-tracing, we plan to identify participants who
are not maximizing as predicted by the model and trigger the
Intervention accordingly. Future studies will focus on devel-
oping methods to use the model synchronization to decide
on the time for intervention. Specifically, we can evaluate
the SyncRate values for each trial or group of trials to de-
termine when the model outperforms the user, allowing us to
initiate interventions when the model performs better than the
human. We will also investigate the missed synchronization
cases of the model. For example, in our model, the tau pa-
rameter adds noise to the choice predictions, and individually
adjusting this parameter can provide a higher model synchro-
nization rate.
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Abstract

Cognitive architectures (CAs) have been instrumental in in-
tegrating a wide range of findings in cognitive science into
unified theories of cognition. However, much less effort has
been devoted to applying CAs to social phenomena, despite the
high interdependence between cognitive and social processes
in real-world scenarios (e.g., Ecker et al., 2022). We integrated
social sampling theory (SST) and ACT-R to begin filling this
gap. ACT-R is a modular, hybrid symbolic/sub-symbolic CA
with a detailed memory system. SST describes how beliefs and
behavior emerge from an interplay between individual and so-
cial motivations. The component theories have complementary
strengths and weaknesses: SST provides an account of social
influence and comparison, but lacks a memory system to sup-
port those processes, whereas the converse is true for ACT-R.
In two simulations, we demonstrate that SST-ACT-R produces
social influence dynamics not present in either component the-
ory. Specifically, SST-ACT-R shows how private and publicly
expressed beliefs may evolve through social interactions based
on social influence and underlying memory mechanisms.
Keywords: ACT-R; social sampling theory; memory; social
cognition; agent-based modeling

Introduction

Cognitive architectures (CAs) are computational frameworks
for simulating and evaluating unified theories of cognition
(Newell, 1990). What separates a CA from other theories is
the focus on identifying invariant properties in the structure
and function cognition, which applies to phenomena across
a wide variety of domains. Considerable progress has been
made in developing CAs which account for phenomena in
domains as diverse as memory (Anderson et al., 1998), visual
search (Nyamsuren & Taatgen, 2013), problem solving (An-
derson et al., 2004), and decision making (Gonzalez et al.,
2003), among others.

Much less research has been devoted to using CAs to
model and explain phenomena in social psychology. Ap-
plying CAs to the domain of social psychology is impor-
tant for two reasons: (1) as a general theories of cognition,
CAs should generalize to social behavior, and (2) decades
of research show that cognition and behavior do not occur
in a social vacuum, but instead are often moderated by so-
cial context. Some examples include polarization, which oc-
curs when beliefs become more extreme after members of a
group communicate with each other (Lord et al., 1979), and
the false consensus effect, which occurs when a person over-
estimates how widely his or her own beliefs are held by others
(Ross et al., 1977). In more recent years, the real-world im-
pact of social influence has been observed in the increased
spread of misinformation regarding political news (Allcott
et al., 2019) and public health information (Suarez-Lledo &

Alvarez-Galvez, 2021) through social media. A comprehen-
sive understanding of the spread and influence of misinfor-
mation likely requires both models of cognition and social
influence (Ecker et al., 2022).

Some notable, albeit limited, efforts have been made to
apply CAs to the domain of social psychology. For exam-
ple, Stevens et al. (2016) developed meta-cognitive agents
based on ACT-R which interacted in the Prisoners’ Dilemma.
Each agent had a theory of mind, allowing it to reason about
knowledge and strategies used by the other agent. Addition-
ally, the CLARION CA has been used to model organiza-
tional decision making behavior and the development of col-
laborations in the academic publication process (Sun, 2007).
In both cases, the success of the models were attributed to
increased cognitive realism, such as including learning and
decision processes similar to those of real humans. In one
last example, researchers instantiated Festinger’s social com-
parison theory into the SOAR CA to model the emergence
of imitation in crowd behavior (Fridman & Kaminka, 2011).
Nonetheless, many gaps exist in the literature bridging CAs
and social psychology. For example, it is unclear how a CA
such as Adaptive Control of Thought-Rational (ACT-R; An-
derson et al., 2004) can make relative social comparisons, and
moderate publicly expressed beliefs based on social context.

Our goal is to expand CAs further into the domain of so-
cial psychology by integrating Social Sampling Theory (SST;
Brown et al., 2022) and the CA, ACT-R (Anderson et al.,
2004). An integrative approach has the potential to create
a more comprehensive CA resulting from the complemen-
tary strengths and weaknesses of ACT-R and SST. On one
hand, SST is a theory of social comparison and influence
which explains a wide variety of social phenomena, such
as polarization, and the false consensus effect (Brown et al.,
2022). However, SST does not specify the memory processes
which give rise to its social comparison process. Instead, SST
hard-codes static belief distributions into the model without
explaining how they are represented and potentially change
across time with experience. On the other hand, the mem-
ory system of ACT-R is well-specified and has endured many
decades of empirical testing (Anderson et al., 2004, 1998).
However, ACT-R does not specify the details of social influ-
ence and comparison processes.

Overview

The remainder of the paper is structured as follows. In the
next two sections, we introduce SST and ACT-R and their
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core tenets. With that foundation laid, we then provide a jus-
tification for integrating SST and ACT-R and describe the de-
tails of the integration. Next, we describe two simulations
which demonstrate new behaviors arising from the integration
of SST and ACT-R: (1) stochasticity and learning/forgetting
dynamics in belief distributions, and (2) the evolution of be-
lief distributions through social interactions. Finally, we con-
clude with a discussion of limitations.

Social Sampling Theory

Social Sampling Theory (SST) is a social-cognitive theory of
social judgment and social influence which explains a wide
variety of social phenomena, including, but not limited to,
false consensus, polarization, the backfire effect, and social
contagion (Brown et al., 2022). SST is predicated on the
following assumptions: (1) private beliefs and social norms
are represented as distributions rather than a single values,
(2) social comparisons are based on the ranking of a belief
within a distribution, (3) social comparisons are based on the
retrieval of small samples from memory of the immediate so-
cial environment, and (4) when expressing a belief publicly,
individuals strive to find a compromise between two poten-
tially competing forces—authenticity preference, and social

extremeness aversion (Brown et al., 2022; Kuran, 1997). Au-
thenticity preference refers to the desire to publicly express
beliefs that are consistent with one’s privately held beliefs.
Social extremeness aversion refers to the desire to not deviate
from a social norm. A social norm is typically based on the
immediate social situation.

Figure 1 illustrates the process of selecting a belief to pub-
licly express. Following Brown et al. (2022), we represent
beliefs as beta distributions on a continuum ranging from 0
(liberal) to 1 (conservative). Note that other distributions and
beliefs could be expressed within SST. The private belief dis-
tribution in red is diffuse and shifted to the left, reflecting the
fact that the private beliefs tend to be liberal, but are weakly
held. By contrast, the social norm distribution is shifted to
the right and more concentrated, indicating that expressed be-
liefs of the social group are consistently conservative. A bal-
ance between authenticity preference and social extremeness
avoidance is accomplished by evaluating the rank of a candi-
date belief relative to each distribution using the median (i.e.,
the least extreme rank) as a reference point.

In SST, social comparisons are based on the rank of a belief
within a distribution, which implies that a belief distribution
with a smaller variance will contribute more to the cost func-
tion than one with a larger variance. In Figure 1, the cost of
deviating from the median is much less for the private belief
distribution compared to the social norm distribution because
the private beliefs are more diffuse. To understand why, con-
sider a point that is .1 units above the median of the wide, pri-
vate belief distribution and .1 units below the median of the
narrow, social norm distribution. The percentile of this point
for the private belief distribution is moderate at 63%, whereas
the percentile for the social norm distribution is much more

Figure 1: An illustration of selecting the utility-maximizing
belief to publicly express using w = .50, g = 20.0, and d =
1.0. Solid vertical black lines are medians. Utility was
rescaled to the range [0,1].

extreme at 14%.
The publicly expressed belief is determined by maximiz-

ing a utility function which takes into consideration the rank-
ing of a belief relative to each distribution. The solid black
curve in Figure 1 shows the utility as a function of belief,
with the maximum located at the dotted vertical, black line.
The deviation from median of the private belief and social
norm distributions are represented by the pink and light blue
areas, respectively. As expected, the utility maximizing belief
is pulled closer to the median of the social norm distribution
due to its lower variance.

More formally, let F(x;az,bz) be the cumulative distribu-
tion function (CDF) of the beta distribution with parameters a
and b and index z 2 {p,s}, which represents the private belief
and social norm respectively. Let Hz(x) = |.50�F(x;az,bz)|
be the area between the median and belief x. Because Hz(x)
represents a cost, the terms in the equation below are mul-
tiplied by �1 to represent utilities. The utility function is
defined as:

U(x) =�we
g·Hs(x)� (1�w)eg·Hp(x), (1)

where w 2 [0,1] is the weight placed on the social norm, and
g � 0 represents sensitivity to increases in the deviation from
the median. The utility maximizing belief is defined as:

bmax = argmax
x2[0,1]

U(x), (2)

reflecting the weighting of an agent’s private belief and the
observed social norm.

ACT-R

Adaptive Control of Thought-Rational (ACT-R) is a hybrid
symbolic, non-symbolic CA which has been applied to many
domains including memory (Anderson et al., 2004) and deci-
sion making (Gonzalez et al., 2003). Unlike other modeling
approaches, the goal of CAs is to provide a unified theory
of cognition, spanning areas as diverse as perception, action,
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memory, and decision making (Newell, 1990). ACT-R’s ar-
chitecture is structured as a set of specialized information pro-
cessing units called modules. The set of modules includes
capabilities for visual and auditory perception, declarative
and procedural memory, and goal maintenance. The proce-
dural module coordinates activity of the other modules us-
ing condition-action pairs called production rules (Anderson
et al., 2004). During each production cycle, the procedural
module selects a production rule based on its match to the
state of the architecture and then executes the actions.

For our current purposes, it is sufficient to focus on the
declarative memory module. ACT-R’s declarative memory
module is responsible for encoding, storing, and retrieving
factual information which can be verbally expressed. Declar-
ative memory consists of set of chunks C = {cm}m2IC

where
IC is an index set. A chunk considered the basic unit of
declarative knowledge, and consists of a set of slot-value
pairs. A chunk is defined as:

cm = {(sm,i,vm,i)}i2Icm

, (3)

where sm,i and vm,i are the slot and value of pair i. A concrete
example of a chunk is c = {(object,house),(color,blue)},
which corresponds to a blue house. The value associated
with a slot can be queried with the function cm(s) = v,
which is useful for specifying retrieval requests, r. In the
present model, a chunk consists of the following slots Q =
{source,issue,id,belief}. The slot source indicates whether a
belief is private or a social norm. The slot issue corresponds
to an issue or topic index (e.g., renewable energy). The slot
id corresponds to the unique index of the agent associated
with the belief. The slot belief encodes a belief with possible
values ranging from 0 (maximally liberal) to 1 (maximally
conservative).

Each chunk is associated with an activation value, repre-
senting its ability to be retrieved (Anderson et al., 2004). In-
creasing activation increases the probability and speed with
which a chunk can be retrieved activation. In the present
model, activation is defined as:

am = Bm +rm + em, (4)

where Bm is base-level learning, rm the partial matching term,
and em ⇠ logistic(0,h) is activation noise with scalar param-
eter h. Base-level learning governs the dynamics of learning
from experience, and forgetting across time, and is defined
as:

Bm = log

 
nm

Â
j=1

t
�d

m, j

!
, (5)

where nm is the number of times chunk m has been used or
retrieved, tm, j is elapsed time in seconds since the j

th retrieval,
and d 2 [0,1] is a decay parameter. Partial matching controls
discriminability between the retrieval request r and chunk cm,
and is given by:

rm =�d Â
q2Q

I(cm(q),r(q)), (6)

where Q is the set of slot values in the retrieval request, d � 0,
and I is an indicator function, which returns 1 in the case of a
mismatch, and 0 otherwise.

ACT-R uses the blending mechanism from instance based
learning (IBL; Gonzalez et al., 2003) to estimate the expected
value of a slot-value over chunks, {vm,k}m2IC

. The estimate is
called a blended value and is computed as a weighted average
in which the probability of retrieving a given chunk serves as
a weight. The blended value for slot-value k is defined as:

cµbk
= Â

m|cm2C

pmvm,k, (7)

where vm,k is the value of slot k in chunk m, and pm is the
probability of retrieving chunk m. The retrieval probability is
given by the softmax function:

pm =
e

am/t

Â j|c j2C e
a j/t , (8)

where t controls how sensitive the probability weights are to
activation.

Integration

A close comparison of ACT-R and SST reveals complemen-
tary strengths and weaknesses. An advantage of ACT-R is its
well-specified and validated declarative memory system (An-
derson et al., 1998), which describes memory representation,
the process of memory retrieval, and the dynamics of learning
and forgetting. One limitation of ACT-R, however, is that it
lacks cognitive mechanisms that are sensitive to social influ-
ence and context. The opposite is true for SST: it provides an
account of the social comparison process and a utility func-
tion underlying decision making, but lacks an account of the
supporting memory mechanisms. Instead, the belief distri-
butions in SST are hard-coded by the modeler rather than
emerging from more basic principles. By integrating SST
into ACT-R, it is possible to capitalize on their strengths to
describe how learning through social interactions creates dy-
namics in belief distributions.

The basic integration of SST into ACT-R is straight-
forward: rather than assuming specific belief distributions,
the distributions are based information encoded in ACT-R’s
declarative memory system, subject to the dynamics de-
scribed in Equation 4. One important component of the
integration is deciding how the rank of a belief within a
distribution is determined. We discuss two approaches.
One approach evaluates the percentiles from an empirical
CDF, dF(x), which is evaluated against weighted slot-values,
{pmvm,k}m2IC

. One advantage of this approach is that it does
not rely on parametric assumptions regarding the distribution
of slot-values. However, percentile estimates will be coarse
when the number of contributing chunks is small. In some
cases, this issue can be partially mitigated by incorporating
background knowledge in the form of chunks—a kind of
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pseudo prior—to improve estimates of the percentiles. Prece-
dence for this approach can be found in numerous applica-
tions of IBL (e.g., Gonzalez & Dutt, 2011), where declara-
tive memory is initialized with a chunk to provide the model
with a means of responding on the first trial. An alterna-
tive approach—which we adopt here for simplicity—is to fit
a parametric distribution to the slot-values to improve the res-
olution of the percentiles. For simplicity, we reparameterize
the beta distribution in terms of a mean and standard devia-
tion. The variance is the expected value of the squared differ-
ence between a random variable and its mean. In this sense,
the variance is similar to the expected value in Equation 7,
and its value could arise from similar cognitive mechanisms.
The weighted standard deviation is given by:

csbk
=

s
Â

m|cm2C

pm

�
vm,k �cµbk

�2
. (9)

The beta distribution can be reparameterized in terms of cµbk

and csbk
as follows: a = cµbk

[x�1], b =
⇥
1�cµbk

⇤
[x�1],

where x = cµb
k
(1�cµb

k
)/ds2

b
k
.

A different retrieval request is used in the construction of
the personal belief distribution and the social norm distribu-
tion (see Figure 1). For the personal belief distribution, the
source slot has a value of personal. For the social norm distri-
bution, the source slot has a value of social norm. Other slot
value pairs can be included in the retrieval quest as needed.
Formally, the retrieval request for distribution z 2 {p,s} can
be stated generally as:

rz = {(source,vz),(si,vi)}i2Irz
, (10)

where, as before, p corresponds to personal belief and s cor-
responds to social norm. Once the distributions are computed
through the blending mechanism, the public belief/behavior
is compute through Equations 1 and 2 as specified in SST.

Simulations

Simulation 1: Memory Dynamics and Stochasticity

The goal of Simulation 1 is twofold: (1) to show how stochas-
ticity in belief expression arises through memory mecha-
nisms, and (2) investigate how memory decay and experience
modulate public belief distributions. Recall that SST assumes
private and social norm beliefs follow a static distribution,
which does not change across time or with experience. In ad-
dition, SST lacks a mechanism to produce variability in pub-
licly expressed beliefs. However, the integrated ACT-R/SST
model is sensitive to memory dynamics. Simulation 1a var-
ied the delay between learning and public belief expression to
examine the effect of decay. Simulation 1b varied the number
of additional experiences with the social norm.

For both simulations, we enabled base-level learning in
Equation 5 and simulated a 100 second learning phase in
which the model encoded a belief every 5 seconds for a total
of 10 private beliefs and 10 social norm beliefs. Private be-
liefs were sampled from bp ⇠ beta(4,9), whereas social norm

beliefs were sampled from bs ⇠ beta(6,2.2). We fixed the pa-
rameters to the following values: d = .50, d = 1, h = .20,
w = .50, and g = 20. After the learning phase, we simulated
the model 10,000 times under the conditions described below
to obtain a distribution of public beliefs.

In Simulation 1a, the key manipulation in the simulation
was the delay, Dt , between the learning phase and the gener-
ation of public beliefs: Dt = 10 vs. Dt = 100. In Simulation
1b, the key manipulation was the number of additional inter-
actions to update the social norm: 1 vs. 10. For each inter-
action, a chunk for a social norm was randomly selected after
a 5 second delay to emulate a social interaction (e.g., a per-
son expressing a belief). The number of uses of the selected
chunk was incremented to strengthen its activation.

Figure 2: Top: the effect of memory decay on publicly dis-
played beliefs as a function of time. Dt denotes the time in
seconds following the encoding phase. Bottom: the effect of
social interactions (i.e., chunk uses) on public belief distribu-
tions.

Results There are three noteworthy findings based on Fig-
ure 2. First, in both simulations, SST-ACT-R produces dis-
tributions of utility maximizing public beliefs rather than a
single, deterministic value, which is more consistent with re-
sponse variability found in human behavior. Second, in Sim-
ulation 1a, after a delay of Dt = 10, the public belief distri-
bution was diffuse and centered near the social norm distri-
bution, i.e. weakly conservative. After a delay of Dt = 100,
the public belief distribution changed, narrowing and shifting
towards the center of the scale. The shape and dispersion of
the distributions varied according to the specific private and
social norm beliefs sampled during the learning phase. How-
ever, the prevailing pattern is similar to the one illustrated in
Figure 2. Third, as expected, in Simulation 1b, the public be-
lief distribution shifted towards the social norm (i.e., becom-
ing more conservative) with increased social interactions.
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Simulation 2: Social Influence Dynamics

The goal of Simulation 2 was to showcase a novel behavior
emerging from the integration of SST and ACT-R—namely,
social influence dynamics whereby beliefs evolve through a
combination of social evaluation mechanisms and memory
mechanisms. We simulated an agent-based model in which
a small group of 10 interacting agents based on SST-ACT-R
encoded their interactions into memory. Half of the agents
were liberal leaning whereas the other half were conservative
leaning.

Figure 3: Social influence dynamics: the evolution of private
and public beliefs averaged across agents. Each model run is
denoted by a separate colored line.

Each model simulation consisted of 100 iterations and each
iteration involved one step per agent. On each step, one agent
was designated as the speaker and the other agents were des-
ignated as listeners. An issue was randomly selected from
a set of 20, prompting the speaker to generate a public be-
lief based using a blended retrieval over beliefs in memory
with rz = {(source,vz),(issue,v)} serving as a retrieval re-
quest. The other agents simply encoded (i.e., listened to)
the speaker’s public belief. Unlike Simulation 1, the speaker
encoded its publicly expressed belief with (source,public)
to distinguish between public and private beliefs. By con-
trast, the listeners encoded the same belief with (source,social
norm). After each iteration, we queried each agent’s private
and public beliefs and recorded the mean and standard devia-
tion across agents.

As in Simulation 1, we fixed the parameters to the follow-
ing values: d = .50, d = 1, h = .20, w = .50, and g = 20.
For values associated with the source slot, dissimilarity was
coded as 0 for matching values, .5 for private vs. public and
public vs. social norm, and 1 for private vs. social norm.

Dissimilarity for other slots was coded according to Equa-
tion 6 as before. Both liberal and conservative leaning agents
were with initialized with 20 chunks which had 100 prior
uses each. Private beliefs were sampled from beta(2,8) for
liberal leaning agents and beta(8,2) for conservative leaning
agents. We repeated the simulation 100 times to ensure suffi-
cient variability in behavior.

Results Four noteworthy findings are worth unpacking.
First, as shown in Figure 3, the social influence dynamics ex-
hibit an interesting striation of both private and public beliefs
into five distinct bands spanning the belief spectrum. Second,
public beliefs change more rapidly than private beliefs. One
contributing factor is that private beliefs are diffuse, allowing
public beliefs to quickly gravitate towards an emerging so-
cial norm. By contrast, private beliefs change more slowly,
in part, because they benefited from frequency effects. In ad-
dition, source confusion also contributes to the effect, as evi-
denced by a decrease in striation when the mismatch penalty
parameter d is increased (not shown). A third noteworthy
finding is the rapid convergence onto a social norm as in-
dicated by the decrease in the standard deviation of beliefs
in Figure 4. The rate of convergence slows as the mismatch
penalty parameter d is increased, again suggesting the impor-
tance of source confusion. Finally, public and private beliefs
track each other strongly, as indicated by a mean correlation
of .69 (SD = .15) across simulation runs.

Figure 4: Social norm convergence as measured by the mean
standard deviation of beliefs across runs of the simulation.

Discussion

Our research goal was to integrate SST and ACT-R to pro-
vide a detailed account of the learning and memory dynamics
underlying social influence and comparison processes. The
component theories of the integrated SST-ACT-R model are
characterized by complementary strengths and weaknesses.
On one hand, ACT-R provides a detailed account of memory
and learning, but lacks a mechanism for social influence and
comparison. On the other hand, the converse is true for SST:
it lacks a detailed account of learning and memory, but de-
scribes the mechanisms underlying social influence and com-
parison. The integrated SST-ACT-R model has two notewor-
thy benefits: (1) it provides a more detailed account of so-
cial influence and comparison than either component theory
in isolation, (2) it predicts novel dynamics in beliefs and be-
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havior which can be tested in future research.
We argue that the integration of SST and ACT-R should be

part of a broader research goal to extend CAs into the domain
of social psychology. Integration efforts have several poten-
tial benefits. First, as we noted above, integration can lead
to novel predictions and more powerful models. Second, in-
tegration efforts may provide opportunities to test the limits
of CAs. Given that many CAs such as ACT-R propose that
higher-order cognition arises from a set of fixed structures
and cognitive capacities, social phenomena provide a chal-
lenging testbed for testing the generalizability of CAs. What
makes a testbed of social phenomena particularly powerful
and informative is that it is far removed from the traditional
cognition (e.g., memory, perception, reasoning etc.). Thus,
it is not plausible to argue that CAs have been engineered to
account for social phenomena. A third benefit is that integra-
tion efforts increase the presence formal modeling in social
psychology where they traditionally have less representation,
leading to several benefits, such as explicating assumptions
and sharpening research questions. Finally, from the perspec-
tive of public policy, the detailed mechanisms underlying in-
tegrated models have the potential to inform and improve in-
terventions and policy prescriptions.

Limitations

The integrated SST-ACT-R model is preliminary and has sev-
eral limitations worth noting. First, as stated above, one must
make assumptions about functional form of the belief distri-
butions when the number of chunks is low. Such auxiliary
assumptions may introduce additional uncertainty into the
model. One workaround might be to design a task in which
the distributions are known, or the utility function can be es-
timated from large number of chunks non-parametrically.

It is worth pointing out that our preliminary exploration of
the ACT-R-SST model is far from comprehensive. We plan to
perform more simulation studies to understand the how var-
ious parameters modulate behavior of the model. In subse-
quent simulation studies, we found that increasing the mis-
match penalty parameter causes public and private beliefs to
evolve at a slower rate. Thus, the model can predict slower
rates of belief evolution than illustrated above.

Another limitation is that the current model assumes dy-
namics are driven passively by memory mechanisms. How-
ever, in some cases, dynamics might also be driven by
schemas, emotion, or active processes, such as motivated rea-
soning. Empirical tests of the model are required to establish
these boundary conditions.

Finally, the integrated model introduces additional com-
plexity in terms of increased parameters and questions about
memory representation. One approach to mitigate increased
complexity is to use default parameter values where possi-
ble. Using default parameter values is a valid approach for
reducing complexity if they have strong support from prior
research. In other cases, it might be possible to leverage
these complications as opportunities to formulate novel re-
search questions.

Conclusion

The present research builds upon a long tradition of using
integrative approaches to develop productive research pro-
grams (e.g., Newell, 1990). In line with previous research, we
demonstrated how integrative approaches can lead to emer-
gent behaviors and novel predictions, which provides a basis
for future empirical testing. Our hope is that our integration
of SST and ACT-R serves as a stepping stone for future ex-
tensions of CAs into the domain of social psychology.
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Abstract

Kanerva (2014) suggested that it would be possible to con-
struct a complete Lisp out of a vector-symbolic architecture.
We present the general form of a vector-symbolic representa-
tion of the five Lisp elementary functions, lambda expressions,
and other auxiliary functions, found in the Lisp 1.5 specifi-
cation (McCarthy, 1960), which is near minimal and suffi-
cient for Turing-completeness. Our specific implementation
uses holographic reduced representations (Plate, 1995), with a
modern Hopfield network (Ramsauer et al., 2020) employed
as a cleanup memory. Lisp, as all Turing-complete languages,
is a Cartesian closed category (nLab authors, 2024), unusual
in its proximity to the mathematical abstraction. We discuss
the mathematics, the purpose, and the significance of demon-
strating vector-symbolic architectures’ Cartesian-closedness,
as well as the importance of explicitly including cleanup mem-
ories in the specification of the architecture.
Keywords: vector-symbolic architecture; Lisp; holographic
reduced representations; cartesian closed category; modern
hopfield network

At Clojure/Conj 2023, the conference of the Clojure
programming language, Meier (2023) introduced vector-
symbolic architectures to the Clojure community. Her pre-
sentation echoed a motif oft heard listening to programmers
who discover vector-symbolic architectures (VSAs) for the
first time; namely, VSAs’ unusual properties and computa-
tional niceties are objects of fascination, but it is not im-
mediately obvious what good a vector-symbolic architecture
does for the programmer. We present an existence proof that
VSAs are completely general computational tools. In tech-
nical terms, VSAs can do anything one wants. In pragmatic
terms, “technically anything” does not answer questions of
naturalness and ease of representation. To answer practical
questions, VSAs have been used most frequently in represent-
ing human cognition, fruitfully in simultaneous localization
and mapping (SLAM), and, pertinent to our analysis, promis-
ingly in the syntactic manipulation of neural network states.

In an remark at the end of her talk, Meier mentioned a
“challenge”, issued by Kanerva, in “one of his papers”, to
implement Lisp using exclusively a vector-symbolic archi-
tecture representing all the language’s expressions. However,
the exact words read in the talk as a challenge, “One could
create a ‘High dimensional computing-Lisp”’, do not seem
to have been written by Kanerva. This apparent mistake is
not Meier’s, as those exact words have been published in
Neubert, Schubert, and Protzel (2019), who attribute the en-
closed quote to Kanerva (2014). While the quote does not

appear in Kanerva’s paper, the mistake is plausibly a case of
miscitation of something said during the associated confer-
ence talk, and in any case it is not serious. Kanerva’s paper,
disappointingly, does not include any challenge, but rather a
discussion of how a vector-symbolic Lisp might be imple-
mented, coupled with a loose specification of some of the
tools that might be required to do so. We are going to pretend
that counts as a challenge, and fully specify a Lisp language
in terms of a generic VSA1.

Hold Up, What’s a VSA?
A vector-symbolic architecture is an algebra (i.e., a vector
space with a bilinear product),

1. that is closed under the product ⊗ : V ×V → V (i.e., if
u⊗ v = w, then u,v,w ∈V )

2. whose product has an “approximate inverse”⊗ that, given
a product w and one of its operands u or v, yields a vector
correlated with the other operand

3. for which there is a dogma for selecting vectors from the
space to be treated as atomic “symbols”,

4. that is paired with a memory system M that stores an in-
ventory of known symbols for retrieval after lossy opera-
tions (e.g., inversion), that can be recalled from M (p), and
which is appendable M ! t, and

5. possesses a measure of the correlation (a.k.a., similarity)
of two vectors, sim(u,v) ∈ [−1,1], where 1 and −1 imply
that u,v are colinear, 0 that they are linearly independent.

The + and ⊗ operators behave analogously to disjunction
and conjunction, or set-theoretic union and intersection. Ad-
ditionally, VSAs may have an analogue for negation, often
the vector rejection on Euclidean space rejv(u) (Widdows &
Cohen, 2014), and permutations Π, which are typically used
to introduce asymmetry to the product operator, by applying
different permutations to the operands. For a detailed review
of vector symbolic architectures, see Kleyko, Rachkovskij,
Osipov, and Rahimi (2022, 2023). Heddes et al. (2023) de-
velop a software library for applying VSAs based on Torch.

In our implementation, we use holographic reduced rep-
resentations (Plate, 1995). They are defined over Euclidean
space Rn, and have circular convolution as their product, co-

1Our implementation may be found at https://github.com/
eilene-ftf/holis
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sine as their similarity, and atomic symbols sampled from a
Gaussian distribution. Our memory system is a lookup table.

Some VSAs (e.g., Kanerva, 1996) are not defined over vec-
tor spaces per se, or otherwise relax some of the above prop-
erties, but behave sufficiently similarly to be used in a sim-
ilar way. The programmer’s choice of VSA comes down to
preference and different computational conveniences. For the
most part, all VSAs are as good as all others.

Vector-symbolic architectures are an answer to an old ten-
sion in cognitive science between the actual machinery of the
brain and properties cognition is believed to necessarily pos-
sess. Brain states, to the one side, are described in terms of
the activity of multiple cell populations, and they exist over
a fixed number of cells. Information is typically assumed to
be distributed over measured populations, degrading grace-
fully and uniformly when cells are disabled at random. To
the other, Fodor and Pylyshyn (1988) made a compelling case
that central cognition must have states that behave like dis-
crete symbols, that can be strung together in a combinatorial
syntax. But, the traditional tool for representing such syn-
taxes, computer memory, uses strings of bits for individual
symbols, composed by concatenation into ever-longer strings.

With disjunction (sum), conjunction (product), inverse, and
similarity operations, plus a cleanup memory, a VSA is suf-
ficient to describe any syntax one could want, to a finite pre-
cision. Thus, VSAs appear to satisfy the cogntive scientist’s
parallel demands for syntax and biomimicry.

Cartejian Clojure and Lisp
A Cartesian closed category (nLab authors, 2024) is the math-
ematical generalization of what it means to compute. It gen-
eralizes the equivalence of universal Turing machines (Li &
Vitányi, 2008, ch. 1) with other definitions of computation,
set theory, first-order logic, and, of interest to us, the re-
cursively enumerable languages RE (Chomsky, 1955). All
instances of a Cartesian closed category have the preceding
equivalences; to say that C is Cartesian closed is also to say
that it is Turing-complete. It follows that C can define RE,
and, therefore, any syntax, as the language generated by any
syntax rules, or grammar, is a subset of that generated by RE.

Categories have two contents: objects and morphisms2.
For example, while we normally treat vector spaces as sets of
vectors augmented with some functions, they are equally cat-
egories that include both vectors (their objects) and functions
(their morphisms). Cartesian closed categories in particular
are useful because they are very simple, and so it is usually
easy to demonstrate that a formal system is Cartesian closed.

In a Cartesian closed category C, there is (1) one object,
called a terminal object 1 (so-named because there is a mor-
phism from every object in the category to it). There is also
(2) a product that can compose any two objects, under which
C is closed, i.e., if A, B are objects in C, the product of any

2Generally, a morphism is any way objects can be related such
that, if you have two morphisms f , g, you can construct h = f ◦ g
such that h(a)= f (g(a)) for some appropriate notion of equivalence.

objects A×B in C is also an object in C. (3) The functions
A→ B on objects in C are together an object in C, written BA.
(4) A morphism that evaluates functions in C, parameterized
by objects in C, evalC : BA×A→ B , is in C.

These four properties give us four tests for whether some
formal system S is Cartesian closed. S must have at least
one base data object, and we should be able to transform any
expression into it (1). S must have some means to compose
arbitrary expressions from its objects, that are data objects
still usable by S (2). S must be able to express functions that
may map any objects to any others, and those functions must
be representable as data objects (3). Finally, we should be
able to describe a complete interpreter for S, in terms of S(4).

Keen readers will have noticed why the above defines com-
putation. We have some base symbols; we may construct se-
quences of symbols, any length; we can specify any function
that transforms sequences to other sequences; and, we can
evaluate those functions. That is pretty much a description of
a universal Turing machine (see Li and Vitányi, ch. 1).

McCarthy (1960) described Lisp for the 1.5th time, giving
us the mother document of all subsequent Lisp dialects. Its
simplicity will enable us to complete our “challenge” without
taking up a whole book. To demonstrate that VSAs can com-
pute, we need only implement the five “elementary” functions
of Lisp 1.5, plus some other functions that can be recursively
defined in terms of the others. The elementary functions are:
CONS, CAR, CDR, EQ, and ATOM. Additionally, there are LAMBDA,
COND, and LABEL. LAMBDA is the most important, as it allows
us to define lambda expressions, i.e., arbitrary functions.

In Lisp 1.5, a tuple is represented in the form (a . b),
where a and b are either atomic symbols (written as alphanu-
meric sequences) or other tuples. A list (a b c) is equivalent
to the tuple (a . (b . (c . NIL))), where NIL is an
atomic symbol that represents the end of a list. Naturally, the
singleton (a) is the tuple (a . NIL) and the empty list ()
is just NIL. The atomic symbols NIL, T, and F are always de-
fined. We’ll define the elementary functions, where lowercase
letters are variables that may be any valid Lisp expression:

(CONS a b) = (a . b)
(CAR (a . b)) = a
(CDR (a . b)) = b
(EQ a a) = T
(EQ a b) = F
(ATOM (a . b)) = F
(ATOM a) = T

The preceding definitions use a pattern-matching format,
such that the earlier definition takes precedence. Where the
same letter is used for two variables, the variables must be
identical. In plain English, CONS takes any two expressions,
and constructs a tuple containing them. CAR takes a con-
structed pair, and yields the left element, while CDR does so
with the right. EQ tests whether two atomic symbols are iden-
tical, and is undefined for non-atomic symbols. ATOM tests
whether an expression is atomic. This already seems like very
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little, but armed with an understanding of Cartesian closure,
it can be understood that we don’t even need all of Lisp to
have a Turing-complete language. We just need CONS (our
product), ATOM (in case it is not immediately clear, there is a
morphism from any expression e to T given by (ATOM (ATOM
e))), and LAMBDA (for functions; the Lisp interpreter evalu-
ates expressions and can be described as a Lisp expression).
What makes Lisp remarkable as a point of reference is that
there is almost no fat on top of the basic building blocks of
a bicartesian closed category; we can describe anything we
would like recursively in terms of the basic functions. To wit:

((LAMBDA NIL e)) = e
((LAMBDA x NIL) a) = NIL
((LAMBDA x ((CAR x) . e)) a) = (LAMBDA (CDR x)

(a . ((LAMBDA x e) a)))
((LAMBDA x ((c . d) . e)) a) = (LAMBDA (CDR x) (

((LAMBDA x (c . d)) a) . ((LAMBDA x e) a)))
((LAMBDA x e) a) = (LAMBDA (CDR x) ((CAR e) .

((LAMBDA x (CDR e)) a)))

The preceding recursively defines lambda expressions en-
tirely in terms of the Lisp elementary functions, provided that
arguments are always curried3. The above recursive defini-
tion has five cases, where any time LAMBDA is called, the ear-
liest definition that fits the arguments takes precedence. A
lambda expression is a three element list, containing LAMBDA,
a list of parameters x, and an enclosed expression e. At base,
(LAMBDA x e) does nothing, but it can be called on one ar-
gument a, which may be NIL, ((LAMBDA x e) a), and then
it is evaluated over a, returning either a lambda expression
where a is substituted for all instances of the first parameter,
or, if there are no arguments left, the resultant body expres-
sion with all substitutions made. In our definition, all lambda
expressions are always curried, so a function on three argu-
ments a, b, c is called as (((((LAMBDA x e) a) b) c)),
with the final call being implicitly on the single argument NIL,
as NIL terminates all lists. The parameters, x, are a list that is
assumed to consist of atomic symbols. LAMBDA is undefined
where elements of x are nonatomic or duplicate.
COND implements conditional expressions:

(COND ((T . q) e)) = q
(COND e) = (COND (CDR e))

The way conditionals work is pretty straightforward. We
write some implications, and when evaluated, we take the first
branch whose condition is satisfied after evaluation.

It is worth noting that this form of recursive definition is
useful for its terseness, but it is not proper to LISP 1.5, which
would require the use of a DEFINE pseudo-function to instan-
tiate a function definition. DEFINE is not one of the elemen-
tary functions because it just maps a name to an expression in
system memory. Recursive expressions are possible without

3A more Lisp-appropriate definition might have been written
such that arguments do not have to be curried, but this version was
chosen for ease of presentation.

using DEFINE, so the above effects can be achieved (if not per-
sistently named) by using the LABEL function. LABEL is the
fundamental tool by which recursion is achieved in the Lisp
1.5 specification, but we choose to omit it due to redundancy.

What we notice in the Lisp 1.5 specification is that there
is remarkable inclarity as to what is core to the language and
how things are formally defined. Understanding Cartesian
closed categories, however, helps to clear up some details.
We have chosen to define the parts of Lisp that are elemen-
tary, plus lambda expressions, and functions that make pro-
gramming minimally less painful: QUOTE, COND, and DEFINE.
We are now prepared to describe the Lisp VSA.

The Lisp VSA
The logic of a LISP VSA is straightforward. We are going
to map all the elementary functions of Lisp to operations
in a vector-symbolic architecture. This proves remarkably
straightforward. An interpreter for the Lisp VSA reads a Lisp
program and, instead of executing, e.g., CONS, over two bytes
in order to make a two-byte array in memory, it will apply
the vector-symbolic CONS over two vectors in order to create
a joint representation of the pair, as a single vector.

One detail that has not been addressed is how atomic sym-
bols are to be constructed. As the dimension of a space
grows, fixing one vector and choosing another vector arbi-
trarily, the expected value of their similarity goes to 0, and
vectors with nonnegligible similarity are exceedingly rare
(Kainen & Kůrková, 1993). In holographic reduced represen-
tations (Plate, 1995), we sample vectors on Rn from a normal
distribution, with µ = 0 and σ = 1√

n , producing vectors v with
E[||v||] = 1. Thus, we can have many more base symbols than
dimensions in the space, all nearly linearly independent4,
which would not be the case if they were truly orthogonal.
For Euclidean vectors, it typical to see n ∈ {2k,k ∈ [6,12]}.

Kanerva (2014) suggested representing lists by permuting
one operand then adding the two operands together. By keep-
ing a fixed permutation in memory, the united representation
is most similar to its unpermuted operand by default, and
then, by applying the inverse permutation, winds up most
similar to its permuted operand, with fixed permutation Π.

cons(a,b) = a+Π(b)

car(c) = M (c)

cdr(c) = M (Π−1(c))

This method has some flaws if we care about retrieval,
however. Taking advantage of the property just described,
either operand can be retrieved from a tuple very simply. But,
problematically, if one wishes to make a list of arbitrarily
many elements, one needs to store sublists in memory. Once

4We can calculate the expected variance of pairwise sim(a,b)
for an arbitrary overcomplete basis B (i.e., a finite sample of Rn

where |B| > n) with a (= b ∈ B ⊂ Rn exactly, but that calculation is
outside the scope of this paper. A commonly used ”margin of safety”
expects sim(a,b) ∈ (−0.2,0.2), but for n≥ 512 the actual expected
variance is much smaller, even for large |B|.
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one stores a list in memory, however, the vector to which that
list is most similar is itself. It becomes necessary to do some-
thing to tag both operands, such that each operand and their
disjunction may be reliably distinguished in memory.

Permutation is also a redundant operation if we are imple-
menting a Lisp. Although it is often used to make the con-
junction operator ⊗ asymmetric, this behaviour is not neces-
sary if we are implementing a Cartesian closed category, as
the role of taking an operation that builds a joint representa-
tion of two operands, and making it asymmetrical, is already
satisfied in the VSA algebra. In the Lisp VSA, the product’s
job is making a combined representation of two objects that
is dissimilar to either, but both remain retrievable, using their
pair and a cleanup memory, which is exactly what permu-
tation is doing in Kanerva. As such, we will leave out the
permutation operator and work just with +,⊗,⊗,sim,M ,

We define additional operators for convenience. F is an-
other cleanup memory, that separates global function bind-
ings from the inventory of retrievable expressions. ν(v) =

v
||v|| divides v by its magnitude, such that sim(ν(v),v) = 1,
||ν(v)||= 1. ⊕ is a variant addition operator that saturates on
both an upper and lower threshold, respectively θ↑, θ↓:

a⊕b = (E[||a||]> θ↑)a
+(E[||a||]< θ↓)b
+(θ↓ ≤ E[||a||]≤ θ↑) ν(a+b)

(1)

Because ⊕ is defined using three mutually exclusive cases,
the operands a and b can be lazily evaluated, such that the val-
ues are only computed if they are needed. Defined assuming
lazy evaluation, ⊕ is a useful operator for writing recursive
definitions. Setting θ↑ and θ↓ respectively a little under 1 and
a little over 0, and the expected magnitude of all vectors is 1,
expressions written with ⊕ are meant to be read as evaluat-
ing the left operand if a test multiplying it succeeds (the test
yields a scalar value α = E[||a||] > θ↑), and evaluating the
right operand if it fails (α < θ↓). Several additional atomic
expressions are used in the preceding definitions, notably L
and R, which mark the left hand and right hand sides of a
tuple, as well as ϕ, which marks that a vector is nonatomic.

f(a) marks a call to programmer-defined function f, and
requires some special treatment, as cons(f,a) is equivalent
in our notation to f(a). What the notation means is that the
interpreter should leave the list including f as an unevaluated
expression if f is not in the function namespace.

Below are the definitions of the Lisp VSA. Single unbolded
lowercase letters refer to variables that may contain arbitrary
Lisp expressions, but typically they are expected to be of a
certain form and lead to undefined behaviour when not of that
form. Bolded words and letters refer to function names, and
are expected to always be atomic. Functions in general are
called by simply using their name, and so all function calls are
marked by atomic symbols at the head of a list of arguments,
except in the case of lambda expressions, which are three-
element lists. Lisp expressions of the form (F a b ...) are

translated to our notation as f(a,b, ..., t), where the last el-
ement t is always the tail of the list of arguments. Recalling
that lists are recursively nested tuples, (F a b ...) is equiv-
alent to (F . (a . (b ...))), and likewise f(a)(b)... =
f(cons(a,cons(b, ...)))= cons(f,(cons(a,cons(b, ...))) in our
notation. Programmer-defined functions are always fully cur-
ried. The special case of (F) is, following the definition of
lists, equivalent to f(NIL). Therefore, we never technically
have functions on no arguments. Here are the definitions:

cons(a,b, ) := ν(L⊗a+R⊗b+ϕ) | M ←+a,b (2)

car(a) := M (L⊗a) (3)

cdr(a) := M (R⊗a) (4)

eq(a,b, ) := sim(a,b)T +(1− sim(a,b))F (5)

atom(a,n) := sim(n,NIL)M (sim(a,ϕ)F
+(2θ↓ − sim(a,ϕ))+T )

+(2θ↓ − sim(n,NIL))+F

(6)

define(a,e, ) := ∗ | F ←+cons(a,e) (7)

cond(r) := sim(car(car(r)),T )cdr(car(r))
⊕ cond(cdr(r))

(8)

(λ(x,e))(a) := sim(x,NIL)e
⊕ sim(e,NIL)NIL
⊕λ(cdr(x),λs(x,e)(a))

(9)

(λs(x,e))(a) := sim(x,NIL)e
⊕ sim(e,NIL)NIL
⊕ sim(car(x),e)car(a)
⊕ sim(atom(e),T )e
⊕ sim(car(x),car(e))

cons(car(a),λs(x,cdr(e))(a))
⊕ sim(atom(car(e)),F)

cons(
(λs(x,car(e)))(a),
(λs(x,cdr(e)))(a)

)

⊕ cons(car(e),(λs(x,cdr(e)))(a))

(10)

f(a) := sim(f,car(F (L⊗ f)))
cons(cdr(F (L⊗ f)),a)
⊕ cons(f,a)

(11)

With some minor modifications due to simplifications of
the specification, the above definitions can be used to imple-
ment the Lisp 1.5 interpreter (McCarthy, Appendix B).

What is particularly notable in the above definitions is
the frequency and fundamentalness of the use of cleanup
memories. Every VSA has a cleanup memory, but usu-
ally, the cleanup memory relies on a big matrix M that
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stores every known symbol as an approximately unit length
row vector. Thus, on Rn, the cleanup memory is M (p) =
argmax(pMT )M, where p is a probe vector to be “cleaned
up”, by retrieving its nearest neighbour from memory. Be-
cause of the historic difficulty of implementing both time-
and space-efficient cleanup memories, and a low appraisal of
the biological significance of “memory is a big lookup table
and you test every entry in order to retrieve the one you want”,
the choice of cleanup memory being used by any given VSA
is an embarrassment one typically glosses over (e.g. while
Kanerva, 2014 discusses cleanup memories, they are not ex-
plicit in his algebraic notation, and are left as a black box in
his diagrams). We emphasize the explicit notation of cleanup
memories, because they are essential for achieving features of
VSAs in frequent day-to-day use, because different cleanup
memories have distinctive computational properties that may
fit some applications better than others, and because mem-
ories with certain computational properties are essential to
achieving Turing-completeness in our Lisp.

Kanerva (2014), following Eliasmith et al. (2012), refers to
the vectors of a VSA as “pointers”. That is because, partly, a
probe in the memory can be taken to “reference” its nearest
neighbour; a trace can be looked up using any of the points in
space near it. Traditional memory pointers similarly “probe”
memory, though, in general, what is at the probed memory lo-
cation need not have high mutual information with the probe.
Variant cleanup memories can also be defined that are simi-
larly heteroassociative, making probes much more like tra-
ditional pointers. One glaring flaw appears in the pointer
analogy, however: Where d is the number of stored traces,
retrieval from computer memory is O(log(d)), if d is close to
the total available space (O(1) if significantly less). Probing a
traditional cleanup memory is at least O(d). In fact, because
probing memory requires traversing all stored traces to test
for similarity, the lookup is also at least Ω(d). It is not an
issue of principle versus practice either; because VSAs use
vectors of extremely high dimensionality, comparisons take a
long time, and because one is often storing thousands or mil-
lions of vectors in memory for practical applications, one is
really getting one’s n’s worth of comparisons in.

So What is to be Done?
Neubert et al. make a second apparent misattribution to
Kanerva (2014), which is also fruitful to pretend was writ-
ten as attributed. They suggest the possibility of another type
of cleanup memory: an attractor neural network. In such net-
works, information is often (though not always) distributed
over the network’s weights, which makes them robust to noise
or damage, as the vector representations of VSAs are ro-
bust. Attractor networks feature interacting cells converging
to stable patterns over time, a tantalizingly brain-like prop-
erty. However, most attractor networks in use are no more
time or memory efficient than a big matrix. The Hopfield net-
work (Hopfield, 1982, made continuous in Hopfield, 1984)
has a storage capacity of O(n) with respect to its input di-

mensions. Hopfield networks work almost exactly like the
big matrix format, with a different activation function (above,
our activation function was argmax) and the proviso that the
network’s outputs may be fed back into it, until it converges5.

Another appealing option is to use the match networks of
Grossberg (2021), as they’ve seen some success in modelling
human brains, and also claim to solve retroactive interference.
Unfortunately, they also look like the big matrix approach of
before6, and they eliminate retroactive interference by “gat-
ing” gradient descent, with a function that updates only on
one row at a time, prohibiting the storage of more than O(n)
traces or retrieving them in less than Ω(d) time, if traces are
assumed to have low mutual information.

If we relax the requirement that traces be near-orthogonal,
better results may be obtained. Ororbia and Kelly (2023)
use a continuous variant of MINERVA2 (Hintzman, 1984) as
the memory system of a reinforcement learning agent. MIN-
ERVA2 also resembles the ”big matrix” memory: M (p) =
(pMT )ρM where ρ is an odd integer power. ρ can be al-
lowed to be a real number using the variant equation M (p) =
sgn(ξ)(sgn(ξ)ξ)ρM where ξ = pMT . Traces are still inserted
row-wise, but Ororbia and Kelly do not expect to retrieve
traces exactly as-stored, and rather interpolate between stored
traces using probes similar to several of them. They also em-
ploy a forgetting mechanism: when information is unused, it
fades out of memory. Thus, the size of memory is capped,
without running out of space. Their system is not strictly
vector-symbolic; there is no syntactic manipulation. But, if
atomic symbols are allowed to be correlated and we permit
forgetting, similarly advantageous properties may be usable.
One reason to specify the exact cleanup memory used in one’s
VSA is that its space, timing, and information loss character-
istics are very relevant topics for study. Different tradeoffs of
characteristics might significantly affect the behaviour of the
VSA in a specific use-case.

For our vector-symbolic Lisp, MINERVA2 is inadequate,
at least without significantly modifying the specification. Let
us reflect on the general form of the cleanup memories we
have looked at: M (p) = τ(σ(βpMT )M + q) with activation
function σ, normalization function τ, scalar constant β, and
some added factor q. In most of the preceding cases, τ has
been the identity, β = 1 and q = 0. M is an m× n ma-
trix, where m is typically O(d), each row storing one n-
dimensional trace. Ideally, we want M to distribute informa-
tion about retrievable traces, as in the case of Hopfield net-
works and MINERVA2; we want to retrieve traces exactly
as-stored, as in the big matrix case; we want to store a num-
ber of traces that is superlinear relative to the input dimension
n, both for the sake of having a cleanup memory with a great
capacity, and for improving the memory’s timing characteris-
tics. Capacity is important, because our Lisp relies so heavily

5Hopfield called for updating neuron activations at random, but
both bulk and random updates converge to the same outcomes.

6Converging to M (p) = τ(σ(pMT )M + p), where σ behaves
similarly to argmax, and τ(v) = ς( v

||v||1 ) with logistic function ς.
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on memory to allow for a program to be written with arbi-
trary functions, and because the set of functions on a S is the
powerset P (S); if arbitrary programs are allowed, we need to
be able to store and retrieve arbitrary sequence-to-sequence
maps, requiring a memory system that is at least exponen-
tial in storage capacity with respect to the input dimension.
Just one candidate cleanup memory fits the bill: the modern
Hopfield Network (MHN) (Ramsauer et al., 2020).

Mathematically demonstrating an exponential storage ca-
pacity and therefore O(log(d)) lookup time, Ramsauer et al.
describe a neural network with a familiar form:

M (p) = softmax(β pMT )M

Information is distributed because stored traces are en-
coded in M using gradient descent (no gating). Special cases
are the big matrix variant (equal to the limit of the MHN equa-
tion as β→ ∞) and a linear memory system (with β = 0). If
β is allowed to be a function of ξ, then MINERVA2 is also
a special case (after normalization) with β = ρ log(x)

x (demon-
strable algebraically), but this is not a very useful example.
The special cases serve to indicate that the capacity of the
network is sensitive to the choice of β. Given an arbitrary
program, then, some amount of tuning is necessary to make
the MHN store what needs to be stored.

However, MHNs obtain an exponential capacity by way of
encoding by gradient descent, so, while capacity is large and
retrievals are O(1), encoding is O(n), and requires a backup
of all stored traces, if retroactive interference is to be avoided.
As it is possible for many traces to be stored at runtime in the
VSA Lisp, MHNs present significant drawbacks for us, so
long as they depend on a gradient descent learning rule.

And Whatfor This Lisp?
The behaviour of vector-symbolic architectures is very sen-
sitive to the choice of cleanup memory. While memory
characteristics are not typically used to demonstrate Turing-
completeness, Turing-completeness makes sufficiently great
demands of memory that reasonable performance requires
specific memory characteristics. As the computing appli-
cations of VSAs expand, studying these characteristics and
making good tradeoffs will be very important.

One application that stands out is suggested by Tamkin,
Taufeeque, and Goodman (2023), who trained a trans-
former network to exhibit states that were decomposible into
“monosemantic” vectors S. The semantic content of the net-
work’s output was manipulated by adding or subtracting fea-
tures drawn from S. As such, transformer states may be made
to behave as additive compositions of atomic vector symbols,
of the sort syntactically composable by VSAs.

Creating a vector-symbolic Lisp has been alluded to a few
times, in particular by Kanerva (2014), Smolensky (1990),
and Legendre, Miyata, and Smolensky (1990). The appeal is
obvious to cognitive scientists and explicit in Smolensky: We
think that brain states have syntax, and we know information
is distributed over them. VSAs are a means to express syntax

in terms that may describe brain states, and Lisp instantiates
the most general class of syntaxes. Respecting actual neural
networks, Chen et al. (2020) and Smolensky, McCoy, Fernan-
dez, Goldrick, and Gao (2022) have put syntactic manipula-
tion of network states into practice, with promising results.

Traditional cognitive architectures, such as ACT-R, de-
scribe memory states syntactically (Stewart & West, 2006),
and take actions according to rules that are sensitive to syntac-
tic features. Such states have already been described in terms
of a VSA (Kelly, Arora, West, & Reitter, 2020), and, taking
into account their rules and memory systems, these cogni-
tive architectures are already Turing-complete. However, it is
uncommon for these cognitive architectures to treat memory
states as arbitrary programs, and attempt to evaluate them.
It is notable that these architectures directly descend from
an attempt to describe artificial general intelligence (Newell,
1980), that the only formal description of artificial general
intelligence (Hutter, 2000) expects states of memory to be ar-
bitrary programs, that recent research obliquely referencing
the latter suggests it is at least worth considering that states
of human memory are such arbitrary programs (Dehaene, Al
Roumi, Lakretz, Planton, & Sablé-Meyer, 2022), and that
none of the preceding should be at all surprising, since Tur-
ing’s universal machine was originally a description of the
sorts of things people do in their head, manipulating either
their memory or a piece of paper (Turing, 1950). Therefore,
it may be necessary to increase the expressivity of memory
states in order for existing paradigms to capture some com-
plex human behaviour. To that end, it is only necessary to
describe rules that treat certain states of memory as lambda
expressions and evaluate them (as we did above). Then, mem-
ory may encode arbitrary programs, although, based on the
behaviour of our own interpreter (see footnote 1), our simple
design is likely not the most efficient that can be achieved.

But what is most striking is that, in several leading func-
tional theories of consciousness, a necessary feature is one’s
ability to pursue one’s goals by reading and manipulating of
one’s own internal state (Butlin et al., 2023, p. 5, Table 1,
properties RPT-1, 2, HOT-2, 3, AST-1, and AE-1). By identi-
fying atomic states, and training a network to represent com-
positions of states, an arbitrary syntax can be defined over the
network’s state space, though not all networks can be trained
to make all syntaxes useful. If any useful syntaxes are pos-
sible, which it seems they are, then the states of some net-
works can be decomposed into sequences, so sequence-to-
sequence models may become capable of reading and writing
the very states that control their behaviour. Because VSAs
are provably Turing-complete, there are no limits to how they
can subject network states to syntactic manipulation, if those
syntaxes can be encoded and learned over. If any of the noted
theories surveyed in Butlin et al. are correct in requiring such
auto-manipulation, vector-symbolic architectures might even
be the gateway to machine consciousness.
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Lübeck, Germany
2Cognitive Psychology and Ergonomics, Technische Universität Berlin, Berlin, Germany

3Social Cognitive Systems, Faculty of Technology, CITEC, Bielefeld University, Bielefeld, Germany

Abstract
Sensorimotor grounding of cognitive processes may be the key
to why humans exhibit efficient goal-directed behavior in a
variety of dynamic environments. Modeling such behavior
computationally poses a challenge as the model has to exhibit
equally dynamic motor control in order to ground cognitive
processes in it. Once the computational model has been devel-
oped, the next challenge lies ahead: how to evaluate the model
behavior using human data? Here we present an eye track-
ing experiment to investigate action control in dynamic envi-
ronments in which fixational and smooth pursuit eye move-
ments reflect cognitive processes of action selection. Slightly
increased uncertainty in motor control leads to more cautious
action selection shown by gaze being allocated closer to a ref-
erence point, whereas strongly increased uncertainty leads to
the need to monitor the environment for potential threats and
thus greater distances to the reference point. We equip a com-
putational model with the hypothesized action selection pro-
cesses and single out the central parameter within its structure.
In the last section, a likelihood method is discussed that can
be used to evaluate the model based on human eye movement
behavior and to infer the parameter value.
Keywords: Sensorimotor grounding; Situated cognition; Eye-
movement control; Computational modeling; Parameter infer-
ence

Introduction
Humans are incredibly efficient at pursuing similar goals in
different environments and situations, such as reaching a cer-
tain position when the ground is slippery vs. when it is not.
This is known as situated action control, where behavior is
exerted to pursue a general action primitive (Vera & Simon,
1993). The behavior itself however can be vastly different.
On slippery ground, the feet might be lifted only slightly to
place them back down on the ground, gaining as much trac-
tion as possible. Intermediate goals could also be planned,
such as getting to an object that we can hold on to. That may
get us to the desired position safely. On the other hand, on
normal ground we do not have to mind slipping. The walk to
the desired position could be a long stride, almost a leap, as
we can now focus our resources on getting there quickly.

Theoretical Background
Goal-directed behavior is comprised of several levels of ac-
tion control. Cognitive processes are applied to conceptu-
alise an action goal, the desired state of what the environ-
ment should look like after the next action (Kahl, Wiese,
Russwinkel, & Kopp, 2022). To do this, various possible
states that lead to the goal must be weighed against each

other. A final selected state is then implemented by the execu-
tion of simple motor regulatory control in that motor actions
continue to regulate the current state until the action goal is
reached. The cognitive processes, which are responsible for
action selection, are informed by the performance of motor
control. It relates to how well motor actions can bring about
the action goal. Based on this feedback, the action selection
process can be adapted to take into account the actual motor
ability to act in the current situation. By adapting cognitive
processes, higher-level cognitive control is applied. The re-
sult is a hierarchical structure that exerts regulatory control
at a lower motor control level and an upper cognitive control
level (Badre & Nee, 2018; Kahl et al., 2022).

The behavior of agents by means of such a hierarchical
structure would be based on environment or rather the ability
to act within the given environment: the behavior is situated.
This implies that human behavior is always improvised, at
least to some degree (Clancey, 1997).

The Sense of Control in Situated Action
The ability to act successfully within an environment is as-
sessed using an internal comparator model (Synofzik, Vos-
gerau, & Newen, 2008). Each motor command simultane-
ously generates a prediction of the effects of the command.
The prediction refers to a variety of anticipated sensory in-
puts including proprioceptive information, perception within
the own body. Here we concentrate on visual information,
that refers to what is expected to be seen in the next moment.
This sensorimotor prediction is matched by the comparator
model with what is actually perceived visually. Both inputs
will never match completely, but a simple threshold, a sen-

sitivity range, can determine a magnitude of deviation that
leads to a prediction error. The assumption of Kahl et al.
(2022) is that these prediction errors are captured in a met-
ric at the motor control level, the low-level Sense of Control
(LL SoC). Accordingly, each prediction error results in a de-
crease of the LL SoC according to the size of the deviation.
If the LL SoC falls below a certain threshold, this will influ-
ence an equivalent metric at the cognitive control level, the
high-level Sense of Control (HL SoC), which will decrease.
The HL SoC influences the action selection process and thus
enables efficient, goal-directed behavior. The authors discuss
that when participants are asked about their sense of control
after having performed a motor task, this HL SoC will re-
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flect the participants’ responses. The threshold that the LL
SoC has to undercut to affect the HL SoC (CCL threshold),
is appropriately called the awareness boundary, as passing
the awareness boundary implies that one becomes aware of
their own insufficient motor control. By implementing two
separate thresholds within the theoretical model, the authors
make very specific predictions about the time trajectory of
cognitive control. Only exceeding the sensitivity range sev-
eral successive times or exceeding it a single time but to a
large degree leads to the overcoming of the awareness bound-
ary and thus to the activation of the cognitive processes re-
sponsible for action selection. This means that performing a
motor task within a dynamic experimental environment that
constantly triggers prediction errors should enable to mea-
sure when exactly cognitive control is exerted by identifying
changes in behavior within the time course of a trial. But
first we have to find out what effects cognitive control has on
the behavior of agents. To do this, we can simply compare
the behavior of agents acting within environments that evoke
different amounts of prediction errors.

An Experiment Investigating the Use of Eye
Movements in Situated Action Control

We conducted a study to test the various assumptions implicit
to the concept of situated action control in humans. Based
on the simulation environment of Kahl and colleagues, we
have developed an experimental environment that we have
already used for previous iterations of a cognitive compu-
tational model, the Dodge Asteroids environment (Heinrich,
Russwinkel, Österdiekhoff, & Kopp, 2023). The task is to
steer a spaceship through a level that is enclosed by walls on
both sides. Obstacles, comets, are scattered throughout the
level. The objective is to avoid crashing into either the walls
or the obstacles and to cross a finish line at the bottom of the
level. Similar to 2D console games, the whole level cannot be
seen, but only a small observation window (Figure 1). Auto-
matic downward movement (free fall) is induced. This means
that obstacles appear at the bottom of the screen, move ver-
tically across the screen and then disappear again at the top
of the screen. Participants steer the spaceship horizontally by
pressing either the Y key (step to the left) or the M key (step
to the right) on the keyboard. The spaceship is fixed in the
center of the screen at all times, so pressing keys causes the
environment around the spaceship to move. 27 Participants
played a total of 6 different levels of the Dodge Asteroids en-
vironment. For each level, the positions of the obstacles were
drawn anew from a uniform distribution, which was bounded
by the width and length of the level. Each level was played
with 3 different intensities of input noise. Input noise has a
direct effect on the efficiency of motor control influencing the
ability to generate predictions for the outcome of a key press.
During each game frame (the environment runs on 60FPS)
in which a key for horizontal movement is pressed, the shift
of the spaceship in the respective direction is drawn from a
normal distribution centered over a shift of 6 pixels. We de-

fined different standard deviations of the normal distribution,
in order to vary the intensity of input noise. Here we specified
the 3 standard deviations 0 vs. 0.5 vs. 1, whereas the stan-
dard deviations also refer to pixels (a standard deviation of
0 meaning no uncertainty in motor control). An unexpected
shift in the opposite direction of the input can also occur and
does so more frequently with increased input noise.

Figure 1: Depiction of an instance within the Dodge Asteroids

environment. An observation window is shown, the space of
the environment that is drawn on the screen during the exper-
iment. Obstacles are scattered between the two walls on the
left and right. The grey bar at the bottom of the screen pre-
vents participants from looking outside the screen when they
intend to look at obstacles that appear at the bottom.

We wanted to prevent participants from familiarizing them-
selves with certain locations (constellations of obstacles)
within the levels and therefore specified a finite number of
attempts. For each combination of level and input noise in-
tensity, participants were given 3 attempts. First, all combi-
nations were put in a list in random order and played accord-
ingly in succession. In the event of a crash, the combination
was reinserted at a random position in the list again. If all 3
attempts were used up, the combination was removed from
the experimental procedure.

The screen on which the experiment was presented was
placed in a distance of 80cm in front of the participants and
their gaze was tracked the whole time. We used a high-
frequency eye tracker, the TRACKPixx 3 with a sampling rate
of 2000Hz (VPixx Technologies, Saint-Bruno, QC, Canada).
A grey bar is displayed at the bottom of the screen at all times
during the experiment. This prevents participants from look-
ing outside the screen in anticipation of new obstacles and the
eye tracker potentially losing the signal of the fovea.

Gaze Allocation Reflects Action Goals and the
Effect of Uncertainty in Motor Control
The model of Kahl et al. (2022) assumes that although mo-
tor control is exercised continuously, it is driven by individ-
ual action goals. According to this, however, simply mea-
suring keystrokes of participants while they steer the space-
ship would not provide any information about the cognitive
control of action goals. But our body has a rich sensorimo-
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tor system which also includes a visual system. It has been
shown how our gaze guides other manual movements (for ex-
ample in natural driving; Marple-Horvat et al., 2005; Wilson,
Stephenson, Chattington, & Marple-Horvat, 2007). We ar-
gue that where we move our gaze reflects the action goal we
are pursuing at that point in time. Admittedly, eye move-
ment control is also exerted continuously but this continuous
stream of data can be divided into individual events: fixa-
tional and smooth pursuit eye movements. We try to equate
these events with the individual action goals adopted by the
cognitive model of (Kahl et al., 2022).

We applied a velocity-based detection algorithm (Engbert
& Kliegl, 2003; Engbert & Mergenthaler, 2006) to filter out
saccades in the eye-movement data obtained from the study
described above. Subsequently, we specifically isolated fixa-
tional eye movements that showed characteristics we deemed
inherit to action goals. First, they have to be initiated with
the agent in peripheral vision, with a minimum distance of 5�
(Millodot, 2014) between agent and exact gaze location. For
this we computed the Euclidean distance between both points
given by x and y coordinates referring to positions on the
screen and converted the distance to visual degrees account-
ing for the distance between participants’ eyes and screen.
Second, the fixations had to be located in empty space, not
foveating obstacles or walls. They had to remaine at the rela-
tive point within the environment, following the movement of
the environment on the screen, and converging on the agent
over time, thus technically being categorized as smooth pur-
suits. This means that during these smooth pursuits, motor
control was exerted specifically with the purpose of bringing
the agent closer to the foveated location. We used the above
conditions to create a filter that we applied to the entire data
set of all fixational and smooth pursuit eye movements. What
remained were all the eye movements that reflected action
goals. This final data set, called foveated action goals, con-
tained a total of 36,586 fixations and smooth pursuits across
all 3 different intensities of input noise. Following the as-
sumptions we already integrated into the earlier iteration of
our computational cognitive model (Heinrich et al., 2023), we
investigated whether participants initiated action goals closer
to the agent the less control they had over it. This translated
into the hypothesis that the distance of foveated action goals
to the agent decreases with increasing intensity of input noise.

We applied linear mixed modelling using Julia 1.9.3
(Bezanson, Edelman, Karpinski, & Shah, 2017) and the
MixedModels package for statistical modeling (Bates, 2015)
to test our hypothesis1. We used a random seed, the Mersen-
neTwister(36) of the Random module. A box-cox distribu-
tional analysis (Box & Cox, 1964) of the fixational distance to
the agent indicated a transformation to the logarithmic scale.
Note that therefore all b-values and CI bounds are reported
on the logarithmic scale. We further explored the random ef-
fects structure of the model by referring to the Bayesian infor-

1Data and analysis script accessible via the link: https://
github.com/nilsheinrich/CogSci2024 analysis.git

mation criterion for model selection (Chakrabarti & Ghosh,
2011). The final model selected model included random
intercept effects for participant ID and the number of vis-
ible drift tiles. The latter being a manipulation of the ex-
periment that not of interest when it comes to analyzing
the hypothesis described here. We found that the distance
to the agent in visual degrees decreased with weak input
noise compared to no input noise (b = �0.026, s = 0.005,
CI95% = [�0.035,�0.017], p< .001), supporting our hypoth-
esis. However, contrary to our hypothesis the distance in-
creased with strong input noise compared to weak input noise
(b = 0.039, s = 0.005, CI95% = [0.030,0.049], p < .001).
Foveated action goals were thus located closer to the bottom
of the screen.

Why is it that with a higher loss in motor control, action
goals are suddenly planned further ahead? We derived new
hypotheses that consider the role of bottom-up processing in
visual perception. Fixational eye movements fulfil several
functions. They are not only to maintain the top-down action
intention and perceive the effects of motor control while pur-
suing the action goal. They certainly are also used for active
perception of the environment and to monitor specific loca-
tions. Therefore, the final gaze location is a compromise of
the location of the action goal and the need to sample the bot-
tom edge of the screen for incoming obstacles. Under enor-
mous motor control loss, the need to detect incoming obsta-
cles as early as possible to ease cognitive load when planning
paths through said obstacles becomes more important. It may
even outweigh the need to foveate the action goal.

In the following, we will set up a computational cognitive
model in which we precisely define our hypotheses. In this
paper, we present how to verify a model that produces dy-
namic eye movements using mean statistics. The advantage
of a computational model would be that once it is verified,
we can generate highly accurate predictions about the tempo-
ral trajectory of behavior using simulations.

A Computational Cognitive Model of Situated
Action Control

We have already successfully implemented several hypothe-
ses in a previous iteration of a computational cognitive model
(Heinrich et al., 2023) in the following referred to as two-
layer architecture to emphasise its body structure. We have
also improved and expanded on the model’s internal pro-
cesses. The current version of the two-layer architecture used
in this paper is implemented in Python (Van Rossum, Guido
& Drake, 2009) and its internal functions are described below.

The two-layer architecture engages in situated action con-
trol by means of a rather straightforward action selection pro-
cess. In order to effectively identify action possibilities within
the immediate environment, a convolution of the visual input
is generated and held at the cognitive control level. The vi-
sual input is the part of the Dodge Asteroid environment that
is inside the observation window between the walls and be-
low the agent. All pixels of the visual input are assigned to
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one of 56 pools of equal size. The number of pools (Npools)
is a free parameter that reflects the granularity of the repre-
sentation of the visual environment and can be chosen from
a defined set of values (20, 30, 42, 56, 72; a higher value
refers to a higher granularity). The pools are arranged in a
convolution grid with 6 rows and 7 columns. Within a given
pool the color activation of each pixel, comprised of its RGB
values bounded between 0 and 1, is factored into an overall
mean activation of the pool. If the mean activation exceeds
a threshold of 0.03 (meaning that if 3% of the pixels within
the pool are colored), the pool is considered populated by an
obstacle and eliminated from the set of action possibilities
(Figure 2). Subsequently all other pools of the same column
that are below the rejected pool are eliminated, reflecting that
this horizontal location is not safe due to the vertical move-
ment of obstacles (the subsequently eliminated pools might
have even been unpopulated). All other unpopulated pools
are accordingly identified as possible locations for an action
goal. Regarding selecting the horizontal location of the ac-
tion goal, a column is chosen based on the minimum distance
to the current position of the agent. This is grounded in our
model applying a heuristic that is meant to minimise the need
for motor control. The row of the final action goal (vertical
location) is determined using Equation 1:

rowaction goal = bHL SoC⇤Nrowsc, (1)

with Nrows being the total number of rows in the convolu-
tion grid (in our example Nrows=7, but it changes with Npools).
It factors the HL SoC that ranges from 0 to 1. Of the final se-
lected pool, the exact center is specified as intended location
and thus the top-down action goal. It might happen that there
are no available pools in the corresponding row under the cur-
rent granularity. In this case, the action field is generated
again, but this time under the highest granularity (Npools=72).
The larger number of pools and thus the finer differentiation
of the visual space makes it possible to identify free spaces
between obstacles where previously there were none. We
consider the resampling of the action field as hacking because
it has no theoretical justification but allows the model to al-
ways act on the basis of an action goal. However, one could
argue that the more obstacles there are in the visual environ-
ment, the more accurate the visual environment is searched
for free spaces to steer to. The action goal is passed to the mo-
tor control layer for implementation. At this level, the final
position of the action goal is biased by bottom-up process-
ing of color activation of individual pixels that may attract
the gaze. A two-dimensional probability density distribution
with all density gathered within the selected pool is integrated
with a heatmap of color activation over all pixels in the visual
input in Bayesian fashion. Of the resulting two-dimensional
probability density distribution, the point of highest probabil-
ity density is selected as the final action goal and the model
will initiate a fixation at that exact location (Figure 2), the
foveated action goal. It is utilized for online motor control
when navigating the environment.

Figure 2: Illustration of the grid with Npools=56 and color ac-
tivation within the visual input of the two-layer architecture.
The bars on the axes indicate the locations of high activation.
The center of the selected pool (top-down action intention) is
indicated by where the blue lines meet. The final action goal
(compromise between top-down action intention and bottom-
up color activation) is shown at the point where the green
lines meet.

In each frame of the game environment, the two-layer ar-
chitecture will update the location of the foveated action goal
by the inferred movement of the visual environment. The in-
ferred movement is the posterior of two ongoing Bayesian
integration processes individually for vertical and horizontal
movement of the environment. The likelihood is given by the
observed movement. We introduce uncertainty to the obser-
vation by means of a noise factor, resulting in a gaussian prob-
ability density function. This represents the internal noise of
the visual system. The prior is the posterior of the inference
step before. The model always starts every trial with a flat
prior (uniform distribution bounded by the dimensions of the
observation window). The updated horizontal position of the
foveated action goal is matched with the horizontal position
of the agent and the direction of necessary movement is de-
termined (left vs. right depending on the horizontal position
of the agent in relation to the foveated action goal). Finally,
the horizontal distance is minimized over time by maintaining
the directional input as many frames as needed. This is how
the model exercises motor control in the form of key presses.

If an obstacle appears whose horizontal location is inferred
to be on the horizontal section of the current action goal, the
action goal is abandoned, and a new action selection process
is triggered.

According to the assumptions of Synofzik et al. (2008),
the two-layer architecture applies predictive coding to iden-
tify prediction errors. Similar to how the model infers the
movement of the environment, it infers the horizontal shift
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resulting from its own motor input. It does so by repeatedly
integrating the perceived shift in a Bayesian manner with the
likelihood being the actual observed shift with the noise fac-
tor added every time it steers the spaceship. This way, the
two-layer architecture will reach a precise estimate of its own
movement within the environment resulting from exercising
motor control as the posterior of the integration process at
time t will be the prior for the integration process at t+1. The
estimate is then used to generate a feedforward prediction
whenever the model exercises motor control since it antici-
pates the outcome of its own action. The prediction is com-
pared to the observed shift. For the comparison, the model
refers to the Kullback-Leibler divergence. If the divergence
exceeds a value of 0.0001 (which represents the sensitivity

range), a prediction error is identified and the control metric
specifically for motor control, the LL SoC, is reduced by the
value of the divergence. If the LL SoC falls below the thresh-
old value of 0.3, which is the awareness boundary parameter
of the model, this has a direct effect on the HL SoC. It is now
reduced by a fixed proportion (0.25) of its own value. This
reflects the assumption that under increased cognitive con-
trol, a loss of motor control also leads to an increased loss of
cognitive control. Consequently, the next action goal will be
chosen closer to the agent (Equation 1).

The two-layer architecture described here attempts to ex-
plain the effects of prediction-based motor control on ac-
tion selection processes while accounting for visual percep-
tion and oculomotor control. In a next step, we can conduct
a comparison between the mean statistics of foveated action
goals of our model with those of human participants to tune
parameter values within the model. The distinctive feature
of the two-layer architecture is that it makes explicit assump-
tions about the time dependency of cognitive control. Error
signals in the sensorimotor system must effectively exceed
two individual thresholds before they take effect on the action
selection processes. Given an adequate fit to human behav-
ior, we are able to predict moments of control loss in humans
and their implications on action selection. However, since
foveated action goals are measured using highly dynamic eye
movements, estimating a match between model and human
data poses some challenges.

The Feasibility of Using Eye Movements to
Infer Parameters Values

For a preliminary comparison, we simulated model behavior
for each of the combinations of level and input noise inten-
sity exactly once under each of the different possible values
for the convolution granularity parameter Npools. The two-
layer architecture therefore played the same levels as the hu-
man participants. Our hypothesis focused on the distance of
the gaze to the agent. Therefore, we calculated the distance
for the simulated data and converted it to visual degrees, as
was the case for the human data. It will be the only summary
statistic we assess in this work but note that many more statis-
tics such as the duration of fixations and smooth pursuits or

the properties of saccades might be assessed simultaneously.
Applying kernel density estimation (kernel density esti-

mate; KDE), we can visually compare the probability dis-
tribution of the distance from the foveated action goal to the
spaceship between model and human data. High peaks indi-
cate that foveated action goals were initiated at this distance
from the agent particularly often. Figure 3 shows the individ-
ual KDEs of the model data generated with the Npools param-
eter value equal to three different values of the defined set
split each for the three different input noise intensities. We
can see immediately that for each input noise intensity the
point of highest probability density for the model is always
shifted towards lower distances compared to human data. The
model data under Npools=56 yielded the best visual fit (Fig-
ure 3 b). Lower parameter values also showed a tendency
towards smaller distances (for reference Npools=20; Figure
3 a). This might be due to the fact that with increased HL
SoC, the last vertical row of the grid is selected. Compared
to coarser grids, with a finer grid the center of the individual
pools in the last row is further away from the agent resulting
in greater distances to the agent. Further increasing the gran-
ularity of the convolution grid, Npools=72 resulted in foveated
action goals with less variance (Figure 3 c). The distinct peak
under this parameter value has a worse visual fit to the human
data compared to Npools=56.

Figure 3: Normalized kernel density estimates for our exem-
plary metric for human data and model data simulated under
three different values for Npools. The specific values were:
a) Npools=20, b) Npools=56, and c) Npools=72. The metric is
individually compared within the three different input noise
intensities, with column 1 showing KDEs within input noise
0.0, column 2 within input noise 0.5, and column 3 within
input noise 1.0.

The Log Synthetic Likelihood
The granularity of the convolution grid turns out to be a pow-
erful parameter of the model, probably even the most impor-
tant one to fit to human data. But conducting a parameter
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inference on the basis eye-movement data poses a challenge.
We need an objective method that reflects the fit across all
three different input noise intensities simultaneously and out-
puts a single value that quantifies the overall agreement be-
tween model and human data. Wood (2010) proposed such a
method in the construction of a synthetic likelihood. It is a
phase-insensitive method that attempts to discard noise in the
data and to consider only the important dynamics. This might
prove helpful in the assessment of noisy eye movement data.
We will repeatedly change the value for Npools and compute
the synthetic likelihood as depicted by Wood (2010) for the
data simulated under the specific parameter value. Based on
the assumption that humans elicit behavior according to our
model, the summary statistics s of the human data y can be
recovered simulating under unknown model parameter val-
ues q (here we will only vary Npools). As mentioned above,
the single summary statistic used here will be the distance to
the agent in log visual degrees for the three individual input
noise intensities. We will therefore assess the fit for three val-
ues simultaneously. Using the model, a number of Nr data
sets (y?1, y

?
2, y

?
3, ..., y

?
Nr

) are generated for each different value
of q (here we set Nr equal to 1). These data sets are reduced
to summary statistics (s?1, s

?
2, s

?
3, ..., s

?
Nr

) as was the human
data y (with each s

? comprising of the three different distance
to the agent statistic for the various input noise intensities).
Next, we compute the mean vector µ̂q (Equation 2) and the
covariance matrix Ŝq (Equation 3).

µ̂q = Â
i

s
?
i

Nr

(2)

Ŝq =
SS

T

Nr �1
(3)

Where S = (s?1 � µ̂q, s
?
2 � µ̂q, ...). µ̂q and Ŝq are given as in-

put into Equation 4 from which we finally obtain the synthetic
likelihood.

ls(q) =�1
2
(s� µ̂q)

T Ŝ�1
q (s� µ̂q)�

1
2

log|Ŝq| (4)

This procedure is repeated for every different Npools value
q. After obtaining all the synthetic likelihood values, we can
plot a likelihood profile with its peak indicating the q under
which the human data y was most likely generated (Figure 4).
The likelihood profile peaks at Npools=56 which agrees with
our visual assessment2.

Limitations
In this first application of Wood’s (2010) log synthetic likeli-
hood method, we successfully identified a parameter value for
the granularity of the convolution grid that might underlie hu-
man action selection. This shows that parameter inference is
possible even on the basis of extremely noisy eye-movement
data.

2Original code and data used to generate plots and obtain like-
lihood values can be accessed via the link: https://github.com/
nilsheinrich/ICCM 2024.git

Figure 4: Likelihood profile showing the individual results
of the log synthetic likelihood method for determining the
fit of model and human data (y-axis), for every value of the
convolution granularity parameter Npools which was used to
simulate the model data (x-axis).

The log synthetic likelihood method would indicate a best
possible fit of model and human data if it approaches the
value 0. This does not apply to the likelihood values obtained
here and therefore we can still consider the model to be inad-
equate. We aim to strengthen our confidence in the likelihood
method by increasing the number of simulations Nr to obtain
a more robust estimate for the mean vector µ̂q and covariance
matrix Ŝq. At the same time, as already mentioned, further
summary statistics could be assessed.

The following specific adjustments could be made to the
two-layer architecture. The vision of the model is not
foveated yet. The general noise factor in the observation
should be extended to grow with increasing distance to the
foveated location. This way the locations of objects far away
from the foveated action goal would be even more uncertain
and this might generate the need to shift gaze to these specific
objects to better estimate their locations. This is probably
what is seen in the human data. Participants execute fixations
specifically to pinpoint objects that just appeared. This might
happen especially often under decreased HL SoC. However,
we miss this capability in our model, as it uses visual atten-
tion exclusively to foveate action goals.

Lastly the integration process to estimate environmental
movement or positional shift due to own actions might be
tuned to better reflect the general assumptions in literature.
Here when updating the estimate new observations should be
weighted lower if no prediction error was detected, reflect-
ing that these reafferent signals that confirm predictions hold
little new information (Fiehler, Brenner, & Spering, 2019;
Shoshina et al., 2020).
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Abstract

Humans have cognitive vulnerabilities that can be leveraged to
influence individuals. One such vulnerability is the continued
influence effect (CIE), where misleading information can have
a lasting effect even after corrections or factual discrediting
information is presented. The CIE has been addressed experi-
mentally and memory-based explanations exist. Currently, no
cognitive models exist to specify mechanisms for prediction,
simulation, and detailed testing of hypotheses. Here, we dis-
cuss relevant literature and propose a novel cognitive model
implemented in ACT-R to investigate memory mechanisms
underlying the CIE. We demonstrate the utility of our initial
model using simulations which show how the CIE emerges
from memory processes and discuss plans for future research.
Keywords: ACT-R; Cognitive modeling; misinformation;
continued influence effect; knowledge representation

Introduction
Humans have systematic cognitive biases (e.g., confirma-
tion bias and loss aversion) that could be exploited to influ-
ence attitudes or judgment (Kahneman, 2011). Misinforma-
tion leverages those biases, and due to technology and so-
cial media advancement, is now more prevalent (Wang et al.,
2019). An example of bias increasing susceptibility to misin-
formation is the continued influence effect (CIE) (Johnson &
Seifert, 1994; Lewandowsky et al., 2012), where misinforma-
tion has a lasting effect on decisions despite the presentation
of corrections or discrediting facts. Experimental manipula-
tions demonstrated the CIE is robust and, at best, can be re-
duced by 50% (Lewandowsky et al., 2012). Recently, experts
in the field (Ecker et al., 2022) stated the literature lacks: 1)
a psychology of misinformation, 2) realistic scenarios in ex-
periments, 3) an understanding of the interplay between cog-
nition, social, and emotional factors, and 4) an overarching
theory and model including these factors and spanning from
individuals to groups. Here, we present our initial effort as
we start addressing gap 3 with a cognitive model to explain
memory mechanisms underlying the CIE.

Explanations of the CIE focus on episodic memory, where
a piece of information entering long-term memory (LTM)
cannot be erased but rather re-activated or associated with
different information (Wilkes & Leatherbarrow, 1988). This
can lead to memory errors related to competing memory
activations (Ayers & Reder, 1998; Ecker et al., 2010), re-
cency effects (Ecker et al., 2015), or familiarity-based flu-
ency (Ecker et al., 2011; Swire et al., 2017). In addition,

more available or easier-to-access information tends to be
weighted more in judgment (Kahneman, 2011). Memory
activation and availability present an interesting issue with
corrections. They may re-activate misinformation by re-
peating some elements, leaving it more ”available” than the
correction. Corrections may not fit into the coherent men-
tal model constructed during the presentation of the origi-
nal (mis)information (Wilkes & Leatherbarrow, 1988; John-
son & Seifert, 1994; Lewandowsky et al., 2012). This may
result in fewer retrieval pathways to the correction (Seifert,
2002; Mayo et al., 2004). Gilbert et al. (1990) suggest re-
tractions require effective negation “tags” to overcome these
memory errors and successfully retrieve the corrected infor-
mation (Johnson & Seifert, 1998). However, corrections or
negation may not be effective if they do not fit well enough
into the relational or causal structure between memories to
replace the misinformation (Johnson & Seifert, 1994).

The CIE is largely a memory phenomenon that interacts
with other cognitive processes. The literature provides hy-
potheses focused on specific rather than holistic aspects of
memory and lacks cognitive models to thoroughly test and
compare hypotheses. To better understand how cognitive pro-
cesses interact, make predictions, and explain behavior, we
leverage the ACT-R cognitive architecture (Anderson, 2007).
We previously simulated the CIE (Hough et al., 2023) by pro-
viding misinformation to a model that learned to make de-
cisions based on sets of cues in a binary decision making
task (Halverson et al., 2018; Myers et al., 2015). Here, we
explored the memory mechanisms underlying the CIE with
a more appropriate task (i.e., CIE experiment). During this
process, we faced several challenges with parsing language,
methods used to analyze data from the literature, and approx-
imating behaviors like question answering and beliefs. We
present our contributions toward addressing these challenges,
our novel CIE model, and areas for improvement.

The CIE Task
CIE experiments typically use two stories about scenarios,
where the first contains misinformation and the second has
the correction. The general finding is that corrections re-
duce, but do not eliminate inferences consistent with mis-
information (Brydges et al., 2018; Ecker & Antonio, 2021;
Ecker et al., 2017; Johnson & Seifert, 1994). We focused on
six scenarios from a previous experiment (Ecker & Antonio,
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2021) available on OSF: https://osf.io/awsf5 (see Table
1). Rather than using separate narratives for each scenario,
the study used one narrative presented one sentence at a time
with the critical (mis)information as the second sentence and
retraction (i.e., correction) as the second-last sentence. Re-
tractions included a source and their profession. Source in-
formation was used to manipulate credibility (low and high)
and trustworthiness (low and high). There were also two con-
trol conditions: best possible retraction and no retraction.

Table 1: Critical (mis)information and retractions for the six
scenarios from Ecker and Antonio (2021)

Scenario Critical (mis)information Retraction
Football
scandal

Larsson is believed to have
tested positive for perfor-
mance enhancing drugs

Oliver Lindgren stated that “I
do not believe that Larsson
has engaged in drug use

Recreational
fishing

There have been reports that
since the introduction of the
restrictions, marine tourism
numbers have grown substan-
tially as more recreational
snorkelers and divers have
been attracted to the state

Barry James has stated that
‘marine tourism numbers
have certainly not increased
since the introduction of the
restrictions

Contaminated
water

It is believed that the fish
deaths were caused by con-
tamination with industrial
pollutants from a nearby
mining company

Todd Hunter explained that
“there was no contamination
from mining operations.”

Food
additive

The list contains many food
additives that have been sug-
gested to pose serious health
risks, including increased risk
of cancer and ADHD

Randall Carter stated that “all
food additives on the list have
been thoroughly tested and
are safe for human consump-
tion.”

Inflammatory
joint disease

Symptoms of inflammatory
joint conditions can be treated
effectively through remedial
yoga.

Debra Phillips has stated that
effective treatments will al-
most always include pharma-
ceutical intervention, as prac-
tices such as yoga are not ef-
fective.

Anti-viral
drug

A new anti-viral drug that
was promising a break-
through in treatment of viral
infections is being withheld
because of safety concerns.

Gerard Hintzman stated that
“despite the delay of the
market launch, there are no
safety concerns regarding
Nanofadol.”.

After a 10 minute distractor task, participants completed
two questionnaires including: 1) a recall question and infer-
ential reasoning questions relating to each scenario, and 2)
belief ratings for the critical (mis)information, and retraction
on a 10-point scale (not at all-very strong). The first exper-
iment showed a slight reduction in the CIE (i.e., reliance on
misinformation) in conditions with higher trustworthiness. In
addition, the critical (mis)information was rated as more be-
lievable than retractions. The authors also mentioned that re-
tractions provided no context or supportive arguments, which
rules out the mental model explanation. Here, we attempt to
capture the results for both questionnaires.

Cognitive Model of the CIE
We implemented our CIE model within the ACT-R cogni-
tive architecture (Anderson, 2007). ACT-R is a hybrid cogni-
tive architecture with symbolic and sub-symbolic structures,
and modules representing systems of the mind. The CIE
model uses the goal, vision, imaginal, and both declarative
and procedural memory modules. The goal module serves

as the model focus and stores goal-relevant information. The
vision module allows the model to perceive visual stimuli,
and the imaginal module serves as temporary working mem-
ory. Declarative memory stores information as chunks and
captures memory dynamics. The procedural module uses
condition-action rules (i.e., productions) to represent knowl-
edge about how to do things and to drive the model’s behav-
ior. Given the nature of the CIE, here we focus on declarative
memory.

ACT-R Declarative Memory
CIE research suggests memory for misinformation and cor-
rections compete. In ACT-R there are existing mechanisms
in declarative memory capable of capturing this competi-
tion through chunk activation. Chunks are the basic units of
declarative memory and are comprised of slots that contain
values (e.g., situation, decision, and utility). A chunk has an
activation value corresponding to the probability and speed it
will be retrieved in a given situation. Activation, Ai, is de-
termined by starting or base level activation, Bi, how much
activation spreads among other chunks in memory, Si, partial
matching for degree chunk matches retrieval requests, Pi, and
added activation noise, ei. Here, we only use Bi and ei

Ai = Bi +Si +Pi + e (1)

The base level term, Bi, describes opposing dynamics of
learning with experience and forgetting across time. It is
stated as:

Bi = log

 
ni

Â
j=1

t
�d

i j

!
(2)

where ni is the number of times chunk i has been used or
retrieved, ti j is elapsed time in seconds since the j

th retrieval,
and d 2 [0,1] is a decay parameter. Therefore, if a chunk is
created with a high base level activation or is used frequently,
it will have more influence in decision making.

In our model, we used six declarative memory parame-
ters. Retrieval threshold which restricts chunks lower than
the threshold from being retrieved and starting base-level ac-
tivation, Bi, were arbitrarily set at 1 and 10, respectively. We
used the recommended value of .5 for base-level decay, d, and
set activation noise, ei, at .25, which is on the low end of the
recommended range of .2 - .8. As we are exploring appro-
priate methods to navigate memory representations, we took
some liberty with declarative finsts by setting the number of
items (i.e., amount of items in memory marked as attended)
higher than the number of items in scenarios and span (i.e.,
time span items remain marked) high enough that finsts won’t
clear during knowledge representation navigation. Note that
we did not include partial matching, Pi, or spreading activa-
tion, Si, terms from the activation equation (equation 1). In
our CIE model, we focus on retrievals and changes in chunk
activation based on declarative memory dynamics (e.g., de-
cay and frequency of use) to capture the competition between
(mis)information and retractions.
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CIE Model Knowledge
Models that rely on language processing require significant
existing knowledge about words and how to extract mean-
ing based on sentence construction. Ideally, the model would
read sentences, comprehend them, and form chunks, rather
than hard coding chunks based on scenarios. However, our
main focus is on memory competition underlying the CIE.
It is good practice to generate knowledge representations in-
dependent of the current model or modeler to reduce “tai-
lorability” (Forbus et al., 2017) where model results depend
on representation choices of the modeler. Therefore, we used
Romero et al. (2023)’s method by providing an in-context
learning example to ChatGPT to parse sentences and convert
them into lists of predicates. We initially used the predicate
structure of one scenario to build the model. After developing
the model, we ran the remaining five scenarios through Chat-
GPT and found the output changed dramatically. Therefore,
we had to manually create predicates for five scenarios. We
followed the natural sentence structure and used the predi-
cates provided from ChatGPT as a guide to avoid introducing
our own bias.

Table 2: Word pairs used as chunks for food additive scenario

Type Predicates
Neutral (list food-additives)

Critical (mis)info (food-additives health-risks) (health-risks serious)
(serious cancer) (serious ADHD)

Retraction (Randall-Carter source) (source statement)
(statement all-food-additives-on-the-list-have-
been-thoroughly-tested-and-are-safe-for-human-
consumption) (food-additives tested)
(tested thorough) (tested safe-for-human-
consumption)

CIE Model Processes
We developed the model with both simplicity and general-
ity in mind so that we could explore the space and address
some challenges with modeling the CIE. In Ecker and Anto-
nio (2021), participants read scenarios with misinformation
and a correction (Table 1), then were asked a series of ques-
tions. Here, we explored methods for the model to answer the
general open-ended recall questions (summarize the report in
a sentence or two and what was the main point of the report?)
and approximate belief ratings for critical (mis)information
and retractions. To simulate the experiment, the model was
presented with one scenario at a time in random order. Sce-
narios were presented as predicate pairs, given one at a time.
The model is presented with all scenarios, then navigates
mental representations of scenarios while preparing to answer
questions (see Figure 1). The model directs visual attention
to find, attend, and read (i.e., encode) predicate pairs (i.e.,
words). After reading one word, the model attempts to recall
if this information was previously encountered and associ-
ated with another word (retrieve-assoc), and if so, it retrieves
that chunk and increases its activation. After this retrieval
the model finds and reads the second word. Alternatively, if
the model reads one word and cannot retrieve an association,

Figure 1: CIE model processes (blue rectangles), conditions
(yellow diamonds), and flow of behavior (arrows).

it reads the second word (keep-reading). In either case, af-
ter reading the second word, the model creates a chunk with
those two predicates (create-assoc). This process continues
until all information for each scenario has been presented
and stored as chunks. The model is then directed to answer
questions about each scenario in random order. We imple-
mented processes to simulate the formation of and navigation
within a mental representation by chaining or linking chunks.
The model starts by randomly recalling a chunk not yet re-
trieved (retrieve-scenario-info). If a chunk is recalled, it is en-
coded (encode-scenario-info) by placing it into the imaginal
buffer, and the model attempts to find the root or starting link
in the chain it belongs to through back-chaining (find-chain-
root). Back-chaining uses the first word of the current chunk
in the imaginal buffer as a cue (e.g., food-additives health-
risks) to retrieve a chunk in memory with a matching sec-
ond word (e.g., list food-additives). If back-chaining is suc-
cessful, the recalled chunk is encoded (encode-back-chain),
and the model continues back-chaining until the root is found
(found-root). Once the root is found, the model checks if any
parallel chains exist (find-parallel-chain). It uses the current
chunk’s first word as a cue (e.g., serious cancer) to retrive a
chunk in memory with a matching first word (e.g., serious
ADHD), and if found, it is encoded (encode-parallel-chain).
If no parallel chains are found, the model initiates forward-
chaining (start-forward-chain). It uses the current chunk’s
second word as a cue (e.g., food-additives heath-risks) and
attempts to recall (find-forward-chain) a chunk in memory
with a matching first word (e.g., health-risks serious). If
a chunk is retrieved, it is encoded (encode-forward-chain),
and the model goes back to check if a parallel chain exists.
Therefore, when forward chaining, the model checks if a par-
allel chain exists after each retrieval. If the model fails to
find a chunk while forward-chaining, the chain cycle breaks,
and the model prepares to start a new chain (find-new-info)
by recalling a chunk not yet attended (retrieve-scenario-info).
Finding a chunk, back-chaining to the root, and forward-
chaining with parallel-chain checks repeats until the model
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cannot retrieve a new (i.e., not recently attended) chunk to
chain. At this point, all the information for the current sce-
nario has been recalled, and the model is ready to generate
an answer (start-answer). How an answer ”should” be gener-
ated is an open question. We opted to have the model retrieve
the most active chunk and then answer with the most active
chain it belongs to. During this process (dotted lines in Fig-
ure 1), the model retrieves the most active chunk (retrieve-
scenario-info), finds the root through back-chaining (find-
chain-root), skips parallel-chaining (find-parallel-chain), and
forward-chains (find-forward-chain). Once it fails to forward-
chain, it gives the completed chunk chain as the answer.

Results
To assess the model’s performance, we simulated the same
number of participants (N = 53) to compare with human data
from Ecker and Antonio (2021). Our initial model lacks
mechanisms to interpret the source information used in the
experiment. Therefore, the human data was reorganized into
scenarios by collapsing all source manipulations. In addition,
the model cannot understand questions and give human-like
responses, so we were limited in what we could compare.
We targeted the open-ended questions and belief ratings in
critical (mis)information and retractions. In the human ex-
periment, five open-ended questions were each scored 0-1
depending on if critical (mis)information was not mentioned
or disavowed (0), partially endorsed (.5), or fully endorsed
(1), resulting in a critical (mis)information score range of 0-
5. Since our model only gave a single simulated summary, we
scaled the human scores by dividing by five. To approximate
a critical (mis)information score for the model, we produced
a score from 0-1 based on the proportion of words the model
gave as the summary answer that matched words in the sce-
nario’s critical (mis)information. This score was transformed
to match the 0, 0.5, and 1 values assigned by the human scorer
in the original experiment by rounding up scores > 0.2 to 0.5
and scores > 0.5 to 1.

We explored how well the model captured the trend in crit-
ical (mis)information scores across scenarios using a correla-
tion and assessed the average difference between the model
and human data using root mean squared error (RMSE)
(see Figure 2). We found the model had a non-significant
negative relationship with the trends in the human data,
r(10) = �0.46, p = 0.36, and a rather high average differ-
ence, RMSE = 0.21. This comparison is limited as it re-
quired modification of the human data and some liberty in
approximating a similar score for the model with one answer
summary. It was challenging to implement processes to ap-
proximate open-ended question answering and to calculate
the critical (mis)information score with our model’s summary
answer. This presents an issue for future modeling work us-
ing this methodology, which is common in the CIE literature.

The comparison with belief scores was more straightfor-
ward and appropriate. In Ecker and Antonio (2021), be-
lief ratings for critical (mis)information and retractions were

Figure 2: Critical (mis)information scores for human and
model data across all six scenarios. Error bars are SEM

given on a scale from 1-10. We were interested in differences
in beliefs, not differences across conditions, so we collapsed
scenarios. We performed a t-test and found the same ef-
fect reported in the paper across source manipulations: belief
ratings for critical (mis)information (M = 6.86,SD = 2.05)
were higher than retractions (M = 4.86,SD = 2.54), t(317) =
8.43, p = 2.34e� 15. As a preliminary method to approxi-
mate the model’s ”beliefs”, we used chunk activations after
the model had navigated through its mental model of each
scenario prior to answering the summary question. We av-
eraged the activation across chunks representing the critical
(mis)information and retractions for each scenario. The ra-
tio of critical (mis)information and retractions chunks varied
per scenario: 1) food additive was 4:6, 2) fishing was 5:5, 3)
football was 3:5, 4) joint disease was 4:7, 5) contaminated
water was 5:5, and 6) ant-viral drug was 7:7. Similar to the
human data, we found chunk activation was higher for criti-
cal (mis)information (M = 9.47,SD = 0.08) than retractions
(M = 9.10,SD = 0.24), r(317) = 12.44, p = 3.36e�29.

Next, we normalized belief ratings and activations for each
participant or model run by dividing each rating/activation
for (mis)information and retractions by their sum. Figure 3
shows the normalized values for (mis)information and retrac-
tions across all six conditions for human data and model. We
assessed the model fit to human data with the same proce-
dure used for critical (mis)information scores. The model had
a negative non-significant relationship with the trends in the
human data, r(10) = �0.29, p = 0.57702, and a reasonable
average difference overall, RMSE = 0.11.

Discussion
We presented an initial model to explore memory processes
underlying the CIE. Our previous demonstration (Hough et
al., 2023) supported notions in the literature, where the CIE
occurs because corrective information competes with, rather
than overwrites, well-established memories. Our current ef-
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Figure 3: Normalized belief ratings from human data and
model chunk activations for critical (mis)information (CI)
and retractions (RT) for all six scenarios. Error bars are SEM

fort demonstrates how misinformation and retractions com-
pete based on how interconnected they are within the scenario
in a context without learning opportunities. In the model, the
competition involves the activation of chunks in memory rep-
resenting the critical (mis)information and retractions.

Processing and producing language in a cognitively plau-
sible way is a critical challenge in cognitive modeling. To
compare the model with human data, we explored methods
to approximate behaviors like text processing, question an-
swering, and beliefs. We made progress on all three and were
able to present model fits to critical (mis)information and be-
lief scores. We had to reorganize the human data by collaps-
ing source manipulation conditions and extracting the data
for scenarios. Critical (mis)information scores were rather
difficult to approximate. We had to further modify the hu-
man data and create a rather complicated method to pro-
duce scores for the model. The resulting model fit to critical
(mis)information scores was interesting, but weak. Despite
the difficulty and weak fit, we felt it was important to include
this measure and comparisons as it is commomly used in the
literature. For belief scores, the methods were more straight-
forward. The human data did not require modification, and
we were able to approximate beliefs for the model by calcu-
lating the average activation for chunks associated with the
critical (mis)information and retractions. The fit to belief
scores were promising and provided a more clear method to
use in the future.

Limitations and Future Work
We note several limitations with our current work: 1) We
manually generated predicates and focused on declarative
memory with chunk chaining, 2) we selected questions from
Ecker and Antonio (2021) congruent to the reasoning and ex-
pression capacities of our model (i.e while inferential reason-
ing was too complex for our model, belief rating was possi-

ble), 3) we had to do some irregular modifications to compare
the model and human data, 4) we left out two components
from our targeted gap: social and emotional factors, and 5)
we did not include mechanisms to access source information.

Language processing is an important component for mod-
els focused on cognitive vulnerabilities and biases in the in-
formation environment. Here, we parsed the scenarios using
ChatGPT, but its output method changed and we had to manu-
ally generate predicates for five of the six scenarios. The pars-
ing and representation of written content has a large impact
on a model’s behavior, and how a model interprets questions
constrains the types of responses that are possible. For in-
stance, the current model will be heavily influenced by which
information can be chained together. It is unclear how to best
handle these issues, which will be an important issue for fu-
ture work.

Given the difficulties with having the model answer ques-
tions from (Ecker & Antonio, 2021), we had to approximate
model responses. This created some difficulties with com-
paring to human behavior. However, we learned that chunk
activations are a straightforward method to assess the model’s
belief or bias towards types of information.

We targeted the research gap highlighting our lack of un-
derstanding of the interplay between cognitive, social, and
emotion factors. However, we only focused on cognition,
specifically, memory. We plan to include these factors in the
future, starting with emotion. We plan to implement emo-
tion mechanisms using a previously developed ACT-R mod-
ule (Juvina et al., 2018) based on core-affect theory (Russell
& Barrett, 1999) that focuses on valence (i.e., positive or neg-
ative) and arousal (i.e., intensity). However, we are unaware
of a study exploring the CIE and manipulating emotion to as-
sess affects on memory. Therefore, we plan to conduct some
experimental work needed to validate a CIE model that in-
cludes emotion.

Lastly, we did not include mechanisms to interpret source
trust and credibility. However, our planned future work with
emotion and core affect has the potential to inform these
mechanisms. For instance the core-affect module was used in
previous work (Juvina et al., 2019) to model trust and there-
fore, can serve as or inform mechanisms to model all the con-
ditions from Ecker and Antonio (2021).

Conclusion
Overall, we demonstrated a CIE across scenarios using only
basic components of declarative memory and memory navi-
gation. These general mechanisms and processes are not spe-
cific to the CIE and can be used for any information, given
it is presented in word pairs. It was clear that the knowledge
representations significantly impact how the model navigates
memories for scenarios. This needs to be considered when
knowledge is engineered for models and in future experi-
ments to control for a potential confound where misinforma-
tion is more interrelated in the narrative than corrections. Our
modeling approach and results aligned well with the mental
model explanation in the literature and with availability of in-
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formation in memory or ease of recall. The model provides
a good base to extend in future research by adding emotion
and social factors and testing theoretical explanations across
experiments and datasets.
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Abstract
In this study, we considered the influence of emotion and its
contagion on the success of cooperative behavior. We con-
ducted a simulation using the board game “Hanabi”, which is
suitable for analyzing cooperative behavior. The results of the
simulation showed a decrease in the score of the model with
emotion, confirming the negative influence of emotion on co-
operative behavior. The analysis indicated that cooperative be-
havior was more successful when valence and arousal were
higher. Furthermore, it was suggested that arousal level was
more likely to induce synchronization through emotional con-
tagion than emotional valence.
Keywords: ACT-R, Cognitive modeling, Cooperative behav-
ior, Emotion, Hanabi

Introduction
In contemporary society, group psychology wields significant
influence, as a few emotional opinions can often mobilize a
large group of people who align with them. This phenomenon
is termed group polarization (Stoner, 1968). When group po-
larization occurs, individuals may undertake risks collectively
that they would not consider individually, or conversely, they
may adopt excessively cautious approaches. Several studies
on risk shifting have explored the relationship between emo-
tion and risk shifting (Turner, Zangeneh, & Littman-Sharp,
2006; Yuen & Lee, 2003). Just as emotions are linked to
individual risk shifting, the polarization of risk within groups
may stem from emotional contagion. According to evolution-
ary psychology (Cosmides & Tooby, 1997), emotions evolve
due to their utility in survival and their facilitation of coop-
eration and socialization. In this context, group polarization
appears instrumental in fostering group consensus. However,
this does not necessarily imply its usefulness in arriving at ra-
tional conclusions. Resolving this question necessitates clar-
ifying the role and utility of emotions within a group.

Numerous studies have explored emotions, proposing vari-
ous models to conceptualize them. For instance, Russell’s cir-
cumplex model describes emotions along two axes (Russell,
1980), while Barrett’s model constructs emotions based on
predictions (Barrett, 2017). This study advocates for imple-
menting these models within computer simulations to objec-
tively validate their efficacy. Our model is developed base
on a cognitive architecture, Adaptive Control of Thought-
Rational (ACT-R: Anderson, 2007). Employing a uniform ar-

chitecture such as ACT-R for these simulations enables com-
parison and integration of these models.

This study utilizes the cooperative board game “Hanabi”
as a task to observe the impact of emotional models on be-
havior. Through this investigation, we aim to underscore the
significance of emotions in facilitating cooperative behavior.
Additionally, our findings confirm the occurrence of emo-
tional contagion among models communicating through the
environment. Concurrently, we develop a composite model
integrating physiological and psychological emotion models
within existing cognitive architectures, thereby reaffirming
the utility of simulation in evaluating diverse emotion models.

Related Research
Emotion and risk shifting
Two competing theories regarding risk shifting exist. One
posits that individuals are more inclined to take risks follow-
ing successes (Thaler & Johnson, 1990), while the other sug-
gests they are less inclined after successes and more so after
failures (Leopard, 1978). Turner et al. (2006) identified is-
sues with experiments conducted in previous studies and thus
conducted a new experiment to address them. The results in-
dicated that participants who experienced success were more
inclined to gamble recklessly compared to those who expe-
rienced failure when gambling again. Questionnaire analysis
revealed a moderate predictive power for emotions and risk
shifting.

Studies employing direct mood induction to measure
changes in risk shifting have shown mixed results. Specifi-
cally, they have not consistently contrasted risk shifting under
positive versus negative emotional states (Yuen & Lee, 2003).
The findings of this study demonstrated a relatively weak ten-
dency to accept risk when experiencing positive emotions and
a strong tendency to avoid risk when experiencing negative
emotions. The reasons for these findings were further dis-
cussed in terms of variations in judgment methods based on
participants’ emotional states.

The mood congruence effect elucidates the correlation be-
tween emotions and risk shifting (Bower, 1981). It is a
phenomenon wherein memories are more readily recalled
when the current mood aligns with the mood of the mem-
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ory. This implies that positive moods tend to evoke recol-
lection of successful experiences, leading individuals to mis-
perceive the current situation and take risky actions based on
past successes. Conversely, negative moods may evoke mem-
ories of failures, prompting individuals to adopt a risk-averse
stance. Conversely, the mood incongruence effect serves
as a counterpart to the mood congruence effect (Parrott &
Sabini, 1990). In this scenario, individuals tend to recall fail-
ures when in a positive mood and successes when in a nega-
tive mood. Experiments conducted by Rinck, Glowalla, and
Schneider (1992) suggest that the mood incongruence effect
manifests partially when emotions are weak, with the mood
congruence effect predominating.

Emotion and Recall with ACT-R
ACT-R is a cognitive architecture developed based on the
ACT-R (Adaptive Control of Thought-Rational) theory pro-
posed by Anderson and Bower (2014). This theory outlines
the functions and structures of the human brain, and ACT-R
is designed to model and simulate these functions and struc-
tures accordingly. It operates as a production system, pro-
cessing information using rules and executing actions based
on two forms of knowledge: declarative knowledge, which
describes facts, and procedural knowledge, which manages
methods such as actions. A notable advantage of a produc-
tion system is its ability to handle information symbolically.
ACT-R also has strength of dealing information that may be
difficult to represent as symbols by using subsymbolic pro-
cessing.

Various studies have utilized ACT-R to model and express
emotions. For instance, Sakai, Itabashi, and Morita (2022)
constructed a model aimed at presenting the user’s emo-
tions based on the estimated emotional state, utilizing the re-
call method commonly used in mental health care. In their
model, emotions were represented by two parameters derived
from Russell’s circumplex model, and recall operations were
conducted in accordance with the user’s emotional state by
mapping them to the parameters within ACT-R. The study
demonstrated the influence of emotion on recall and behav-
ioral changes by associating valence with utility values and
arousal with noise values in the ACT-R framework.

As a means of incorporating emotional influence into com-
puter models, Juvina, Larue, and Hough (2018) integrated an
emotion module into the ACT-R cognitive architecture. Their
simulation results were consistent with experiments on mood
congruence effects, indicating that memory recall could be
modeled to reflect human emotions. Emotions in the study
were represented by two parameters based on the dimension-
ality theory of emotion: Valuation and Arousal. These pa-
rameters were dynamically adjusted based on memory evalu-
ation and added to the activation used in ACT-R calculations
to represent the emotional effect.

Hanabi
Hanabi is a cooperative board game that offers a rich envi-
ronment for analysis and modeling due to its inherent re-

quirement for cooperation and well-defined behavioral dy-
namics, including communication, within the game. There
has been many studies developing cooperative agents that
play this game (Bard et al., 2020; Bouzy, 2017). As an exam-
ple, Osawa, Kawagoe, Sato, and Kato (2021) developed mod-
els of Hanabi and its players to investigate various aspects of
human behavior, such as self-estimation based on the estima-
tion of others. Additionally, Kawagoe and Osawa (2022) uti-
lized ACT-R to examine the effects of differing risk shifting
between players on reaction time and cooperative behavior.
Moreover, Kuwabara et al. (2023) explored cooperative be-
havior through intention estimation, employing a model that
leverages the similarity between players’ hands and the situ-
ational context during instance retrieval. Building upon the
insights from these studies, we aim to model the influence of
emotion on the success of cooperative behavior.

The Rules of Hanabi
This study aims to demonstrate that cooperative behavior can
be effectively guided by emotions, through simulations with
Hanabi as a task. To facilitate this investigation, we first out-
line the rules of Hanabi.

Hanabi is designed for two to five players; however, for the
sake of simplicity in modeling cooperation, this study focuses
solely on two-player games. The game comprises 50 cards in
five colors and two types of tokens. Each color (white, red,
blue, yellow, and green) consists of 10 cards, including three
1’s, two 2’s to 4’s, and one 5. The objective of the game is to
collaboratively assemble five fireworks displays by stacking
cards of the same color in numerical sequence and placing a
5 card of each color on the field.

At the onset of the game, the cards are shuffled, and five
cards are distributed to each player. Players cannot view the
cards in their own hands; however, these cards are visible to
the other players. The remaining cards form the deck. The
first player begins their turn with eight blue tokens and zero
red tokens, which are collectively shared among all players.

Players take turns, and the next player’s turn commences
after the current player performs one of the following three
actions:

1. Hint: The player selects either a color or a number of a card
that is not their own and reveals which cards in their hand
correspond to the selected information. If multiple cards
match the selected information, all corresponding cards
must be indicated. Providing a clue incurs a cost of one
blue token, with each clue consuming one token. If there
are no blue tokens available to cover the cost, this action
cannot be performed.

2. Discard: The player discards a card from their hand and
draws a new card from the deck. The new card is visible
only to the opponent. The discarded card is revealed to all
players and cannot be reused during the game. Discarding
a card recovers one blue token. However, the player cannot
accumulate more blue tokens than the initial value.

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

87



3. Play: The player reveals a card to the public and determines
whether the play is successful. If the card’s value is exactly
one more than the current top card of the corresponding
color in the fireworks display, the play succeeds, and the
card is placed atop the fireworks display. If there is no
card of the same color in the display, it is considered as
0, and the card can be placed on top. Otherwise, the play
fails, and the card is treated as discarded. In both cases, a
card is drawn from the deck, visible only to the opponent.
Successfully playing a 5 card and completing a fireworks
display of one color earns a bonus blue token.

The game concludes under one of three conditions: accu-
mulating three red tokens, all players taking one final turn
after the deck is depleted, or completing all five colored fire-
works displays. Upon meeting the end condition, the score
is calculated as the sum of the cards stacked in the fireworks
display. The maximum score is 25 points (5 colors ⇥ 5 cards).

Model
In order to capture changes in behavior influenced by emo-
tion, an agent model was developed using ACT-R. Given its
utilization in previous studies for determining behavior and
measuring emotional effects on behavior, ACT-R was deemed
appropriate for constructing the model in this study. Figure
1 depicts a flowchart illustrating the process of the model
employed in this study. It builds upon the previous model
(Kuwabara et al., 2023), incorporating adjustments tailored
for emotion-adapted behavior.

Figure 1: Flowchart of the model

Accumulation of Instance
As illustrated in the flowchart, our model accumulates and
utilizes examples. Before and after each agent executes an
action in the game, it assesses whether its own or its oppo-
nent’s preceding action was successful and memorizes this
information if no identical memory exists. The information
encapsulated in the instances comprises the following:

• Success or failure of the action
• Type of action
• Information of the target card
• The state of the field
• The player’s visible hand

• The opponent’s visible hand
• The all of opponent’s hand
• Information on the remaining cards

“Types of actions” are limited to three: playing cards, giv-
ing hints, and discarding cards. When playing or discarding
cards, the “information of the target card” encompasses its
color and number. In the case of giving hints, the “informa-
tion of the target card” may pertain to either the color or the
number of the card. If the color or number of a card is not
yet known when playing or discarding, it is recorded as “un-
known.”

The determination of “success or failure of the action”
varies based on the “types of action.” For hinting, success
is achieved if the opponent takes immediate action following
the hint. For discarding a card, success is determined if the
discarded card is not the last card of the same color and num-
ber.

“The state of the field” denotes the quantities of cards of
each color (white, red, blue, yellow, and green) present on the
field. “The player’s visible hand” comprises cards known to
the player through clues provided by the opponent. “The op-
ponent’s visible hand” comprises cards known to the player
through clues provided by the opponent. The complete in-
formation about the opponent’s hand, “the all of opponent’s
hand,” is not visible to the opponent.

“Information of the remaining cards” indicates the total
number of cards in Hanabi minus the number of confirmed
cards. Confirmed cards include those that have been played,
discarded, or are in the opponent’s hand, as well as cards in
the player’s hand whose color and number are known to the
player.

Instance-based Learning
When deterministic action is not feasible, as depicted in the
flowchart, the model resorts to decision-making via recall.
The initial step involves searching for past instances based
on the current situation. The ACT-R function, partial match-
ing, is utilized to retrieve instances, with the closest matches
recalled, even if not identical. If the recalled instance denotes
success, the agent endeavors to act accordingly. However, if
the recalled instance signifies failure, it is recalled once more
to avoid repeating the same action type. Given the presence
of three action types, the maximum number of recalls is three.
In instances where no recall occurs or if the agent fails to ad-
here to the recalled instance, a random decision occurs.

In the partial matching mechanism of ACT-R, the activa-
tion Ai of each memory i is computed using the following
equation, with the memory possessing the highest activation
recalled:

Ai = Bi +Â
l

PMli + e (1)

Bi is the base level, e is the noise, and P is the discrepancy
penalty coefficient for partial matches. In our model, each
chunk in the instance is weighted equally. Consequently, the
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importance of a memory element (chunk) l is represented as
Tl(Âl Tl = 1), and the activation is expressed as follows:

Ai = Bi +Â
l

PTlMli + e (2)

Table 1: Table of importance

Memory elementl importance Tl

Success or failure of the action 0.5
The state of the field 0.2
Colors of player’s visible hand 0.06
Numbers of player’s visible hand 0.06
Colors of opponent’s visible hand 0.06
Numbers of opponent’s visible hand 0.06
Colors of all of opponent’s hand 0.025
Numbers of opponent’s visible hand 0.025
Information on the remaining cards 0.01

As illustrated in Table 1, Tl is assigned a large value for in-
formation that is commonly available to both the player and
the opponent, and is deemed valuable for the most recent
decision-making process. The calculation of Mli, the simi-
larity, is conducted through three different methods based on
various factors. For the state of the field and information on
the remaining cards, it is computed as (number of matched
elements/number of elements)-1. The number of elements
considered is 5 (representing the number of colors) for the
state of the field, and 25 (5 colors ⇥5 numbers) for the in-
formation on the remaining cards. Regarding information
on the cards in the hand, the data is categorized into colors
and numbers, then transformed into a frequency vector, with
the cosine similarity utilized to determine similarity, where
the cosine similarity of -1 denotes Mli. However, in the in-
stance where the information is represented as 0 (indicating
unknown), we didn’t calculate it as such, but instead added
0.2 to each of the five values to represent unknown. For de-
termining the similarity based on the success or failure of an
action, the difference between the current valence V and the
success or failure of the target instance Vi s calculated as fol-
lows:

Mli =�|V �Vi|/2 (3)
Here, Vi equals 1 for a success instance and -1 for a failure
instance.

Emotional Influence
The model’s emotion is characterized by two parameters: Va-
lence and Arousal, which influence the recall process. Va-
lence serves as a memory component during similarity calcu-
lations, reflecting the mood congruence effect, a phenomenon
where emotional valence affects recall. The emotional dis-
tance between the remembered instances is assessed by la-
beling them as positive if successful and negative if unsuc-
cessful, with closer instances being more likely to be recalled.

Arousal level modulates the value of BLC, an offset param-
eter of base-level, ranging from 0.5 to 1.5 times. This ad-
justment affects the base level Bi , as mentioned previously,
making successful recall more likely under high arousal and
more prone to failure under low arousal.

Update of emotion in the model follows the concept of pre-
diction error. Table 2 summarizes our policy of changing
the emotional parameters. Those policies are based on the
model of Joffily and Coricelli (2013), where prediction error
is pleasant when it converges towards resolution and unpleas-
ant when it diverges. To implement this in our model, we
varied emotion fluctuations based on the types of acts (deter-
ministic, recalling, or random acts). In deterministic acts (al-
ways success in evaluation with no recall), emotions remain
relatively stable since they consistently succeed, resulting in
minimal prediction-result disparity. In random acts, where
both prediction and experience accuracy are low due to ac-
tion uncertainty, emotions exhibit minimal change (randomly
success or failure in evaluation with no recall). However,
in recalling acts, the model anticipates success (with recall),
leading to significant emotional change based on prediction
error resolution. If successful, emotions move towards pos-
itive, while failure leads to negative emotion. Recalling be-
havior triggers substantial arousal changes but without recall,
slightly decreases arousal over time.

Table 2: Act and Emotional Changes

Evaluation Recall Valence Arousal
Success Yes Increase large Increase large
Success No Increase small Decrease small
Failure Yes Decrease large Increase large
Failure No Decrease small Decrease small

More specifically, the emotion is updated as follows:

Vt+1 =Vt +a(r�Vt) (4)

For valence variability, r = 1 for success and r =�1 for fail-
ure, a = 0.2 for recall use and a = 0.02 for non-use. For
arousal variability, when recalling r = 1 and a = 0.2 for re-
call, while for non-use, r =�1, a = 0.01.

Simulation
We conducted simulations using two agents of the model de-
scribed in the previous section to assess the impact of emo-
tion on cooperative behavior. Additionally, for comparison,
we conducted simulations using agents of the model without
emotion to contrast from the model with emotion.

Simulation method
In the simulation, we conducted 100 consecutive trials, re-
peated 10 runs, where each trial represented a complete game
from start to finish. The average of the 10 runs across the 100
trials was calculated to observe learning through repeated tri-
als.
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Both Valence and Arousal were reset to 0 at the onset of
each trial while memorized instances persisted for the dura-
tion of one run. Memorized instances were reset at the initia-
tion of each run. To eliminate bias between preceding and fol-
lowing players, Agent 1 initiated odd-numbered trials, while
Agent 2 initiated even-numbered trials.

For comparative analysis, a simulation of the model with-
out emotion was conducted with the above same condition.
Agents without emotion set at a fixed ±0 throughout the sim-
ulation.

Results
Scores with and without Emotion The average score of 10
runs per trial was computed for both simulations with/without
emotions. Figure 2 presents the results. Additionally, for
comparison, we included the average score from a previous
study (Kuwabara et al., 2023) that also utilized past instances
to determine behavior.

Figure 2: Simulation results

The graph illustrates that the outcomes of this study are
lower compared to those of the previous study. Specif-
ically, the score of the model with fluctuating emotions
(mean = 9.118, SD = 2.034, n = 1,000) was significantly
lower (t(1998) = 4.433, p < 0.001, d = 0.198) than that
of the model without fluctuating emotions (mean = 9.516,
SD = 1.981, n = 1,000).

The lower score in the present model compared to the pre-
vious study could potentially stem from the reliance on failure
instances for search. This hypothesis aligns with the finding
that the model with emotion yielded a lower score than the
model without emotion. When emotional fluctuations lean
towards negativity, likelihood of recalling failure experiences
increase, leading to excessive conservative cautious sift. Con-
sequently, the probability of successful behavior diminishes
due to the random behavior induced by emotional fluctua-
tions.

Furthermore, we investigated how the emotional effects
mentioned above were influenced by the accumulation of tri-
als. In the model without emotions, there was a significant
decreasing score trend (r = �0.251, p < .01) along with the

number of trials. However, in the model with emotion, al-
though the correlation between the number of trials and the
score was negative (r =�0.068, p = 0.498), it did not reach
statistical significance.

This outcome suggests the negative effect of an accumu-
lation of failed instances. Examination of the execution logs
revealed that over 99% of the models’ executed actions that
were classified as failures when providing hints. Several
factors may contribute to hints being classified as failures.
Firstly, players don’t always proceed with gameplay immedi-
ately after receiving a hint that thoroughly clarifies the game,
resulting in a failure judgment. Secondly, in scenarios where
numerous crucial hints are available, deterministic actions
are prioritized for providing hints, while hints utilizing re-
call are more commonly utilized for less critical hints. This
tendency may stem from accumulated experiences with un-
successful hints across various situations, facilitating easier
recall of such unsuccessful hints and subsequently leading to
their avoidance.

The cautious cooperative behavior observed in the simula-
tions is thought to be linked to cautious shift, a phenomenon
within group polarization. Throughout the simulation, we fre-
quently encountered instances where random behavior per-
sisted following a random action, stalling the progression of
the situation. In the current model, random actions were ex-
ecuted when deterministic actions weren’t feasible and suc-
cessful instances weren’t recalled. The failure to recall suc-
cessful instances with a sufficient number of trials is indica-
tive of a scenario where emotional valence is negative, lead-
ing to the recall of only failure instances. Consequently, the
model sought to avoid risk, resulting in the execution of ran-
dom actions. This cascade of risk-averse behavior influencing
the partner’s risk aversion, and the subsequent chain reaction
of risk-averse behavior, is regarded as a manifestation of the
cautious shift phenomenon.

Figure 3: Emotional Parameters

Emotional Changes To analyze emotional changes during
the simulation, we calculated the average of emotional pa-
rameters for the each trial. The results are depicted in Figure
3. It’s evident from the figure that valence tended to be nega-
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tive overall (mean=�0.070, SD= 0.163, n= 1000, one-step
t value against 0 t(999) = �13.480, p < .01) while arousal
tended to be positive (mean = 0.090, SD = 0.210, n = 1000,
one-step t value against 0 t(999) = 13.514, p < .01). This
finding aligns with the preceding section, indicating that the
recall of failure instances induced risk-avoiding behavior,
consequently resulting in lower scores compared to the model
without emotion.

Regarding the correlation between the trials and the emo-
tion parameters aggregated across model runs, no significant
correlations were observed (valence: r = 0.031, n = 100,
arousal: r = 0.066, n = 100). However, to explore the re-
lationship between emotions and scores, correlation coeffi-
cients were calculated between the emotion parameters and
scores aggreated across two agents. The results revealed a
significant correlation for valence (r = 0.370, n = 1000), in-
dicating that higher emotional valence corresponds to higher
scores, and a significan positive correlation for arousal (r =
0.237, n = 1000), suggesting that higher arousal levels are
associated with higher scores within the scope of this simula-
tion.

Emotional Contagion To investigate whether emotional
contagion occurs alongside individual emotion fluctuation,
correlation coefficients between agents were computed for
each of the 10 runs (Table 33). The maximum correlation
coefficient for arousal was 0.662, while the minimum was
0.486, signifying a positive correlation while all the correla-
tion for valence are low values.

Table 3: Emotion correlations between agents

Executions Valence Arousal
1 -0.033 0.607
2 -0.011 0.493
3 0.160 0.550
4 0.006 0.496
5 0.152 0.535
6 0.071 0.662
7 -0.007 0.557
8 -0.005 0.549
9 0.011 0.506

10 0.062 0.486

This suggests that emotional valence, such as positivity
or negativity, doesn’t exhibit strong contagion in our model.
However, arousal level appears to be adequately contagious
through the environment. The discrepancy in the contagion
of the two emotional parameters warrants further considera-
tion.

Summary and Future Works
In this study, we developed and simulated a two-agent co-
operative game model to explore the interplay between suc-
cessful cooperative behavior and emotion. Our model adjusts

emotion based on disparities between the environment and
predictions, thereby influencing behavior through emotional
recall. The findings revealed that the inclusion of emotion led
to a decrease in the overall score compared to the model with-
out emotions, providing evidence of the detrimental impact of
emotion on cooperative behavior.

In the simulation model utilized in this study, it was ob-
served that negative valence leads to excessive risk avoidance,
ultimately resulting in a lower overall score. These findings
suggest a potential association with the cautious shift phe-
nomenon, as a cascade of risk-avoiding behaviors.

The findings indicate that emotional contagion varies be-
tween two parameters based on the dimensionality theory of
emotion: valence and arousal. Simulations conducted us-
ing the model in this study revealed that arousal exhibits
a stronger correlation compared to valence, suggesting that
contagion is more likely to occur based on arousal levels.

While emotions did not increase the scores, we believe
that there is room for improvement through parameter ad-
justments. Despite observing risk-avoiding behavior in the
model, there is potential to foster a more risk-taking approach
by fine-tuning the parameters. Application of this model to
human experiments holds promise for gaining deeper insights
into agent interactions, particularly with varied adjustments
accounting for individual differences.

In the scope of our simulation results, positive values of
the emotion parameter exhibited a beneficial impact on coop-
erative behavior. However, the range of the varied emotion
parameter was limited, thus hindering the assurance of gener-
ality. Therefore, we posit that conducting simulations where
the emotion parameter is fixed at various values other than 0
would provide insights into the effects of specific emotional
states and the utility of fluctuating emotions. We anticipate
that such comparisons will enhance our understanding of how
different emotional states and their variability influence be-
havior.

There is also room for improvement in the structure of the
model itself. While in this study, the influence of emotion was
primarily manifested in the change in the activation, other
studies exploring behavioral changes due to emotion suggest
that strategies may vary depending on emotional states. Many
other features of ACT-R, such as spreading activation and
blending, can be incorporated in our model. We believe that
incorporating these functions could enhance the model’s va-
lidity.

Compared to previous studies utilizing the same ACT-R
framework for simulating Hanabi, the simulation time in our
study increased due to heightened computational complexity,
leading to the lack of simulation runs. The model necessitates
memorizing both successful and unsuccessful instances, and
multiple recalls for a single action, prompting a need to devise
methods to mitigate computational complexity.
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Abstract

During conversations, speakers tend to reuse the lexical ex-
pressions of their interlocutors. This is called “lexical align-
ment,” and it facilitates the listener’s understanding of the
speaker’s intention. Branigan et al. (2011) has shown that
this tendency increases when speakers believe that their partner
is a computer agent rather than a human. Memory activation
for the expressions used by the interlocutors and the strategy
preference whereby speakers attempt to use their partners’ ex-
pressions rather than those that first come to mind have been
shown to be the causes of lexical alignment. For this study,
we constructed an ACT–R model for which we could adjust
the parameter values related to these two features. Through
parameter adjustment, we simulated lexical alignment with
both human and computer agents in Branigan et al. (2011).
For both partner conditions, additional activation was added
to the knowledge of the partners’ expressions. The computer–
partner model preferred trying to retrieve the partners’ expres-
sion rather than using the knowledge that had a strong associ-
ation with the stimulus and was easy to retrieve. In contrast,
the human–partner model had no specific preference; that is, it
displayed equal utility for both. A comparison of these param-
eter values revealed that the computer–partner model preferred
to retrieve the partner’s knowledge; in addition, it also kept
the knowledge’s activation sufficiently high so that it could be
available for a longer duration.
Keywords: Lexical alignment; ACT–R; Human–Computer In-
teraction; Cognitive model

Introduction
Lexical alignment is a behavior observed during conversa-
tions that involves a speaker reusing their interlocutor’s lexi-
cal expressions. It helps the speaker communicate smoothly,
and its usage increases when users interact with computer
agents. In this study, we constructed cognitive models and
investigated whether memory activation and the frequency
with which the speaker attempts to retrieve the interlocutor’s
expressions—both of which are considered causes of lexical
alignment—explain the occurrence of lexical alignment. The
model’s parameter adjustment reveals the source of the dif-
ference in lexical alignment between human and computer
partners.

Factors Influencing Lexical Alignment
When talking with a partner, there is an expectation that the
listener correctly understands the intentions of the utterance.
Speakers use various strategies to facilitate listeners’ under-
standing (e.g., Clark & Murphy, 1982; Pickering & Garrod,
2004), and lexical alignment is one such strategy (Brennan &

Clark, 1996; Garrod & Anderson, 1987). People tend to reuse
lexical expressions that their interlocutor used previously.

Memory Retrieval Memory activation is a process in-
volved in lexical selection. As shown in priming studies, re-
cently used words maintain a higher activation and tend to
be selected (e.g., Meyer & Schvaneveldt, 1971). Syntactic
knowledge is also primed by preceding sentences (Pickering
& Branigan, 1998). These studies suggest that lexical align-
ment occurs because a lexical expression is activated when it
is used by the interlocutor, facilitating easy retrieval.

Top-Down Processes Speakers carefully decide which lex-
ical expression is the most appropriate for ensuring that lis-
teners can easily and correctly understand their intentions.
For instance, when two Japanese people are speaking with
each other, the sentence “I live in Shiga” is sufficient to in-
dicate to the interlocutor where the speaker lives. However,
when speaking to an interlocutor who is not from Japan, a
broader description, such as “I live in the prefecture next to
Kyoto,” would be necessary to provide a more accurate un-
derstanding.

As described in the previous example, the speaking part-
ner’s attributes (e.g., nationality, age, gender, etc.) are an im-
portant factor when deciding which phrase should be used
(Fussell & Krauss, 1992). These attributes are defined as top-
down factors because speakers use knowledge-based strate-
gies to decide which phrase should be used in a particular
context.

Communication with Computer Agents
With the rapid spread of ChatGPT, communication with com-
puter agents has become more commonplace, even among
those not involved in higher education. Researchers in the
field of human–agent interaction examine the aspects of
agents that impact the communication process, such as vi-
sual appearance (Baylor, 2009). Several studies have shown
that when a speaker believes that their partner is a computer,
they communicate with them differently than when they be-
lieve their partner is a human (Amalberti, Carbonell, & Fal-
zon, 1993; Branigan, Pickering, Pearson, McLean, & Brown,
2011; Chalnick & Billman, 1988; Hayashi & Miwa, 2009;
Pearson, Hu, Branigan, Pickering, & Nass, 2006). An in-
crease in the ratio of lexical alignment was also demonstrated
in such scenarios (Branigan et al., 2011).
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Branigan et al. (2011) conducted a controlled laboratory-
based experiment to investigate how speakers describe the
names of objects pictures depending on whether they believe
their interlocutor is a human or a computer. The participants
and their interlocutors performed the task together. Both look
at two pictures; one states the name of the object shown in
one of the pictures, and the other selects the picture of the
object named by their partner. They repeat this process for
various pictures while switching roles alternately (we reuse
this approach, see the Task section for details). In their ex-
periments, the participants who were told that their partner
was a computer used the name that their partner had used be-
fore (i.e., lexical alignment) more often than those who were
told that their partner was a human. This decision was inter-
preted as the participants using the same phrase because they
perceived computers as possessing less language knowledge
than humans.

Research Questions
In the current study, we developed cognitive models to repli-
cate the results from the experiments in Branigan et al. (2011)
and to understand the types of cognitive processes that influ-
ence lexical alignment. The adjustments of parameters reveal
the relationship between memory retrieval and the top-down
process in lexical alignment.

In experiments in Branigan et al. (2011), unexpected names
were used to describe a target picture (e.g., “coach” to de-
scribe a photo of a bus. Such anomalous and unexpected
trials raised the participants’ awareness, thereby activating a
memory of the trial regardless of the partner’s attributes. Un-
expected and surprising events are encoded as strong mem-
ories (Greve, Cooper, Kaula, Anderson, & Henson, 2017),
also known as the von Restorff effect, see Chapter 5 in Ritter,
Baxter, and Churchill (2014). Therefore, we tested whether
additional activation is necessary for explaining lexical align-
ment.

We assumed that the top-down process affects the retrieval
strategy—that is, the frequency with which the model at-
tempts to retrieve the partner’s expressions. If the partners’
language proficiency seems low, the speaker should use the
word already used to enhance the partners’ understanding.
Meanwhile, even when the speaker assumes their partner to
be an adult human with normal language ability, they still em-
ploy lexical alignment. Therefore, we sought to determine if,
in such a “neutral” situation where there is a decreased need
for careful word selection, the speaker would still display a
preference for retrieving the partner’s expression rather than
using the familiar expression.

The main objective of the study is to identify the causes
of the differences between the human–partner and agent
partner conditions. First, we tested whether the above
two mechanisms—that is, additional activation and retrieval
strategies—can produce these differences. If they are possi-
ble, based on the differences in the parameter settings, we dis-
cuss where the differences in the lexical expression depend-

ing on the partner’s attribute derived from.

Human Data
We constructed models that fit the data in Experiments 1, 2,
and 4 from Branigan et al. (2011). Below, we briefly describe
the task they employed and the results of their experiments.

Task
Their task consisted of two types of trials—a matching and
naming trial. While the participants were performing the
matching trial, their partner worked on the naming trial and
vice versa.

Matching Trial During the matching trial, the partner per-
forms the naming trial with the corresponding pictures. Ini-
tially, two pictures are presented on the screen. After 4000
to 5500 ms, the name of an object is presented, which is then
entered by their partner. The participant presses the key cor-
responding to the picture with the printed name, and a mark
appears on the selected picture.

Naming Trial The naming trial begins with the presenta-
tion of two pictures. After 2000 ms, a mark appears above
one of the pictures. In Experiments 1 and 4, the participants
indicate the name of the object name in the marked picture
using a keyboard. This is done orally in Experiment 2. The
participants are told that the entered name was sent to their
partner, and the partner selects one picture based on the infor-
mation.

Experimental Conditions The researcher told half of the
participants that their partner was a human and told the other
half that their partner was a computer. For both groups, the
partner was a computer controlled by the researcher, and it
responded in the same manner.

Index Throughout the experiment, the participants occa-
sionally observed their partner naming an object with an un-
popular but correct name, such as “coach” in reference to a
bus (this name was defined as a disfavored name). Branigan
et al. (2011) examined whether participants used an unpop-
ular disfavored name or a common name (it was defined as
a favored name) when naming the same image. The current
study seeks to use their data to simulate the ratio of the tri-
als in which the participants used the disfavored name for an
image for which their partner had already used the disfavored
name. Hereafter, we refer to this rate as the “use rate.”

Data Used for Parameter Fitting
We developed a model that could replicate the use rates in
Experiments 1, 2, and 4, as shown in Branigan et al. (2011).
There were 16, 32, and 24 participants and 18 disfavored
name trials in Experiments 1 and 2, and 16 disfavored name
trials in Experiment 4 we used.

In Experiments 1 and 2, there were two trials (one naming
and one matching trial) between the trial in which the partner
used a disfavored name for an image and the trial in which
the participants had to name the same image. The tasks in
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(a) One specific name (b) Favored name (c) Disfavored name (d) Partner’s knowledge

Figure 1: Examples of a chunk of knowledge in the model used in this study. Respectively, they represent when (a) an object
has one favored name, an object has both a (b) favored name and (c) disfavored name, and (d) the model obtains a partner’s
naming.

Experiments 1 and 2 were identical, except that the partici-
pants expressed the name of the object with a keyboard for
Experiment 1 and orally for Experiment 2. Because there
was no significant difference in the use rate between the two
experiments, the average use rates for both experiments were
used to carry out a fitting process. When participants were in-
structed that their partner was a computer, they tended to use
the disfavored name, with a use rate of 79.5% (Experiment 1:
77%; Experiment 2: 82%). In contrast, when the participants
were informed that their partner was a human, the average use
rate was 50.5% (Experiment 1: 43%; Experiment 2: 58%).

For Experiment 4, Branigan et al. (2011) manipulated the
number of trials between the presentation of the same pic-
ture. In one condition (lag 0), an image to which a disfa-
vored name could be given appears in two successive trials;
that is, the partner was given a disfavored name during a par-
ticipant’s matching task, and the same picture was presented
in the next naming trial. In another condition (lag 8), there
were eight trials (four naming and four matching trials) be-
fore the second presentation of the image. For cases where
the participant believed their partner was a human, there was
a significant difference in the use rate between the two lag
conditions. The use rate was 54% and 33% for lags 0 and 8,
respectively. However, the use rate was not significantly dif-
ferent when the partner was believed to be a computer (lag 0:
76%; lag 8: 82%)1.

Model

We used ACT–R 7.21 to construct our model (Anderson,
2009). The ACT–R model acquires the current task status
through vision and audio modules. The model can add ma-
nipulations to the task via the motor and speech modules.
Declarative knowledge is stored in and retrieved from the
declarative module in form of chunks. Example chunks are
presented in Figure 1. Furthermore, a sequence of actions of
the model is determined by its production rules. A rule with
conditions matching the current status is selected and fired,
and actions specified in the rule are conducted.

1Refer to Branigan et al. (2011) for more information.

Knowledge in Model
Knowledge of the objects’ names was provided in the declar-
ative module in advance. This was based on the participants
possessing this knowledge prior to involvement in the exper-
iment. Knowledge was stored in the form of chunks that con-
sisted of slots (an image and name) and their value. Figure
1a provides an example of a chunk (“the name of the img1 is
name1”). Each image was given a specific value (e.g., img1)
that the model could read when it shifted its attention to the
image. Based on this value, the model retrieves the appropri-
ate knowledge and finds the appropriate name of the object in
the image. For instance, when the model moves its attention
to image1, it can read the value of the image, which is img1.
Based on this value, the model can retrieve the knowledge
shown in Figure 1a and identify its name, name1. This could
be expanded with VisiTor (Tehranchi, Bagherzadeh, & Ritter,
2023) or with SegMan (Amant, Horton, & Ritter, 2007) so
that the model might identify objects from visual cues.

For some objects, the knowledge of both favored and dis-
favored names was provided as different chunks (Figures 1b,
1c). Therefore, two knowledge chunks could be retrieved for
one image. Among the two knowledge chunks, the one with
the greater activation value was selected. Activation is the
value of the base-level activation plus the noise value. In
ACT–R, the base-level activation of a chunk i is calculated
using the following formula when the optimal learning op-
tion is turned on:

Bi = ln(n/(1�d))�d ⇥ ln(L) (1)

where n represents the number of presentations of chunki, L
is the time since the creation of chunki, and d represents the
decay parameter. The activation value increases as the num-
ber of presentations increases, which, in turn, decreases as a
power function as time passes. We set the decay parameter to
the recommended value of 0.5. Noise was generated from a
logistic distribution with a mean of 0 and an s set to 0.2.

Humans can retrieve both favored and disfavored names at
any time. Therefore, we assigned a high activation value by
setting the number of presentations n to 800 for the favored
names and 200 for the disfavored names. The difference was
due to the favored names being retrieved more easily than the
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disfavored names. If the object had only a favored name, then
the number of presentations was 1000. The creation time L
was set to 10000 to ensure that activation did not decrease
as time passed. Examples of this are shown in Figures 1a
to 1c. Additionally, the model needed to understand how to
pronounce a word to verbalize the object’s name. This knowl-
edge was also given to the model with 1000 presentations and
a creation time of 10000.

While the model was performing the task, it acquired
knowledge about the name that the partner used for the ob-
ject (partner’s knowledge; Figure 1d). Knowledge was repre-
sented as a chunk constituted of an image, name, and context
slots. To indicate that it was the partner’s knowledge, the con-
text slot was assigned the value “partner.”

How Our Model Performs Task
When two pictures were presented at the start of each trial, the
model encoded each picture and attempted to retrieve each
name. First, it retrieved the name with the highest activa-
tion value regardless of its context (retrieve-name-right/left).
In nearly all cases, the favored name was retrieved. Follow-
ing this, there were two possible production rules to be se-
lected. In one rule, the retrieved favored name was used as
the object’s name (name-right/left-img), and in the other, the
model attempted to re-retrieve knowledge by constraining its
context to a “partner” (retrieve-partner-knowledge-right/left).
More specifically, in the latter case, the model attempted to
use what its partner had previously stated. The determination
of which rule to select was based on its utility value. If the
retrieve-partner-knowledge-right/left was selected, and the
model successfully retrieves the partner’s knowledge, then
lexical alignment would occur.

Simulation
Parameters
We varied the values of the two parameters that affect whether
the model used the name dictated by its partner.

Utility: Retrieval Strategy Whether the model attempted
to use the partner’s knowledge depended upon which pro-
duction rule was fired, “name-right/left-img” or “retrieve-
partner-knowledge-right/left.” When the conditions of mul-
tiple rules match the current state, the rule with the highest
utility value is selected. A utility value of 10.0 was given to
all rules in advance, and the noise that was generated from
a logistic distribution with a mean of 0, and an s of 0.2 was
added. Some important rules, such as finding a mark or a
name, had a higher utility value (12.0). To change the prob-
ability of the rule “retrieve-partner-knowledge-right/left” se-
lected, the utility value for this rule was altered from 9.0 to
11.0 at intervals of 0.2. Additionally, 8.0 and 12.0 were also
tested.

Activation: Additional Activation Even if the rule to re-
trieve the partner’s knowledge was fired, the model would
still fail to retrieve it if its activation value did not exceed the

Figure 2: Example result of the first fitting showing the use
rates when the value of the activation parameter is set at 4.0.
The red line represents how to find the value of the utility
parameter that produces the use rate of the computer–partner
condition (79.5%) in Branigan et al. (2011), and the blue line
represents the use rate in the human–computer condition.

retrieval threshold (set to 0.0 in this model). If the partici-
pants intended to use the partner’s knowledge in subsequent
naming trials, they needed to store the knowledge as impor-
tant information so that it could be retrieved after a series of
trials. Therefore, we manipulated the activation level when
the partner’s knowledge entered the declarative module. The
high initial activation level meant that the model memorized
the partner’s knowledge.

ACT–R lacks such a mechanism for changing the strength
of the initial activation according to its importance. In our
model, to change the initial activation level, we manipulated
the number of presentations—that is, n (activation parame-
ter) in formula 1—when the chunks of the partner’s knowl-
edge enter the declarative module. In the default setting, n
was 1.0, and we varied it from 1.0 to 12.0 at intervals of 0.5.
For example, if n was 3.0, the initial activation of the part-
ner’s knowledge was as high as the activation level when the
model encountered this information three times. Due to this
increase, the model could retain the activation of the partner’s
knowledge at a sufficiently high level to ensure successful re-
trievals in the distant trial.

Fitting to Experiments 1 and 2

First, we searched for parameter values that could repro-
duce the results of Experiments 1 and 2 from Branigan et
al. (2011). For each activation parameter (from 1.0 to 12.0
in 0.5 increments), we ran our model by varying the value
of the utility parameter from 9.0 to 11.0 in intervals of 0.2.
Moreover, 8.0 and 12.0 were also tested. After performing
100 runs for each combination of parameter values, the use
rates formed a sigmoidal function for the utility parameter at
each activation level, as shown in Figure 2. A logistic curve
with three parameters (Equation 2) was fit to these results us-
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Figure 3: Values of utility parameter producing target use
rate. The graph shows utility values that produce the use rate
of Branigan et al. (2011) in each activation parameter value.
A line with squares is for the human-partner condition and a
line with circles is for the computer-partner condition.

ing a simplex function in R2. The residual was less than 0.005
at all activation levels.

use rate =
p1

1+ exp(p2+p3⇥utility) (2)

Using the derived logistic formula, we calculated the value
of the utility parameter that produced the averaged use rates
in Experiments 1 and 2 in Branigan et al. (2011) (human:
50.5%; computer: 79.5%) for each activation parameter level.
Figure 3 represents the calculated values of the utility pa-
rameter at each activation level. In total, 20 and 19 combi-
nations of the parameter values were discovered for the hu-
man and computer conditions, respectively. No utility value
could reach the target use rate when the activation parameter
was less than 2.5 for the human condition and less than 3.0
for the computer condition. When the activation value was
more than 5.5, the utility parameter value converged at ap-
proximately 10.0 in the model for the human condition and
at approximately 10.4 in the model for the computer con-
dition. The use rate was higher in the computer condition,
and therefore, if the value of the activation parameter was the
same, then the value of the utility parameter would have been
greater in the computer condition model than in the human
condition model.

Fitting to Experiment 4
We changed the presentation order of the images to the model
to replicate the same lags as those in Experiment 4 from
Branigan et al. (2011). Using the combinations of the pa-
rameter values found in the first fitting, we ran the model 200
times for each lag 0 and lag 8 task. Figure 4a represents the
use rates simulated by the model in each combination of pa-
rameter values for the human condition. In Branigan et al.
(2011), the use rate was 54% for lag 0, and 33% for lag 8, as
represented by the green and pink lines, respectively. Figure
4b shows the results of the models for the computer condi-
tion. The use rate reported by Branigan et al. (2011) is shown
by the pink line (lag 8: 82%) and the green line (lag 0: 76%),
respectively.

2http://aoki2.si.gunma-u.ac.jp/R/simplex.html

(a) Simulated use rate by the human-partner model.

(b) Simulated use rate by the computer-partner model.

Figure 4: Simulated use rate via (a) the human–partner model
and (b) the computer–partner model.

Figure 5: Root mean square error for each combination of
parameter values.

We calculated the root mean square error (RMSE) for each
combination of parameter values. As suggested in Figure
5, in the human condition, the RMSE was the lowest when
the value of the activation parameter was from 4.0 to 4.5, in
which the utility value was approximately 10.0. In this range,
the use rates were similar to the results reported by Branigan
et al. (2011), and the difference between the two lag con-
ditions was highly apparent. In contrast, the RMSE for the
computer condition was nearly constant or repressed once the
value of the activation parameter exceeded 9.5, in which case
the utility value was approximately 10.4. The use rate was
approximately 80%, and there was no difference between the
two lag conditions.

In summary, the model that was able to explain the results
of all lag tasks in the human condition displayed a value of
approximately 10.0 for the utility parameter and 4.0 to 4.5
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for the activation parameter. For the computer condition,
the models with utility parameters of approximately 10.4 and
activation parameters higher than 9.5 provided good results.
The model for the participants who were instructed that their
partner was a computer had the following features compared
to the model for those instructed that their partner was a hu-
man: (a) The utility for the rule “retrieve-partner-knowledge-
right/left” was higher, which led the model to attempt to re-
trieve the partner’s preferred name rather than using the easily
retrieved favored name; (b) the model maintained an activa-
tion value for partner knowledge that was high enough to be
retrieved even after the eight filler trials.

Discussion
This study explored cognitive aspects related to lexical align-
ment and differences in the cognitive processes of verbal
communication between humans and computers. Parameters
for the initial activation of the partner’s expression and re-
trieval strategy tendency were adjusted to replicate the results
of the human–partner and computer–partner conditions in Ex-
periments 1, 2, and 4 from Branigan et al. (2011). Below, we
discuss the findings in the context of our three research ques-
tions.

Additional Activation
Even when replicating the results for the human–partner con-
dition, we provided the model with a higher initial activation
for the partner’s expression. This increased the possibility
that the model successfully retrieved those memories when it
faced the same picture in the naming trial. Unpredicted ex-
pressions attracted attention, required more processing, and
raised awareness; therefore, those expressions would have
higher availability.

We varied the strength of the initial activation to ensure
that the model maintained a high activation for the partner’s
knowledge. Other strategies, such as rehearsal, can maintain
a high activation level. Based on the definition of the acti-
vation formula of optimal learning, the activation value was
identical when the activation parameter was 9.0 and when the
model rehearsed the knowledge nine times. However, we as-
sumed that the participants must have assigned a high acti-
vation to the knowledge at the beginning because it was pre-
dicted that the information would be used later. Neither pre-
vious studies nor our models determined how to acquire a sig-
nificantly high activation value. Perhaps the participants re-
hearsed the information very quickly, used memories within
the declarative module, or employed some other strategy (cf.
Dancy, Ritter, & Berry, 2012; Fum & Stocco, 2004).

Retrieval Strategy
The model for the human–partner condition has nearly the
same utility value for the “retrieve-partner-knowledge” and
“name-right/left-img” rules. The selection probability for
using the familiar name and trying to retrieve the partner’s
knowledge was at a chance level (50%). This condition is

considered the basic situation, and depending on the partner’s
attribute, the preference between the two rules is adjusted.

Differences between Human and Computer
Partners
The model for the computer–partner condition displayed a
value for the activation parameters that was more than twice
that for the model for the human–partner condition. The
computer agent partner was considered to be the one pro-
grammed by a developer, and it responded based on an algo-
rithm. Names that did not follow the naming rule for the pre-
ceding trials were less anticipated and more surprising than
those of the human–partner. Additionally, the participants
could have kept those names in their minds as cues to esti-
mate the agent’s algorithm.

The utility value for the “retrieve-partner-knowledge” rule
was greater in the computer condition model than in the hu-
man condition model. Namely, the computer–partner model
attempted to retrieve the partner’s previous statements rather
than use the most popular names that were easily retrieved.
In 2011, when Branigan et al. conducted their experiments,
language processing was not well developed. Therefore, low
faith in the language proficiency of computers would have
motivated participants to retrieve their partners’ knowledge
for immediate successful communication (Cai, Sun, & Zhao,
2021).

The utility value was given at the start of the task depend-
ing on the belief about the partner, and it remained constant
throughout the task. However, in reality, a change in commu-
nication strategy also depends on the partner’s actions (Kraut,
Lewis, & Swezey, 1982). In Branigan et al. (2011), when the
participants believed their partner was a computer, the use
rate for the lag 8 condition was higher than that for the lag
0 condition while the difference was not significant. To ob-
tain this result, the utility value for the rule “retrieve-partner-
knowledge” must increase during the task. Further work to
implement the bottom-up process in our model is needed. As
in related studies, researchers showed that users took different
processes to evaluate trust in automated systems and human
partners, even if both expressed the same action (Madhavan &
Wiegmann, 2007). Similarly, the change of the utility would
be different depending on whether the partner was a human
or a computer; this requires future testing in future research.
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Abstract

Present-focused behavior is traditionally studied using mod-
els of diminishing utility and varying rates of discounting the
future. Recent efforts to curtail time inconsistencies of delay
discounting have incorporated subjective time perception into
the normative discount function. However, the ramifications of
subjective time on inter-temporal choices have not been clearly
examined. We simulate time-consistent exponential and time-
inconsistent hyperbolic discounting behavior with subjective
time to see how the psychological scaling of objective clock
time affects people’s choice of the delayed reward. Our results
suggest that time contraction and dilation respectively increase
and decrease the probability of choosing the later outcome. We
also find that these time perception-based preference shifts are
similar in effect size to preference shifts typically explained by
changes in discount rates earlier in the literature. Our results
suggest that a psychological time-perception account can be
used to explain observed present-focused behaviors instead of
relying on traditional discount-rate explanations.
Keywords: time dilation; time contraction; delay discounting;
inter-temporal choices

Introduction

Inter-temporal choices encompass decisions whose conse-
quences play out over time. These decisions are ubiquitous
and are often studied as two alternative choices - one reward-
ing choice that one can get now vs. another better reward that
manifests over the future. A willingness to forgo the sooner
reward in consideration for the more significant, later reward
is often associated with higher patience or self-control. Such
willingness has been empirically tested using tasks like the
‘marshmallow task’ in kids (Mischel, 2014) or using pair-
wise monetary comparison tasks spanning different periods
of time in adults (Andersen, Harrison, Lau, & Rutström,
2008). This ability to delay gratification is often consid-
ered a predictor of higher scholastic abilities, better coping
with stress and frustration (Mischel, Shoda, & Rodriguez,
1989), and better self-regulatory behaviors (Michaelson &
Munakata, 2020).

Inter-temporal choices involve trade-offs between the costs
and benefits of rewards available right now and sometime in
the future. Samuelson’s ‘Discounted Utility (DU)’ model first
formulated a decision maker’s inter-temporal preference us-
ing a utility function U(T ) which signifies the value the ob-
server assigns to a reward achievable in a distant time. This
is mathematically represented as

U(T ) =
T�t

Â
t=0

f (n)⇥U(t) (1)

where f (n) is the discount function, i.e., the decision maker’s
relative weight assigned to the future reward at time T . Ac-
cording to the DU model, this discount function is exponen-
tial f (n) = e�kt , and the utility of any future goal ut at time t
is given by

ut = rt ⇥ e�kt (2)

where rt is the actual reward at time t, and k is the decision
maker’s discount factor.

The DU model presupposes that people discount the future
in a time-consistent manner, i.e., the discount rate k is fixed
over time. However, empirical evidence suggests that people
usually discount the future more when the alternative is pre-
sented now compared to when it is presented after some delay,
making future discounting time-inconsistent (Thaler, 1981).
To account for this, some researchers above proposed that the
discount function f (n) be hyperbolic in nature (Mazur, 2013)
such that f (n) = 1/(1+kt). Thus, in hyperbolic discounting,
the utility of a future reward ut is given by

ut =
rt

(1+ kt)
(3)

where the discount factor k varies with time, yielding more
discounting in smaller delays than larger ones.

Why do people often choose the smaller, sooner reward
instead of the larger, later one? As formalized by the DU
model, if one is not motivated to wait for later, i.e., has a
high discount factor, they would perceive the utility of later
reward to be smaller and consequently they would opt for the
sooner reward. On the other hand, as the delay to reward
delivery increases, the utility associated with waiting also de-
creases. For example, a kid willing to wait seven minutes for
two pretzels instead of one might not want to wait fifteen min-
utes. Various factors like anticipation of a promising event
(Loewenstein, 1987), dread of a painful outcome (Berns et al.,
2006), cue-induced reward overestimation (Jędras, Jones, &
Field, 2014), visceral influences (Loewenstein, 1996), emo-
tional arousal (Lempert, Johnson, & Phelps, 2016), environ-
mental reliability (Kidd, Palmeri, & Aslin, 2013), negative
income shocks (Haushofer, Schunk, & Fehr, 2013) has been
shown to affect future choices by decreasing the utility of de-
layed rewards or increasing their discount rates. However, an
often overlooked dimension in explaining delay discounting
phenomena is the delay itself.
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In any discounting model, delay is typically measured
in terms of clock time. However, recent explorations into
how people perceive time delays reveal interesting insights.
McGuire and Kable (2012) have empirically demonstrated
that when the delay in inter-temporal choices seems to be in-
creasing over time (like waiting for a phone call) compared
to being diminishing over time (like waiting for a bad movie
to end), people show preference reversals - they often pre-
fer the delayed rewards initially and then forgo it later. This
insight highlights how our perception of inter-temporal de-
lays can affect our choices and can help us identify why peo-
ple often forego more significant, later rewards. On a similar
note, Takahashi (2016) show that if this perceived delay is as-
sumed to be non-linear (logarithmic as in psychophysical ex-
periments) instead of an objective linear time, the exponential
discounting function often takes the form of a hyperbolic one.
In support of this, researchers have shown empirically that
perceived time is indeed non-linear and concave in nature,
and that people demonstrate a constant discount rate when
subjective time perception is taken into account (Zauberman,
Kim, Malkoc, & Bettman, 2009).

If people perceive time non-linearly, how would this psy-
chological scaling of time affect their inter-temporal choices
compared to objective time? Intrinsic utility of any reward
or the discount rate of an individual is often an immeasurable
quantity. Can a mental account of time give a better explana-
tion for delay discounting behavior?

In this article, we incorporate subjective perceived time
in delay discounting models to understand how time dila-
tion (when perceived time is > objective time) or contraction
(when perceived time is < objective time) can affect inter-
temporal choices. To be precise, we incorporate different val-
ues of wait-time (modeled as subjective time lesser or greater
than objective time) in exponential and hyperbolic discount-
ing models to see how preference for later rewards change.
Thus, our goal in this paper is to quantify how these devia-
tions from objective time can change the probability of choos-
ing later rewards and to check if these time-warped preference
shifts can account for changes in discount rates when objec-
tive time is considered. Our methods and their corresponding
results are described below.

Intertemporal choice modeling with subjective

time

The DU model suggests that people discount future outcomes
exponentially based on their discount rates and the delay as-
sociated with the outcome. As shown in Eqn 2, as the delay
increases, the utility of the future reward decreases. What
happens if we replace the objective delay with subjective per-
ceived time? Following Takahashi (2005)’s direction, if we
assume mental time to be represented in a non-linear man-
ner following Weber-Fechner’s law, the relationship between
subjective time ts and objective time to should look like this:

ts = a⇥ ln(1+b⇥ to) (4)

where a and b are free parameters independent of ts and to.
Substituting this subjective time for objective time in Eqn 2,
we get

ut = rt ⇥ exp(�k(a⇥ ln(1+b⇥ to)) (5)

Rearranging the Eqn 5,

ut = rt ⇥ exp(ln(1+b⇥ to)�ka)

=
rt

(1+b⇥ to)ka

=
rt

(1+b⇥ to)s

where, s = ka. Thus, Eqn 5, which includes an exponential
discount function with logarithmic perceived time, turns into
a general hyperbolic function, and if we consider s = 1, it
turns into a simple hyperbolic function similar to Eqn 3.

The dynamic inconsistency often found in the discounting
literature is mitigated by considering mental time represen-
tation. It is known that substance abusers often discount de-
layed rewards more than non-drug dependent subjects, and a
hyperbolic discount model often fits the data better than an
exponent, time-consistent one (Bickel & Marsch, 2001). In
that case, representing time in a non-linear, logarithmic fash-
ion instead of a linear one, as shown above, removes the in-
consistency (Takahashi, 2005).

If people represent mental time non-linearly, how do these
deviations from objective time affect the probability of choos-
ing the later reward? Assume one has to wait for a year for
some reward, and the probability of waiting is p. If mentally
that one year feels like a year and a half (time dilation) or
six months to them (time contraction), our model formulates
how their probability of choosing the later reward p0 would
change compared to p. Thus, we find how deviations in time
d(t) modulate deviations in choices d(p) using exponential
and simple hyperbolic functions.

Exponential discounting

Imagine an agent is faced with two choices - a sooner, smaller
reward r0 and a later, larger reward at separated by objective,
calendar time to. The probability of them choosing the later
reward is p(later). Since discount factor k is unknown, we
can estimate k given the actual value of the later reward, time
to fruition, and the utility associated with it u(later). This
u(later) is calculated using a softmax function, which can be
represented as

p(later) =
exp(u(later))

exp(u(later))+ exp(u(sooner))
(6)

where u(sooner) is the utility associated with the sooner re-
ward, which is assumed to be equal to r0. Rearranging Eqn 6,
we get

exp(u(later)) = p(later)⇥ exp(u(later))+ p(later)⇥ exp(u(sooner))

exp(u(later)) =
p(later)⇥ exp(u(sooner))

1� p(later)
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Thus, if we know p(later), we can derive the utility of the
later reward u(later) at time to using

u(later) = ln(
p(later)⇥ exp(u(sooner))

1� p(later)
) (7)

The exponential discount function, given by Eqn 2, can be
rearranged in our context to give

u(later) = at ⇥ exp(�k⇥ to)

exp(�k⇥ to) =
u(later)

at

k⇥ to = ln(
at

u(later)
)

Given u(later) obtained from Eqn 7, and p(later), we can
derive our agent’s discount factor k using objective time to and
the actual later reward value at using the following formula

k =
1
to
⇥ ln(

at

u(later)
) (8)

Now, if our agent mentally represents objective time to sub-
jectively as ts, we can find the updated utility of the later re-
ward u(later)0 given ts using k from Eqn 8

u(later)0 = at ⇥ exp(�k⇥ ts) (9)

And using this u(later)0, we can find the new probability of
choosing the later reward p(later)0 using the softmax func-
tion

p(later)0 =
exp(u(later)0)

exp(u(later)0)+ exp(u(sooner))
(10)

Finally, we can quantify how deviation in time d(t) can per-
turb the probability of choosing later outcome d(p) such that

d(t) = ts � to (11)

d(p) = p(later)0 � p(later) (12)

For our model, our agent can choose from a sooner reward
r0 = 100 available at time to = 0 or wait a year to = 365 for a
reward of at = 150. Given different probabilities of choosing
the later reward p(later) ranging from 0.1 to 0.9, we calcu-
late u(later) using Eqn 7 and k using Eqn 8. Assuming that
subjectively waiting for a year could feel like waiting for six
months i.e., ts = 180 days (time contraction by six months)
or waiting for a year and a half i.e., ts = 545 days (time dila-
tion by six months), we calculate the perceived utility of later
reward u(later)0 using Eqn 9 and the updated probability of
choosing the later reward p(later)0 using Eqn 10. From this,
we find d(t) and d(p) using Eqns 11 and 12 to check how
d(p) changes as a function of d(t).

We find that d(p) changes in a sigmoidal manner as a func-
tion of d(t). In Fig 1, the dotted line corresponding to d(t) = 0
signifies subjective time being equal to the objective time,
the negative x-axes signify the perceived shortening of time

Figure 1: A figure depicting how deviations in time d(t) per-
turb the probability of choosing a later reward d(p) when the
future reward is discounted exponentially. We find that as
time dilates (i.e., d(t) > 0 such that subjective time > ob-
jective time), the probability of choosing the future outcome
decreases (i.e., d(p)< 0 such that p(later) at subjective time
< p(later) at the objective time). For this simulation, we as-
sumed actual later reward = 1.5 ⇥ sooner reward.

(i.e., time contraction), and the positive x-axes signify the
perceived lengthening of time (i.e., time dilation). As time
contracts (d(t)< 0) and time dilates (d(t)> 0), we see a rise
(d(p) > 0) and fall (d(p) < 0) in the probability of choos-
ing later rewards respectively for all values of prior proba-
bility p ranging from 0.1 to 0.9. As time dilates, this fall in
probability is maximum when the prior probability is high
(p = 0.9) and minimum when it is low (p = 0.1), as shown in
the fourth quadrant of Fig 1. Thus, our agent’s preference for
later rewards significantly falls when mental time dilates, cor-
responding to objective time. This fall is proportional to their
prior probability of choosing the later reward - as their prior
probability grows higher (p goes from 0.1 to 0.9), their shift
in preference also grows steeper. This seems intuitively logi-
cal - if one prefers to delay gratification significantly but their
wait time seems to be extending in their mind, the subjective
utility of that later outcome decreases, leading to a drop in
their probability of choosing that reward. Thus, instead of
waiting, they may reverse their preference at some point in
time and choose the smaller reward.

To check the robustness of our model, we varied the value
of the later reward and found that the same results were re-
produced as shown in Fig 2. Whether we make the value of
the later reward smaller than our original model (Fig 2(a))
or larger (Fig 2(b)), we find that as time dilates (d(t) > 0),
the agent’s preference for later reward decreases. However,
the nature of this descent is slower when the later reward is
1.1 times that of the sooner reward, as shown in Fig 2(a).
When the prior probability is low (p = 0.1) and as time di-
lates (d(t) > 0), the d(p) decreases marginally below 0 and
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Figure 2: This figure depicts how varying the values of later
rewards made the same predictions as we had previously
found. The plot (a) and (b) shows simulation results for con-
ditions where the actual value of the later reward is taken to
be smaller (1.1 ⇥ sooner reward) and larger (2 ⇥ sooner re-
ward) than the one used in the main simulation (1.5 ⇥ sooner
reward).

quickly asymptotes for all values of later reward.
On the other hand, the decrease in d(p) is significantly

more when the prior probability of choosing the later reward
is high (p = 0.9) compared to when it is low (p = 0.1). If we
compare all values of later reward as seen in Fig 1 and 2, we
find that the point in time where d(p) asymptotes gets smaller
as the value of later reward increases (d(t)> 180 in Fig 2(a),
d(t) ⇡ 50 in Fig 1, and d(t) ⇡ 25 in Fig 2(b) for p = 0.9).
This trend continues for other values of delayed rewards that
are more than twice the size of the sooner reward.

Hyperbolic discounting

We followed the same protocol as above, but instead of using
an exponential function, we used a simple hyperbolic func-
tion to define the utility of the later reward given by

u(later) =
at

1+ k⇥ to
(13)

where k is the discount factor, at is the actual reward mani-
festing at objective time to. Rearranging this eqn, we get the
discount factor where

k =
at �ut

ut ⇥ to
(14)

In this simulation, inter-temporal choices are also defined
as a sooner reward r0 = 100 available at to = 0 and a de-
layed reward at = 150 redeemable at to = 365. Given differ-
ent values of p(later) ranging from 0.1 to 0.9, we estimate
the u(later) using Eqns 7. Then using this u(later), we es-
timate k using Eqn 14. Using this k and plugging subjective
time ts = to + d(t) in Eqn 13, we estimate u(later)0 and fi-
nally p(choice)0 using Eqn 10. Lastly, we find the deviations
in time and probability d(t) and d(p) using Eqns 11 and 12.
Like the exponential case, we find d(p) to be changing sig-
moidally as a function of d(t) as seen in Figure 3.

Figure 3: This figure shows how deviations in time d(t) mod-
ulate the probability of choosing a later reward d(p) when the
future reward was discounted hyperbolically. We find that as
time dilates (i.e., d(t) > 0 such that subjective time > objec-
tive time), the probability of choosing the future outcome falls
(d(p) < 0) for all values of prior probability p. For this sim-
ulation, we also assumed actual later reward = 1.5 ⇥ sooner
reward.

Similar to the exponential discount scenario, we find that as
time dilates (d(t) > 0) such that subjective time is perceived
to be longer than objective time, the probability of choos-
ing the later reward decreases (d(p) < 0). This descent was
highest when the prior probability of choosing the later re-
ward was high and vice versa. Similarly, as time contracts
(d(t)< 0) such that subjective time is smaller than clock time,
the choice of the delayed reward increases (d(p)> 0).

We also performed robustness checks of our results by
varying the size of the later reward. For both lower and higher
values of later reward than our original model, we found that
as time dilates (d(t)> 0), the probability of choosing later re-
wards also decreases (d(p) < 0). For high values of prior
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Figure 4: This figure depicts the robustness check performed
for the change in d(p) as a function of d(t) for the hyperbolic
discount function. The plot (a) shows simulation results for
conditions where the later reward is smaller (1.1 ⇥ sooner
reward) than the main simulation (1.5 ⇥ sooner reward). The
plot (b) shows simulation results when the later rewards were
larger (2 ⇥ sooner reward) than the main simulation.

probability p = 0.9, the fall in probability (d(p)) is much
more gradual when the later reward is 1.1 times the sooner
reward compared to when it is twice as big as the sooner re-
ward. Again we find the point in time where d(p) asymptotes
get smaller as the value of later reward increases, as can be
seen in Fig 4(a), 3, and 4(b).

Time dilation may explain delay discounting

In the previous section, we varied the time parameter in the
discounting models to see how the probability of choosing
later rewards changed while keeping the discount rate con-
stant. We find that our agent’s preference for delayed reward
decreases across exponential and hyperbolic discounting for-
mulations as the perception of time lengthens compared to
objective clock time. This leads us to ask whether these
time-warp-induced preference changes can explain changes
in present-focused behavior. If we assume time to be ob-
jective and non-variable, do these shifts in the probability of
choosing later rewards translate to changes in discount rate?

If that is true, delay discounting behavior can be explained in
a quantifiable mental-time model compared to an immeasur-
able discount rate.

Exponential discounting

In the above section, we estimated our agent’s discount factor
k for each level of prior probability of choosing later rewards.
We used that to assess how this probability changed in the
face of deviations from objective time. Now, if we disregard
those time deviations and consider time to be objective and
constant, the changes in preference would, ceteris paribus,
appear to correspond to changes in the delay discounting pa-
rameter.

Figure 5: This figure shows how discount rates change d(k)
as a result of observed shifts in preference d(p) if the psycho-
logical scaling of objective time is disregarded in an exponen-
tial discounting model. For all prior probability values, as the
preference for the delayed rewards decreases, the discounting
increases when only objective time is considered.

To test this possibility, we use the observed changes in the
probability of choosing later rewards d(p) as a result of time
deviations (as shown in Fig 1) to calculate p(later)0 using
Eqn 12. Using this p(later)0, we calculate the utility associ-
ated with the later reward u(later)0 using a softmax function
as shown in Eqn 7. Assuming perceived time to be similar to
the objective time (ts = to), we calculate the discount factor k0
(using an exponential discounting model) for each observed
change in utility using

k0 =
1
t
⇥ ln(

at

u(later)0
)

where time t = ts = to. We quantify the changes in discount
rates by

d(k) = k0 � k (15)

where k is calculated using objective time to and actual later
reward at using Eqn 8 for all values of prior probability p.
Lastly, we plot how discount rates change d(k) as a function
of our observed changes in preference of delayed reward d(p)
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if subjective scaling of time is disregarded and clock time is
considered.

As shown in Fig 5, we find that as the preference for later
reward decreases (signified by d(p)< 0), the discount rate in-
creases (signified by d(k)> 0). Since the preference drop in-
creases as the p goes from 0.1 to 0.9, the increase in discount
rates is highest for p = 0.9 and lowest for p = 0.1. Overall,
this aligns well with our intuition that when time is treated as
objective in modeling intertemporal choice, underlying sub-
jective changes in time perception may well be measured as
shifts in discount rates.

Hyperbolic discounting

To check these results’ robustness, we performed a similar
modeling approach of mapping preference shifts due to tem-
poral deviations to discount rates with hyperbolic discount-
ing.

Figure 6: This figure shows how discount rates change d(k)
as a result of observed shifts in preference d(p) if objective
time is considered in a hyperbolic discounting model. For all
values of prior probability p, as the preference of the delayed
rewards decreases, the discounting increases when objective
time is considered.

Our protocol was the same as above, except that to find k0,
we used

k0 =
at �u(later)0

u(later)0 ⇥ t

where time t = ts = to. We quantify the changes in discount
rates d(k) using Eqn 15. We found our results to be exactly
similar to the exponential case as shown in Fig 6. These
observations suggest that observed shifts in preference of-
ten attributed to differential rates of discounting in choice
paradigms may well be actually caused by shifts in tempo-
ral perception.

Discussion

In line with the new-found interest in understanding discount-
ing behavior in terms of psychologically perceived time, we

demonstrated using simulations how changes in time prefer-
ence conventionally attributed to changes in discount rates
may actually be produced by changes in time perception.

Across both models of time-consistent exponential and
time-inconsistent hyperbolic discounting, we find a sigmoidal
change in preference for delayed rewards as a function of time
deviations - when subjective time contracts, the probability of
choosing the later reward increases and when subjective time
dilates, the probability decreases compared to the prior prob-
ability. This seems intuitive - if one perceives a month to
be a week, then waiting for a month seems easier and highly
likely. However, if waiting for the same month seems like a
year, then choosing to wait seems highly unlikely.

We also found that these shifts in probability correspond to
changes in discount rates when time is assumed to be objec-
tive and constant. For both exponential and hyperbolic dis-
counting, the decrease in the likelihood of choosing a later
reward (corresponding to an increase in perceived time) trans-
lates to an increase in discount rates when time is considered
non-variable. This demonstrates how a mental time narrative
can explain discount rate accounts of time preference shifts.

Exponential discounting functions assume discount rates
to be constant over time and cannot account for preference
reversals (Thaler, 1981; Kirby & Herrnstein, 1995). By in-
corporating subjective time into exponential models, our in-
silico demonstrations suggest a simple explanation: as the
perceived time phenomenologically lengthens in comparison
to clock time, the favorability of delaying gratification de-
creases and eventually drops to null - thus explaining prefer-
ence reversals. In other words, even though one might prefer
a long-term reward initially given a description of the antic-
ipated delay, they can switch to a short-term plan if the ex-
perience of the delay feels longer, as the delayed outcome
might not look lucrative enough on the stretched out subjec-
tive timeline.

Understanding the interplay of uncertainty in one’s envi-
ronment, how time is perceived, and how it leads to prefer-
ence is essential for understanding why people discount the
future. Often as ambiguity increases, people’s phenomeno-
logical experiences intensify, and time seems to linger on
(Maglio & Kwok, 2016). Manipulations of perceived control
of one’s actions and their outcomes distort people’s duration
judgments of negative images (Mereu & Lleras, 2013), and
these time distortions can be subsequently restored by expe-
riences of higher control (Buetti et al., 2020). Thus, if inter-
nal time is malleable to our lived experiences, studying time
preferences using this prism may yield an enhanced under-
standing of present-focused behavior in light of this psycho-
logical scaling of time. Our model implies that latent traits
like impatience or lack of self-control need not be evoked to
explain such discounting behavior. Psychological scaling of
clock time offers similar explanations and paints delay dis-
counting as an ecologically rational strategy - there is no point
in waiting for tomorrow if tomorrow seems like forever.
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Abstract

Cognitive models are used as simulators that derive external
behavior from assumed internal states. As a tool for linking ex-
ternal behavior with internal causes, cognitive models can be
used to examine human trait inference on others. While funda-
mental attribution errors are identified in social psychology, the
specific factors remain unclear. By employing detailed cogni-
tive models to specify internal states, it is possible to deepen
our understanding of human inference on internal processes.
In this study, we utilized the ACT-R cognitive architecture to
construct such internal states and externalized behaviors. We
also focused on “curiosity” as an individual trait emphasized
in real society to evaluate individuals. We developed a visual-
izer for the behavior of multiple models of curiosity and con-
ducted subjective evaluations with participants recruited from
a Japanese crowdsourcing site. As a result, we observed dif-
ferences in inferred traits among models, although the spe-
cific patterns were not consistently aligned with the model as-
sumptions. Additional analysis revealed that participants’ in-
ferences were more influenced by observable behavior patterns
rather than internal processes, indicating a deficit in human at-
tribution as suggested by the tradition of social psychology.
Keywords: trait inference; subjective human evaluation; cog-
nitive modeling; ACT-R

Introduction
In the community, many researchers have so far developed
cognitive models as simulators that derive external behaviors
from assumptions about human internal states. Depending on
the representations of internal states and external behaviors,
a variety of cognitive models at different granularities can be
constructed. Each model aims to replicate various errors ex-
hibited by humans while also representing the internal pro-
cesses occurring in the human brain. Such models serve as
representations of theories in cognitive science and are also
utilized to predict and interpret human behavior in various
contexts such as education and industry.

Based on the above perspective of the history of cogni-
tive modeling, this paper proposes to utilize them as tools
for studying human trait inference for others. Humans tend
to interpret others’ behaviors by attributing internal states
such as personality (Winter & Uleman, 1984). Previous re-
search in social psychology has pointed out that such trait in-
ference inherently involves fundamental attribution error (bi-
ases) (Gilbert & Malone, 1995). However, research on these
biases traditionally relied on surveys and experiments, lack-
ing clear manipulation of internal states that underlie behav-
ior. By applying cognitive models to this area of study, it

becomes possible to detail the factors that lead to errors from
the perspective of internal mechanisms causing human be-
haviors. The outcomes of such studies will be applied to the
development of artifacts that interact smoothly with humans,
as well as to applications such as the assessment of others in
education and work environments.

Among various human internal states, motivation is often
attributed as a cause of behavior and holds significant influ-
ence. In Weiner (1985)’s attribution theory, motivation is
classified as an internal and controllable factor. Attribution
to this factor significantly affects the occurrence of challeng-
ing behavior in the future. Thus, examining the process of at-
tributing motivation to behavior has both theoretical and prac-
tical significance. This study specifically investigates the in-
ference of attributes based on individuals’ curiosity, a form of
intrinsic motivation. Curiosity has been classified as a form of
intrinsic motivation and has been increasingly addressed by
numerous computational models (Aubret, Matignon, & Has-
sas, 2019). Therefore, this study utilizes behavior generated
by models of curiosity as experimental stimuli to explore fac-
tors influencing its attribution.

Related Works
This study examines whether it is possible to infer the traits
of agents with internal models of curiosity by participants. In
the aim, we introduce research related to (1) psychological or
computational studies on trait inference, (2) studies focusing
on internal models of curiosity, and (3) research on evaluating
the characteristics of artificial agents with models.

Human Trait Inference and Attribution
The inference of others’ attributes discussed in the previous
section is related to Theory of Mind (Premack & Woodruff,
1978), the ability of humans to understand others. In connec-
tion with this process, people have a strong tendency to find
intentionality and animacy in artifacts. The classical study
by Heider and Simmel (1944) demonstrated that humans per-
ceive intentions from objects represented by simple geomet-
ric shapes.

Such an inference on the inside process frequently con-
nects an individual’s traits such as characteristics and think-
ing style. Regarding this issue, research in social psychology
suggests the inaccuracy of human traits inference (Stangor
& Walinga, 2014). While humans spontaneously infer traits
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from behavior, numerous attribution errors, such as overesti-
mating others, have been reported (Winter & Uleman, 1984).
Particularly, humans may perceive intent even in random be-
havior (Fyfe, Williams, Mason, & Pickup, 2008). However,
similar to the classical study by Heider and Simmel (1944),
the experimental stimuli used in these experiments are con-
structed manually lacking details of internal processes.

Based on the background discussed so far, the current study
investigates human trait inference using cognitive models.
We assume the internal processes of the cognitive model as
traits (thinking style) and use the behaviors generated from
these traits as experimental stimuli. This manipulation aims
to describe human trait inference in terms of computational
algorithms.

As mentioned in the introduction, this study focuses on cu-
riosity as the trait for participants to estimate. Curiosity plays
a significant role in promoting individual activities across var-
ious fields such as education and entertainment.

Because of its importance, many psychological studies
have been conducted to clarify the concept of curiosity. For
example, Malone (1981) distinguished perceptual curiosity
and cognitive curiosity in his theory of intrinsic motivation.
Kashdan et al. (2018) also classified multiple aspects of cu-
riosity, such as exploration and absorption, and invented the
questionnaire assessing individual traits toward such different
aspects of curiosity.

Such psychological theories have recently been elaborated
by computational models of human curiosity. Dominant the-
ories are based on principles of prediction errors (Friston,
2010; Schmidhuber, 2010), leading to research on deep learn-
ing agents representing curiosity (Aubret et al., 2019). These
agents offer a solution to the exploration and exploitation
dilemma in agent learning, enhancing performance in specific
environments (e.g., games).

One limitation of deep learning models is their lack of ex-
plainability. The internal processes of deep learning mod-
els are typically difficult to express. To address this issue,
Nagashima, Morita, and Takeuchi (2021) have explored cu-
riosity models aligned with cognitive modeling approaches.
By employing cognitive models, it becomes possible to trace
processes in a manner comparable to human internal pro-
cesses.

In their study, adaptive control of thought-rational (ACT-R)
was utilized as a cognitive architecture to implement a model
of curiosity. ACT-R allocates individual cognitive functions
to basic units called modules (Fodor, 1983). These modules
in ACT-R correspond to brain regions, and their behavior
is being validated through brain measurements using func-
tional magnetic resonance imaging (fMRI) (Anderson, 2005).
Furthermore, the mapping between the modules’ domains is
based on neuroscientific findings (Stocco et al., 2021).

The model developed by Nagashima et al. (2021) specif-
ically utilizes ACT-R’s characteristic symbolic processes to
represent ”pattern discovery,” which is humans’ ability to
identify, combine, and utilize patterns of causal relation-

ships (Baron-Cohen, 2020). This emphasis on pattern dis-
covery aligns with the aforementioned mathematical mod-
els (Friston, 2010; Schmidhuber, 2010), which posit that
curiosity arises from discrepancies between perceptions of
the external world and predictions derived from experience.
These differences from predictions generate surprise (curios-
ity), some of which induce an emotional response such as
enjoyment (Koster, 2013; Schmidhuber, 2010).

The curiosity represented in Nagashima et al. (2021)’s
model was based on assumed correspondence between pat-
tern discovery and pattern matching in ACT-R’s symbolic
process. Their model employs curiosity to perform a contin-
uous maze task. The task is implemented by combining the
continuation of production and the stopping production at the
beginning of the task. This conflict resolution is expressed by
ACT-R’s utility module and production compilation module.
Specifically, they utilized a utility module to assign positive
rewards to continuation productions when production compi-
lation occurred. This indicates that when a new production
rule is created through compilation, the model experiences
a sense of “fun.” Conversely, when no compilation occurs,
the continuation production receives negative rewards, lead-
ing the model to feel “bored.” Ultimately, the model termi-
nates the task.

Trait Inference on Artificial Agents
Research on trait inference by humans has accumulated ex-
tensively in social psychology. This field relates to studies on
anthropomorphism towards artifacts (Nass & Moon, 2000).
Within the field of human-agent interaction (HAI) (Laban,
2021), studies on attribution toward artificial agents have
been conducted based on previous research on animacy per-
ception Heider and Simmel (1944). However, many studies
have manipulated external factors like appearance and behav-
ior without directly manipulating the internal factors under-
lying agent behavior generation(Van Pinxteren, Pluymaekers,
& Lemmink, 2020).

In a few exceptional studies, for instance, Rato, Couto,
and Prada (2021) evaluated how agents’ traits adapt to dif-
ferent contexts. In this study, participants were presented
with the behavior of agents placed in a three-dimensional vir-
tual space. Some agents acted in response to the context of
their environment, while others acted randomly. Participants
then assessed the traits of the models using motivation-related
questionnaires. Similarly, Walker, Weatherwax, Allchin,
Takayama, and Cakmak (2020) implemented a robot with
a curiosity-based internal model and had humans evaluate
whether it exhibited intelligence. They recorded the robot’s
behavior on videos and presented it to participants online, us-
ing surveys to assess the robot’s characteristics. The survey
utilized the “Perceived Intelligence” indicator from the God-
speed questionnaire (Bartneck et al., 2023), which evaluates
characteristics based on an agent’s behavior.

The above studies suggest that humans can partially in-
fer the traits of agents from the behavior of machine learn-
ing or computational models. However, the correspondence
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Figure 1: Maze Environment.

between the internal models addressed in these studies and
human cognitive functions is not clear. Therefore, in this
study, we adopt the cognitive model of curiosity developed
by Nagashima et al. (2021) and examine the relationship be-
tween the model’s predictions and participants’ attributions.

Method
Participants
Participants were recruited via a Japanese crowdsourcing
website (Lancers.jp) in February 2024. Ninety-five partici-
pants were the target of the analysis, excluding incomplete
data from a total of 100 participants.

Materials
We prepared a total of three cognitive models of curiosity that
differ in the level of thinking applied to the task as experimen-
tal factors. Below, we present the simulation tasks conducted
by the models, followed by an overview of the three cognitive
models corresponding to the experimental conditions estab-
lished in this study. At the end of this section, we describe
the environment in which the cognitive models are presented
to the participants.

Simulation Task In the material to the participants, the
model explores a set of maps based on curiosity. Figure 1
is an example of a maze map explored by the model. The
size of the map was set to 9×9, the widest size among those
covered by previous studies.

These environments are represented as topological maps in
which the corner points of the maze are nodes, and the con-
nections (paths) between nodes are represented as declarative
chunks.

During the task execution, the model discovers the memo-
rized paths (consisting of two consecutive turns and their di-
rections) stored in the declarative module by matching them
with patterns embedded in production rules. Each process of
the model moving from the start position to the goal posi-
tion or reaching the time limit (180 seconds) constitutes one
round. Multiple rounds on the same map continue until either
the overall time limit for the task (3600 seconds) is reached
or the model becomes “bored” with the task. The model’s en-
joyment and boredom are represented based on Nagashima et

al. (2021)’s curiosity cognitive model, as described in related
research.

Experimental Conditions To investigate the models’ cu-
riosity in the described setup, we varied the agent’s traits
based on their level of thinking in environmental exploration
strategies. Models were categorized by the extent of pattern
matching, with higher levels frequently accessing the declar-
ative module for task completion (needing more cognitive
load). Lower-level models, however, performed tasks without
utilizing this strategy (requiring less cognitive load). In other
words, the higher level models are more related to “cognitive
curiosity” while the lower level model is more related to “per-
ceptual curiosity” as discussed by Malone (1981). Below is
an overview of each model, with each repeating the outlined
processes.

1. Random Model:
The model randomly determines one of the four directions
(east, west, south, north). Then, it queries the declarative
module to check if it can move in that direction. If move-
ment is possible, it proceeds in that direction.

2. Stochastic DFS Model (DFS):
The model utilizes stochastic depth-first search for explor-
ing the environment. Similar to the Random Model, it ran-
domly selects the direction of movement and checks its vi-
ability. If movement is possible, the model proceeds ac-
cordingly and stacks the moved path. In case of encounter-
ing a dead-end, it backtracks to return along the previous
path.

3. Stochastic DFS + IBL Model (DFS+IBL):
The model combines stochastic DFS with IBL (instance-
based learning) (Gonzalez, Lerch, & Lebiere, 2003). IBL
is a learning approach that utilizes memories to solve cur-
rent tasks. The model behaves essentially like the DFS
model. When the model reaches the goal, it stores the path
to the goal as declarative knowledge with the “correct” la-
bel. The model then utilizes an IBL strategy to approach
the goal by recalling these paths. The model explores the
environment by switching between these two strategies.

The models are assumed to have increasing levels of think-
ing complexity from 1 to 3. The random model takes random
actions, providing fewer opportunities for deliberation on the
next move, hence considered to have a lower level of thinking.
On the other hand, DFS+IBL incorporates both the strategy
of DFS and the IBL strategy, allowing for more opportuni-
ties for deliberative memory retrieval, thus being considered
to have a higher level.

As the experimental material, we randomly sampled 10
runs of the model for each of the three conditions. Table 1
shows the statistical measures of the model runs. “Round
Num” indicates the number of rounds, “Total Time” denotes
the time (in seconds), and “Goal Rate” represents the percent-
age of times the model reached the goal.
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Table 1: Statistics of presented stimuli.
Round Num Total Time Goal Rate

Mean SE Min Max Mean SE Min Max Mean SE Min Max
Random 33.8 2.62 23 46 3586.2 13.81 3461.9 3600.0 0.56 0.05 0.26 0.76
DFS 9.3 0.98 4 15 1557.5 501.44 665.9 2499.6 0.16 0.03 0.00 0.27
DFS+IBL 6.6 0.65 3 10 980.7 116.58 329.7 1440.0 0.34 0.11 0.00 1.00

Figure 2: Trajectories of the model runs.

Figure 3: Simulator.

Figure 2 illustrates the trajectories of model movements for
runs with the lowest and highest goal rates for each model.
The color of each circle represents the visit frequency, with
darker red indicating more visits by the model. Additionally,
the thickness of each line represents the frequency of paths
chosen by the model. It should be noted that diagonal or wall-
penetrating movements in the random model result from the
compilation of multiple movement production rules.
Website for Agent Evaluation Following the previous
study (Walker et al., 2020), we recorded the agents’ behav-
ior on videos and created a website for participants to present
the movie and conduct subjective ratings.

The movies demonstrated the agent’s movement on a visu-
alizer created from the model log and Unity. Figure 3 shows
this visualizer, which also displays the number of rounds
(Round), number of goals achieved (Success), and current

time (Time) to make participants understand the current sta-
tus of the model. A white cylinder represents the agent in
an environment mirroring the map depicted in Figure 1, with
start (red), goal (yellow), and corner (blue) interconnected by
grid squares. The agent moves between these squares.

The visualizer represents the model’s decision-making pro-
cess between grid squares, with movements synchronized to
ACT-R simulation time. We expected participants to form
varied impressions of each model feature. Movement speed
was kept constant for each model, reflecting ACT-R’s simu-
lation without physical body movements.

The recorded movies were uploaded to YouTube, and their
links were embedded in the website. During the experiment,
participants were able to freely manipulate the controls of the
YouTube movies, such as fast-forwarding, changing scenes,
and stopping playback. In addition to these videos, the web-
site provided participants with information summarizing the
results of the stimuli as presented in Table 1.

Based on the provided information, participants answered
a questionnaire regarding the traits of the agents. The ques-
tionnaire utilized the “Perceived Intelligence” indicator from
Godspeed(Bartneck et al., 2023), similar to previous research
(Walker et al., 2020). Additionally, the Five-Dimensional Cu-
riosity Scale (5DS) (Kashdan et al., 2018) was used to inves-
tigate curiosity types in detail. The 5DS classifies five types
of curiosity, from which “Joyous Exploration” and “Depriva-
tion Sensitivity” were selected for relevance to the simulation
task. The former relates to the exploration of things for joy
and positive experiences. The latter is associated with explor-
ing intellectual matters such as problem-solving and filling
knowledge gaps. We considered that these indicators cor-
respond to the sensory and cognitive aspects of curiosity as
outlined by Malone (1981).

Table 2 presents the questionnaires used in this study. As
can be seen in the table, each index in the 5DS consists of
five questions. Perceived intelligence taken from Godspeed
also contains five pairs of antonyms related to the presence or
absence of intelligence. All the questionnaires were rated on
five-point scales. Those questionnaires were translated into
the Japanese language. During this modification process, we
also changed pronouns from the original first-person one to
the third-person one (from “I” to “He”) to enable participants
to rate the behavior of the agents.

Procedure
The participants recruited from the crowdsourcing site,
Lancers, viewed the instructions and then began the experi-
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Table 2: Questionnaire.
Joyous exploration

1 He views challenging situations as an opportunity to grow and learn.
2 He is always looking for experiences that challenge how he thinks about himself and the world.
3 He seeks out situations where it is likely that he will have to think in depth about something.
4 He enjoys learning about subjects that are unfamiliar to him.
5 He finds it fascinating to learn new information.

Deprivation sensitivity
1 Thinking about solutions to difficult conceptual problems can keep him awake at night.
2 He can spend hours on a single problem because he just can ’t rest without knowing the answer.
3 He feels frustrated if he can ’t figure out the solution to a problem,

so he works even harder to solve it.
4 He works relentlessly at problems that he feels must be solved.
5 It frustrates him not having all the information he needs.

Perceived Intelligence
1 Incompetent - Competent
2 Ignorant - Knowledgeable
3 Irresponsible - Responsible
4 Unintelligent - Intelligent
5 Foolish - Sensible

ment. The following is the experimental procedure.

1. Register the participation on the Lancers’ request screen

2. Read the instructional page

3. Repeat the following operations on the task screen three
times each corresponding to one of the models of the three
levels of thinking

(a) Observe the movie and read the information about the
model run.

(b) Fill out the questionnaire

The participants were informed that the task involved infer-
ring the traits of three agents based on the presented materi-
als (the movie and the information about the run). They were
also instructed to observe the information for each agent for
at least three minutes. The webpage displaying each model
run was controlled by JavaScript and did not display a 15-
question questionnaire for trait rating until three minutes had
passed.

In the instructions, they received an overview of the agent’s
task, which involved repeated maze-solving. They were also
informed about the completion conditions (being “bored” and
the time limit) of the simulation task. Additionally, they
were informed that the agent had the learning ability to re-
duce thinking time for solving the maze. Furthermore, they
were provided with explanations about the presented materi-
als (simulation movies, total round count, goal rate, and total
thinking time). The functionality of the movie player was ex-
plicitly noted, allowing participants to freely fast forward and
change scenes. Finally, participants were notified of dummy
questions for careful answering (though not included).

Once participants self-assessed their understanding of the
instructions as sufficient, they proceeded to the task screen.
The presentation order of the three models was randomized.
On the task screen for each model, participants were pre-
sented with a selection from 10 simulations chosen randomly.
Thus, the number of participants varies in each simulation.
Table 3 indicates the frequency of selection for each simula-
tion.

Table 3: Number of participants for each simulation.
1 2 3 4 5 6 7 8 9 10

Random 13 11 13 8 7 9 6 9 9 10
DFS 9 9 7 9 9 12 9 13 6 12
DFS+IBL 8 10 7 6 11 13 10 6 13 11

Figure 4: Result of the questionnaire.

Results and Discussion
Effect of Internal Process on Trait Inference
To examine the influence of the model’s internal processes on
participants’ trait inferences, we calculated the average scores
for two indicators of the 5DS and one indicator of the God-
speed for each model. Following prior research (Kashdan et
al., 2018), these scores were converted to proportions relative
to the maximum value (5) of the questionnaire. After calcu-
lating the average scores for each index and each participant,
we aggregated the scores for each model run. The sample size
for this aggregation (calculating the averages) corresponds to
the numbers in Table 3. Thus, we used model runs as the unit
of analysis (n = 10 for each model).

Figure 4 depicts the results of the questionnaire for each
model. The color of each box represents the level of think-
ing about the models. Each item on the x-axis indicates the
indicators of 5DS (Joyous Exploration and Deprivation Sen-
sitivity) and Godspeed’s Perceived Intelligence. The y-axis
represents the mean of the evaluation scores obtained for each
questionnaire item, averaged across model executions.

We examined the differences between models using anal-
ysis of variance for each indicator shown in Figure 4. As a
result, significant differences between models were found for
all indicators (Joyous Exploration: F(2,9) = 8.02, p < .01;
Deprivation Sensitivity: F(2,9) = 21.77, p < .01; Perceived
Intelligence: F(2,9) = 3.87, p < .05). The Holm method for
multiple comparisons revealed that the Random model was
significantly rated higher than other models in two curiosity-
related indicators (p < .05). Regarding intelligence-related
indicators, a significant difference was observed only be-
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Table 4: Correlations between the presented stimulus and the mean of the indicators corresponding to the models in Table 1.
All Models summarizes all models (n = 30). Others correspond to individual models (n = 10).

All Models Random DFS DFS+IBL
Round Time Goal Round Time Goal Round Time Goal Round Time Goal

Joyous 0.57** 0.44 0.65** 0.40 -0.24 0.39 -0.06 -0.12 0.11 -0.16 -0.50 0.79**

Deprivation 0.79** 0.72** 0.43 0.58 0.36 0.30 -0.26 -0.28 -0.31 -0.39 -0.45 0.29
Intelligence 0.40 0.21 0.84** 0.63 -0.11 0.68 -0.08 -0.16 0.76 -0.27 -0.64 0.87**

** p < 0.01

tween the Random model and the DFS model (p < .05), with
no difference observed otherwise.

Correlation between Model Behavior and Trait
Inference
As described above, participants perceived the Random
model as the most motivating and rated it as more intelligent
compared to the DFS model, potentially inferring traits based
on long task persistence and goal rates. As shown in Table 1,
the Random model spent more time on tasks and achieved a
higher goal rate compared to other models.

To examine the relationship between such external be-
haviors and trait inference, we calculated correlation coeffi-
cients between behavioral indicators in Table 1 and evalua-
tion scores in Figure 4 (see Table 4) to explore the relation-
ship between external behaviors and trait inference. Table 4
presents results for each model individually and combined for
all models. Correlations involving all models showed a rela-
tionship between the round and the two curiosity indices, the
goal rate and Joyous Exploration, and the total time and De-
privation Sensitivity. These findings suggest participants per-
ceived higher intelligence in models with a higher goal rate
and associated greater curiosity with longer task persistence.

However, the overall results do not clearly differentiate
based on internal algorithms. Correlations between goal rate,
intelligence, and Joyous Exploration were only observed in
the DFS+IBL model, reflecting its diverse behaviors in this
model. In fact, Table 1 highlights a higher variance in goal
rate for the DFS+IBL model compared to others.

Conclusion
This study explored the utility of cognitive models for in-
vestigating human trait inference, representing a novel ap-
plication of such models. Participants inferred traits from
the behavior of a cognitive model implemented using ACT-
R. Results indicated that participants’ trait inferences were
primarily influenced by the model’s behavior rather than its
internal processes. Participants demonstrated heightened cu-
riosity towards models with increased rounds and longer task
durations while attributing higher intelligence to models with
higher rates of goal attainment. Interestingly, participants
tended to rate models displaying more moves and random be-
havior more favorably than those demonstrating deliberative
thinking and moderate curiosity exploration.

The tendency to value random behavior can be interpreted

from research on the perception of intelligence from random-
ness, as highlighted in the introduction (Fyfe et al., 2008).
Humans find it difficult to distinguish between random al-
gorithms and behavior based on derivative intelligence from
external behavior. Furthermore, random behavior has been
suggested to have adaptive value in contexts such as creative
thinking (Cropley, 2006; Runco & Jaeger, 2012), so attribut-
ing high intelligence to random behavior cannot be categor-
ically dismissed. Additionally, it cannot be denied that the
cultural background of the participants targeted in this study
may have influenced the results. It has been reported that
in Japanese work culture, long working hours are considered
virtuous (Ono, 2018).

Regardless of the reasons, the findings of this study align
with observations on attribution errors emphasized in social
psychology. The significance of this research lies in its uti-
lization of cognitive models for studying trait inference. With
a focus on internal processes, cognitive models offer the ad-
vantage of traceability in human inference on the model’s in-
ternal process compared to machine learning agents. Through
this analysis, cognitive models serve as tools for revealing bi-
ases in human trait inference. In the future, further advance-
ment of this approach is necessary. The main finding is that
participants associated curiosity and intelligence with models
displaying high randomness. Contrary to this main finding,
the DFS+IBL model, representing the highest level of think-
ing, demonstrated a correlation between its goal rate and per-
ceived intelligence, suggesting that individuals perceive vary-
ing intelligence levels in different runs of the same model.
This result suggests that participants found a different type of
intelligence in the DFS+IBL model compared to the random
model. Future studies are needed to understand the conditions
shaping human perceptions of such deliberative intelligence.

Moreover, to delve into the intricacies of human trait in-
ferences, enhancements in the information and environment
provided to participants are crucial. While this study in-
volved presenting model behaviors over prolonged periods, it
is unrealistic to anticipate scrutiny from participants recruited
through crowdsourcing. Hence, for humans to more effec-
tively estimate models in the future, ongoing improvements
in the tasks undertaken by the models, provision of informa-
tion regarding their internal workings, and environmental ex-
amination are necessary.
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Abstract

Language development is supported by phonological
awareness, which is related to attention to phonological
aspects of spoken language. We aim to develop a system that
supports phonological awareness formation using cognitive
models. Estimating the state of a user’s phonological
awareness is a kind of identification of the user’s “auditory
filter.” This paper reports on an experiment with typically
developed native speakers by setting up an audio filter that is
applied to the system’s output sound. The user’s phonological
awareness is estimated as a relative preference for two
computational models presented by the system. Using the
system with audio filters, we test the hypothesis that there is
a difference in participants’ selection behavior depending on
the characteristics of the model under the application of the
audio filter. The results of the experiment showed that there
was a difference in selection probability between models with
different degrees of sound confusion, with and without the
application of a specific audio filter.

Keywords: ACT-R, Cognitive modeling, Phonological
awareness, Personalized model

Introduction
Children (or second-language learners) face various
difficulties during language acquisition. A prominent
example is the segmentation of phonemes. In the early stages
of language development, children perceive speech sounds
as continuous but can gradually segment them into smaller
units (Carroll, Snowling, Stevenson, & Hulme, 2003). In
the process, sound can be segmented into various units
(symbols), such as syllables and morae. As learners advance,
they converge on a system of processing a series of units
as defined by their native language (e.g., mora in Japanese;
Kubozono, 1989).

In the fields of developmental psychology and
speech–language pathology, one of the abilities supporting
this development is phonological awareness, which involves
paying attention to phonological aspects of speech, such
as phonemes and rhythm (Stahl & Murray, 1994). Some
speech errors that occur during language development are
attributed to a poorly formed phonological awareness of that
particular language (Dynia, Bean, Justice, & Kaderavek,
2019; Kobayashi, 2018; Smith Gabig, 2010). In children
with autism spectrum disorder (ASD), an overall delay in
phoneme acquisition and a partial inability to use some
phonemes may occur (Grandin & Panek, 2013; Mugitani et
al., 2019).

Computational modeling is effective for understanding and
predicting human internal processes, such as phonological
awareness, that cannot be directly observed. Based on this
idea, a system to support the formation of phonological
awareness using computational models has been developed
(Nishikawa & Morita, 2022a, 2022b). In this study, we
evaluate a method for estimating individual phonological
awareness using computational models to realize this
long-term goal. In the experiment where participants virtually
faced difficulties in language learning, we recruited typically
developed native speakers as participants. This paper reports
the results of the experiment.

System
In a previous study (Nishikawa & Morita, 2022a), a model
of phonological awareness using the cognitive architecture
ACT-R (Anderson, 2007) was implemented. This model
maps the general memory retrieval mechanism of ACT-R to
phonological awareness and represents errors during Shiritori
to simulate immature phonological awareness.

Shiritori is a Japanese word game. This game involves
players taking turns uttering a word (noun); the word must
begin with the mora that the previous word ended with. For
example, after a player answers “ri-n-go” (meaning apple),
the next player continues with “go-ma” (meaning sesame
seeds). Specifically, the model’s memory of morae1 has a
similarity value. Shiritori errors due to “mistaking similar
sounds” can be represented as false retrievals affected by the
similarity set between morae when retrieving words cued by
morae. In addition, the model can be varied by adjusting the
parameters of ACT-R. For example, two of the parameters are
manipulated: the method of computing the similarity between
morae and the value of the coefficient P, which corresponds to
the magnitude of the effect of the similarity. These parameter
adjustments allow some models to accommodate specific
errors found in children, such as “consonant deletion” (Oishi,
2016; Grandin & Panek, 2013).

Figure 1 shows an overview of the Phonological Awareness
Formation Support System (Nishikawa & Morita, 2022b).
The system includes several variants of phonological
awareness models based on previous research. The system

1one of the units of sound. It is defined by the duration time
(Port, Dalby, & O’Dell, 1987). In the Japanese language, this is
considered the basic unit.
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Figure 1: System overview. Phonological awareness is
estimated as the user plays choice-based Shiritori. The words
are for example.

provides a “choice-based Shiritori,” where players select
appropriate words from a set of alternatives presented by
the model. Estimation of phonological awareness using the
system consists of multiple sessions of repeated choice-based
Shiritori. In each session, the system has two models to
produce alternatives. By changing the models in each session,
the system identifies a model that has the corresponding
characteristics to the user’s phonological awareness. For
example, a learner with a phonological processing difficulty,
such as consonant deletion, may be unaware of incorrect
candidates suggested by a model with characteristics similar
to his or her own.

Method
The concept for one experiment session is shown in Figure
2. Estimating the phonological awareness of a user can
be described as a task to identify the user’s auditory filter
for speech. Thus, we believe that the source of individual
differences in language learning can be attributed to personal
filters that convert physical sounds into segments, enabling
individuals to perceive units.

In examining the validity of this task setting, it is difficult
to control for the user’s filter in experiments with real users
(i.e., children and second language learners). In light of this
issue, the present study uses audio filters set by the authors.
Through an experiment with four conditions of models,
which are combinations of the two methods of computing
similarity between morae and the existence of audio filters
(with vs. without), we make the following assumption: if the
characteristics of the user’s phonological awareness match
the characteristics of the model, the user will select candidate
words that the model incorrectly presents without realizing
it. Based on this assumption, this experiment tests the
hypothesis that there is a difference in participants’ selection
behavior depending on the characteristics of the model under
the application of the audio filter, using the frequency with
which the participant selects the model as an indicator. In
this paper, we focus on the degree of sound confusion in
the model (corresponding to P in ACT-R) and the effect of
the speech filter on the selection behavior. The experimental
setup for this is described below.

Figure 2: Experimental Concept. This is an example
of a one-session of choice-based Shiritori with nonsense
words. The output of the system is filtered to simulate the
characteristics of individual phonological awareness. The
red text is a note by the author, and during the experiment,
the words are presented only as audio played by clicking on
icons.

Table 1: Experimental conditions (model and audio filter) and
number of participants

Vowel filter No filter
Concat (lax, strict) 49 47

Ave (lax, strict) 44 45

Participants
In this study, we test the identification of audio filters set by
the authors. That is, we set up an audio filter that applies
to the system’s output speech as a filter owned by the user,
and the participants are typically developed Japanese native
speakers.

Participants were recruited via the Japanese crowdsourcing
platform Lancers2. Participants who accessed the recruitment
page were distributed to one of the four conditions via the
links provided. Table 1 shows the model used, the audio
filter, and the number of participants for each experimental
condition. The model and filters are described in detail
in the following subsections. One hundred and eighty five
participants (79 females, five non-respondents, meanage =
44.2, SDage = 10.2) participated. Table 1 shows the number
of participants used in the analysis for each condition 3.

2https://www.lancers.jp
3Participants applied to a single experimental call and were

automatically distributed across the four conditions, although
missing data and the characteristics of the Lancers platform caused
the number of participants to vary. Participant data for each
condition were as follows: Concat model - Vowel filter, N = 49
(24 female, one non-respondents, meanage = 45.5, SDage = 10.1);
Concat model - No filter, N = 47 (17 female, one non-respondents,
meanage = 44.1, SDage = 10.7); Ave model - Vowel filter, N =
44 (18 female, one non-respondents, meanage = 43.0, SDage =
9.7years); Ave model - No filter, N = 45 (20 female, three
non-respondents, meanage = 44.1, SDage = 9.9).
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The model used in the experiment
Four models were used in the system throughout the
experiment. The parameters of the model were manipulated
at two levels (Concat vs. Ave) in the way the mora similarity
was calculated4 and at two levels (10 vs. 30) in the similarity
impact P. The model with Concat-type similarity is the
one whose behavior has been pointed out to be related to
consonant deletion in a previous study (Nishikawa & Morita,
2022a).

The two models, which are presented to the participants
simultaneously in each condition in the experiment, differ
only in the similarity impact P (i.e., degree of sound
confusion, which can also be described as the frequency
of proposing incorrect answer candidates5). Based on this,
we refer to a P = 10 model as a lax model and a P = 30
as a strict model. Based on this setting, we can predict
that participants will be unable to distinguish between the
behavior of two models when the characteristics of the model
and the characteristics of the audio filter match and will be
able to select a less erroneous model when the characteristics
of the model and the characteristics of the audio filter do
not match (because they can discriminate errors even in
the filtered situation). Therefore, this experiment tests the
hypothesis that errors in models that fit the filter are selected
more often.

The models in the system are assumed to have a common
vocabulary of 2,000 nonsense words generated by combining
three morae of 100 different morae6. Candidate words
proposed by the models in the choice-based Shiritori are
output from the system by playing an audio file. We prepared
audio files (mp3) of 2,000 words in the model’s vocabulary
using the text-to-speech service Amazon Polly7. In the SSML
(Speech Synthesis Markup Language) specified to create
the audio files, “x-amazon-pron-kana” was specified in the
alphabet tag, and Katakana8 in the ph tag.

Audio filter
The application of an audio filter, called vowel filter in
this paper, to the system’s output (i.e., the model’s reading
of candidate words) can be achieved by using audio files
with incorrect utterances. When creating the audio files,
adjustments are made to the correct vocabulary files to
prepare the incorrectly uttered vocabulary files. In this
experiment, we prepared error patterns in which the initials
and endings of words are replaced with vowel-only morae, to

4For details, see the previous study (Nishikawa & Morita,
2022a). When vectorizing morae for similarity calculations, there
is a difference between concatenating (Concat) or averaging (Ave)
the phonemes in a mora.

5see Nishikawa and Morita (2022a) for details. P = 10 is more
frequently incorrectly answered.

6The mora used to generate the mora excludes “N,” which cannot
exist at the beginning of a word. The frequency of morae in nonsense
words is based on their frequency of appearance in the Japanese
dictionary (Amano & Kobayashi, 2008).

7https://aws.amazon.com/de/polly/
8A kind of Japanese character.

Table 2: Example of an audio file. Words are shown in
Japanese characters. Supplementary information written in
parentheses in alphabetical characters.

Original Incorrect utterances
1 DOa (i-ku-ti) §Ø§ (i-ku-i)
2 D~Q (i-ma-ke) §fi® (i-ma-e)
3 aUh (ti-sa-to) §µ™ (i-sa-o)
· · · · · · · · ·

map them to phenomena such as consonant deletion. Table
2 shows an example of a false utterance created by this rule.
The correct and incorrectly voiced audio files are shown with
the pronunciation of the words in Japanese characters.

Preliminary analysis of results
This system assumes that when the characteristics of the
user’s phonological awareness match those of the model, the
user selects a candidate answer word that stood incorrectly
suggested by the model without realizing it. Based on this
assumption, this experiment tests the hypothesis that there
is a difference in participants’ selection behavior depending
on the characteristics of the model under the application of
the audio filter. In particular, to investigate the effect of
sound confusion of the models (strict or lax, corresponding
to P in ACT-R), the difference of the patterns of the sound
confusion (Concat or Ave), and the effect of the audio filter
on the selection behavior, we first summarize the participants’
responses by pattern and then aggregate it by these factors.

Table 3 shows the participants’ behavior patterns during
the Shiritori task. The table’s columns correspond to four
pattern categories (both models answer correctly, only one
answers correctly, only another answers correctly, and both
models answer incorrectly). Under these four patterns,
participants’ behavior can be further divided into two
categories, depending on which model is selected (rows in
the table). Each value in a cell indicates the total number
of selections the participant made in that condition. Cells
colored gray indicate cases where the participant answered
Shiritori incorrectly. Focusing on the pattern where only one
model was correct (the middle two columns of each table),
we can see that the correct model is more often chosen. This
is the same for all patterns and filter conditions.

To normalize the values in Table 3, which are influenced
by the number of participants and the number of Shiritori
continuations, we calculated the posterior probability by

P(Choicei|Pattern j) =
P(Choicei) ·P(Pattern j|Choicei)

P(Pattern j)
(1)

where Pattern j is a possible state of the system and takes
one of the four values corresponding to the column names in
Table 3. The Choicei is the participant’s choice and takes one
of two values corresponding to the row names in Table 3. For
example, P(Pattern j), the denominator of the equation 1, is
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Table 3: Classification of participant behavior

(a) Concat models–Vowel filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 2556 99 1350 156
User choose strict 2568 40 3213 210

(b) Concat models–No filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 2639 142 252 114
User choose strict 2136 16 3991 211

(c) Ave models–Vowel filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 2154 138 1964 249
User choose strict 2255 76 2568 319

(d) Ave models–No filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 2262 159 370 208
User choose strict 2164 11 3276 318

the probability obtained by dividing the sum of a column by
the total sum of the table. The calculated values are shown
in Table 4. The trends of the probabilities are consistent
with those of the frequencies (Table 3), showing the selection
tendency toward the correct answers regardless of the filter or
the model variations.

To visualize the effects of the filter and model variations,
we computed the differences in posterior probabilities
between the strict and lax models (Figure 3a) and between the
Concat and Ave models (Figure 3b). In both cases of Figure
3, positive values mean a higher probability that the models
with filtered conditions were selected, while a negative value
means a higher probability that the models with no filter
conditions were selected. That is, Figure 3a shows the values
that are subtracted from the weighted average of Tables 4a
and 4c to the weighted average of Tables 4b and 4d, while
Figure 3b compares the difference in selection probability for
each filter condition for the lax model9 between the Concat
and Ave types. Specifically, the top row of Table 4a minus the
top row of Table 4b is shown as right-hatched bars, and the
top row of Table 4c minus the top row of Table 4d is shown
as dot-hatched bars.

In every model condition (strict vs. lax / Concat vs. Ave),
we can find more biased choices in the patterns where only
one model was correct (the middle two patterns of each
figure). However, the biases are different in the different

9The Strict model selection is a complementary event to the Lax
model selection in specific patterns. The present analysis focuses on
the Lax model, which presents more wrong choices.

Table 4: Posterior probability of participant behavior

(a) Concat models–Vowel filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 0.50 0.71 0.30 0.43
User choose strict 0.50 0.29 0.70 0.57

(b) Concat models–No filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 0.55 0.90 0.06 0.35
User choose strict 0.45 0.10 0.94 0.65

(c) Ave models–Vowel filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 0.49 0.64 0.29 0.44
User choose strict 0.51 0.36 0.71 0.56

(d) Ave models–No filter condition

Lax model correct Lax model wrong

Strict model
correct

Strict model
wrong

Strict model
correct

Strict model
wrong

User choose lax 0.51 0.94 0.10 0.40
User choose strict 0.49 0.06 0.90 0.60

directions of the models. By focusing on Figure 3a, we
can find clear differences between two bars (orange and blue
bars), showing that the wrong models (the strict model in the
strict wrong/lax model in the lax wrong) have a bias toward
filtered choice (positive value), and the correct models (the
strict model in the strict correct/lax model in the lax correct)
have a bias toward no filtered choice (negative value). In
other words, the model that presented the wrong answer was
relatively well selected in the vowel filter condition, while the
model that presented the correct answer was relatively well
selected in the no filter condition. These results suggest that
the audio filter set in the study matches the lax models in the
experiment.

In contrast to the clear difference between Strict and lax
in part of Figure 3a, the difference between Concat and
Ave is difficult to discern in the comparison in Figure 3b.
The two bars in Figure 3b come s from the blue bar in
Figure 3a. Therefore, the two bars are filtered in when the
model is wrong and unfiltered when the opposite model is
wrong. Although there is a slight difference, right-hatched
bars are larger than dot bars in these patterns, indicating that
the Concat model was relatively selected in the vowel filter
condition. Previous research (Nishikawa & Morita, 2022a)
suggested a link between the Concat model and consonant
deletion and that the vowel filter was inspired by consonant
deletion, so these results are consistent with the hypothesis
and assumption of the experiment.
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(a) The difference in posterior probabilities between models in
vowel filter and no filter condition. These values are the weighted
average of Tables 4a and 4c minus the weighted average of Tables
4b and 4d.

(b) The difference in posterior probabilities between lax models in
vowel filter and no filter condition.The right-hatched bars are the top
row of Table 4a minus the top row of Table 4b, and the dot-hatched
bars are the top row of Table 4c minus the top row of Table 4d

Figure 3: Differences in posterior probabilities between
models

Conclusion
This paper presented an experiment to evaluate the feasibility
of a phonological awareness formation support system
using a personalized cognitive model, with typically
developed native speakers as participants by applying an
audio filter. Based on the hypothesis that there is a
difference in participants’ selection behavior depending on
the characteristics of the model under the application of the
audio filter, the results of the experiment showed that there
was a difference in the selection probability between strict
and lax models depending on the filter conditions. We also
found that the Concat model was more chosen when the
participants were applied by the vowel filters. These results
are consistent with the hypothesis. That is, it provides a
clue toward the realization of a method for estimating an
individual’s phonological awareness using a computational
model.

A more detailed data analysis is needed to obtain a clear
indicator that can be used as a criterion for the phonological

awareness estimation method. In this paper, we only show
that there is a difference in selection probability, but we
believe that a more detailed analysis of how the difference
appears will enable estimation based on characteristics of
the model that can be mapped to phenomena such as
consonant deletion, as pointed out in previous studies, and
will bring us closer to realizing the system. It is also
necessary to examine the audio filter settings. By creating
a filter based on the knowledge gained from research that
reproduces the characteristics of children with difficulties (the
unique perceptions of autism spectrum disorder) (Qin, Nagai,
Kumagaya, Ayaya, & Asada, 2014), it will be possible to
verify that the system corresponds more closely to real-life
difficulties. After brushing up on the system based on
the results of these experiments, we will conduct system
evaluation experiments with language learners, who are the
original target of the system.
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Abstract

The psychological literature has put forth several auto-
associative memory models of attitude formation and change.
The status of frequency effects in such models is not well un-
derstood. We compare frequency effects in auto-associative
memory models of attitudes to the well-established frequency
effects found in the ACT-R cognitive architecture. We found
striking differences between the model classes, but only under
some conditions. We discuss future directions that might stem
from this provisional work.
Keywords: attitudes, cognitive modeling, neural networks,
memory, dynamical systems

The Problem

Attitude learning is divided into two camps. In one, we have
memory processes as a central theoretical component for un-
derstanding how attitudes are formed and retrieved. These
typically concern memory for the valence towards an attitude
object. Although typically not formalized, a running debate
in the social psychological literature stems from differenti-
ating or not between simple associative learning or proposi-
tional learning in attitudes. This literature is rich in terms of
evidence on learning (see Corneille & Stahl, 2019, for exam-
ples).

In the other camp, what we will call schema-like mem-
ory models, the primary interest is in attitudinal structure
(Eagly & Chaiken, 1993). Recent work in this area uses auto-
associative memory models to represent not only structure but
also as models of attitudinal memory retrieval (e.g., Dalege et
al., 2016, 2018). In this work, sets of beliefs are transformed
from survey data into a network of associations (e.g., correla-
tions) and modeled using Hopfield-like or Ising-like models.
Learning is not well studied in such models. In its place are
notions of persuasion: under what conditions will a person
stray from their typical attitude retrieval pattern.

In short, little overlap exists between these two literatures.
We attempt a kind of reconciliation between the two by study-
ing attitude learning in the auto-associative memory case.
Much is know about learning in auto-associative memory
systems (e.g., Hopfield, 1982; Hertz et al., 1991). So, we
thought it would be useful to directly compare learning in the
auto-associative case to learning in an empirically-grounded
cognitive architecture. For our comparison, we chose the
currently prominent Causal Attitude Network (CAN) model
(from social psychology, Dalege et al. (2016, 2018)) to the

ACT-R cognitive architecture (Anderson et al., 2004). Our
comparison method, thus, affords the following features: (i) it
will ground the findings in human memory systems via ACT-
R and (ii) it addresses learning in the structural approach to
attitudes.

Design

Across two studies, we compared directly an ACT-R declar-
ative memory model to the CAN attitude model. By directly,
we mean that the input data, the model task and the analysis
methods were identical. There were some differences in com-
puted measures, but the semantics between them were close.

The Causal Attitude Network Model

The CAN model (Dalege et al., 2016; Dalege & van der Maas,
2020; Dalege et al., 2018) was motivated by the need to pro-
vide a dynamic attitude memory retrieval system that exhibits
sensitivity to cues in the social environment. Virtually all the-
oretical work on the CAN model uses fixed, predetermined
weights for its network (see below for the formal specifica-
tion of the system). The CAN model literature references
Hebbian learning as a potential candidate for learning atti-
tudes, yet there have been no studies to date that implement
learning. The heart of this theoretical work focuses on dy-
namical retrieval methods that are derived from Ising-like or
discrete Hopfield models. The technical details of how a typ-
ical CAN model is implemented are as follows–we start with
key definitions:

• There is a graph G = G(V,E) consisting of a collection of
beliefs (the set of n vertices V ) and relations between them
(the set of weighted edges E).

• The state of vertex i 2V is xi 2 Ki where Ki is the state set
for that vertex.

• For all i we have Ki 2 {0,1}

• The system state is x = (x1,x2, . . . ,xn).

• The system global energy H is defined using all i 2 V by
H(x) = �Âi2G tixi �Â j2NG(i) wi jxix j where NG(i) ⇢ V is
the set of neighbors of i in G, not including i, wi j is the
weight of the edge { j, i} and ti is the baseline parameter
for vertex i. Assume that wi j = w ji.
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• For i 2V let si : ’n

i=1 Ki �! R be the function defined by
si(x) = H(x)c �H(x)o where c and o are the current and
opposite state of vertex i.

• For each vertex i we define its vertex function as fi(x) =
1/(1+ e

�si(x)/t) where t is the temperature of the system;
this defines the probability that at any point in time a vertex
i will flip to its opposite state: P(c �! o) = fi(x).

A typical instance of CAN is a discrete-time, asynchronous
simulation. For each time step: (i) select a vertex i, (ii) com-
pute P(c �! o) = fi(x) and (iii) use P(c �! o) directly to
decide if vertex i will change its state. Another common
implementation is to draw n samples of the system state x

from the Gibbs probability distribution. This is computed
as: (i) compute the Gibbs probability distribution of all sys-
tem states xi such that each is P(x = xi) = e

�H(xi)/Z where
H(xi) =�tixi�Â j2NG(i) wi jxix j and Z = ÂX e

�H(x), (ii) sam-
ple from this distribution n times. In our CAN simulations
below, we leverage the latter.

ACT-R Declarative Memory

For this article, we develop a comparison to the CAN model
using the declarative memory module of the ACT-R cognitive
architecture implemented in the PyACTUp Python package1.

Declarative memory is a module in the ACT-R cogni-
tive architecture comprised of discrete data objects called
chunks. Each chunk contains a number l of slots which con-
tain attribute-value pairs. The attribute is the slot name and
the value is the slot content. Access to this symbolic con-
tent is controlled by a subsymbolic quantity called activation,
which reflects the characteristics of the knowledge including
its history and semantics. The activation calculus determining
declarative memory access works as follows:

• The activation A of a chunk is defined as: Ai = Bi + ei +
Pi +Si where Bi is the base level activation, ei is stochastic
noise, Pi is the partial matching correction, and Si is the
spreading activation . The latter term was not used in the
work presented here.

• The base level activation Bi is defined as: Bi = ln(Âi t
�d

i j
)

where t is the time lag since the jth reference to chunk i

and d is the time decay parameter, typically set at 0.5.

• Retrieval from memory is computed by selecting the chunk
with the highest activation value, after noise has been
added. Analytically, the probability Pi of retrieving chunk i

can be characterized by the Boltzmann (softmax) distribu-
tion as Pi = e

Ai/t/Â j e
A j/t where the sum is over all chunks

j matching the retrieval request and the temperature t is a
function of the noise parameter. This is equivalent to view-
ing the activation of a chunk as an estimate of the log odds
of retrieval need (Anderson (1990)).

1https://github.com/dfmorrison/pyactup/

• The latency Ti of a chunk retrieval is inversely proportional
to its activation as: Ti = Fe

�Ai when F is a time scaling
parameter.

Although attitudes have been modeled using ACT-R in
prior work (Orr et al., 2021; Pirolli, 2016a,b; Pirolli et al.,
2020), there exists no direct comparison to prominent models
in the social psychology literature.

Data

We generated synthetic data for both studies in this article us-
ing two bit vectors as the basis for the synthetic data. The
intent is for those vectors to represent two distinct attitudes
competing in belief space. To generate the basis bit vectors,
we used the following procedure: Take any random bit vector
of length 16 with exactly eight bits with a state of 1 as the
first pattern z1. Then, generate another pattern z2 from z1 by
flipping four of the 1 bits and four of the 0 bits. This pro-
cedure results in the two patterns z1 and z2 that are exactly
the expected Hamming distance among all possible vectors
in the configuration space of size 216. For ease of analy-
sis, we fixed z1 to 1111111100000000 and generated z2 as
1111000011110000; these were our two basis bit vectors.

We constructed five sets of data, all using the same proce-
dure. The basic unit of data was called an example, a sin-
gle 16-bit vector. We first defined five frequency ratios, each
mapping to one of the five sets of data: 50:50, 60:40, 70:30,
80:20, 90:10. The first term of each ratio referenced the num-
ber of examples of z1 in the data set; the second term did
the same for z2. Each of the five sets of data also contained
one example from the full configuration space of 216 (that
is 65,536 distinct examples define the configuration space).
Thus, each of the five data sets contained a total of 65,636
examples, 100 of which were some ratio of z1 and z2.

The CAN model assumes that each node in a Hopfield net-
work captures the endorsement or not of a belief that refer-
ences an attitude object (e.g., ’has claws’ is a belief about
cats that is either endorsed or not). We use the same abstrac-
tion in our simulations and will call each bit in the bit vector
an attitudinal belief.

Simulations

The two models (CAN and ACT-R) learned the data via a sin-
gle pass through all examples in a data set (for both Study 1
and 2). The notion, in attitude research, is that each exam-
ple is an abstraction of a social exposure to a set of beliefs
(e.g., from an acquaintance or from mass media). We will
call this the learning phase, which was identical in all condi-
tions across Studies 1 and 2 (except for the distinct frequency
distributions of each condition). We ran two separate studies.

Study 1: Frequency Effects in Free Recall. The objec-
tives of Study 1 were to understand how each of the model
types (CAN and ACT-R) represents differences in frequency
of inputs and how this affects retrieval under free-recall. For
each model type there were five conditions, one for each of
the five data sets, which determined the data that the model
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learned. Following learning, each model generated a non-
cued retrieval probability for each of the 216 bit vectors in the
full configuration space. (See the section Design for compu-
tation of these probabilities.) Due to stochasticity in retrieval
in ACT-R, we computed the set of retrieval probabilities for
each model for each condition 30 times, the average of which
was reported for the two basis patterns z1 and z2.

Study 2: Frequency Effects in Cued Recall. For Study 2,
we used the same method as for Study 1 with one exception,
cuing. In Study 2, we ran the full set of simulations used in
Study 1 two separate times, each with a different cue. The
first time used the more frequent basis pattern z1 as the cue;
the second time used the less frequent z2.
The ACT-R Model: We defined all chunks to have one slot
for each of the 16 attitudinal beliefs (16 bits in the bit pat-
tern). Each slot had two valid values, 0 and 1. For the learn-
ing procedure, the model encoded all examples in its con-
dition. The frequency of each chunk was reflected in the
data so chunks were reinforced in proportion to their fre-
quency by separate chunk encodings (i.e., each chunk was
reinforced as many times as there were examples in the data).
We used the functions pyactup.learn() to learn chunks
and pyactup.advance() to advance time. All chunks were
learned prior to advancing time and thus retrieval was not
subject to time-dependent decay across chunks. For the
simulation procedure we used the pyactup.retrieve()
function. In Study 1, all retrievals were non-cued. For
Study 2, each cue condition was realized by providing the
cue of the full pattern of interest, either z1 or z2 e.g.,
pyactup.retrieve({z1}). All parameters of the cognitive
architecture were left at their default values, i.e., the decay
rate was 0.5, the activation noise was 0.25 and the retrieval
threshold was 0.0.
The CAN Model: The Hopfield model was constructed by (i)
mapping each of the bits xi to a network node, (ii) generation
of weights wi j using Hebbian learning (Hertz et al., 1991),
(iii) assigning a baseline parameter for each xi as ti. Cuing
(or not) was controlled by the set of ti. In Study 1, all ti were
set to zero, to reflect no cuing free-recall. In Study 2, cuing
was defined as providing the following mapping: xi = 1 7�!
ti = 1 if xi = 1 was learned; else xi = 0 7�! ti =�1; the latter
condition provided a strong bias for xi = 0.

Results

Study 1: Frequency Effects in Free Recall

The primary result in Study 1, shown in Figure 1, was the
comparison between the ACT-R and CAN attitude models
under no cuing conditions. Both models responded in a way
that captured the frequency ratio between the basis patterns
z1 and z2 (note: z1 is more frequent). When the ratio was
50 : 50 the probability of recall was nearly equal between the
two basis patterns for both models. As the ratio increased,
for both models, the separation in probability of recall grew
as a function of the size of the ratio between the two basis
patterns. Two features distinguish the two models. First,

the CAN model had lower probabilities of retrieval overall.
Second, also for the CAN model, the probability of retrieval
for the less frequent basis pattern z2 was very close to zero
for any condition other than the 50 : 50 ratio. It is not clear
whether these two features of the CAN model indicate a func-
tional difference between it and the ACT-R model.

Figure 1: A comparison between the ACT-R (top panel) and
CAN (bottom panel) attitude models in the probability of re-
trieval as a function of each of five conditions of the frequency
ratio of the two basis patterns z1 and z2 (the former is 65280;
the latter is 61680) in Study 1. No cue was given in this study.
Note: z1 is more frequent.

Figure 2 provides some insight into the way the models
operate; it shows the results of a single simulation in the con-
dition 50 : 50. Both models cleanly separated the two ba-
sis patterns z1 and z2 from the other patterns. For the CAN
model, the point shown with the highest probability of re-
trieval captured the two basis patterns (this is occluded be-
cause of overlap). For ACT-R, one of the basis patterns was
clearly favored, something that was due to the stochastic na-
ture of activation noise in each chunk. Figure 3 shows results
for the 80 : 20 condition. We see that with a high frequency
ratio, both models showed strong separation of the most fre-
quent basis pattern z1. Comparing the two conditions (50 : 50
to 80 : 20) surfaces one potentially interesting difference be-
tween the two models in terms of their operation. For the
CAN model, a larger frequency ratio between the two basis
patterns significantly affected the range of the energy surface
via reducing the minimum energy of the system (it deepened
the attractor); the corresponding effect in terms of activation
in ACT-R was much more muted.
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Figure 2: The relation between energy (CAN model) or acti-
vation (ACT-R model) (x-axis) and the probability of retrieval
(y-axis) for each of the examples in the full configuration
space (216 examples). Each panel represents a simulation of
the 50 : 50 condition. Note the different scales of the y-axis
in each panel.

Figure 3: The relation between energy (CAN model) or acti-
vation (ACT-R model) (x-axis) and the probability of retrieval
(y-axis) for each of the examples in the full configuration
space (216 examples). Each panel represents a simulation of
the 80 : 20 condition. Note the different scales of the y-axis
in each panel.

In summary, the first order comparison between the ACT-
R and CAN attitude models showed functional similarity, to
a first approximation, in terms of reflecting the frequencies of
the learning environment (see Figure 1). Both models were
good at separating the two basis patterns and their respective
frequencies in terms of probability of retrieval (see Figures
2 and 3). The only notable difference, one for future study,
was that the change in the energy space with an increased fre-
quency ratio was much more significant for the CAN model
than for the ACT-R model.

Study 2

The results for Study 2 were markedly different from Study
1. Figure 4 shows the set of simulations that cued the more
frequent bit pattern z1 (we will call these Study 2a). The high-
level feature of these data is that both models operated well
under cue in the sense that under all frequency ration con-
ditions the cue was likely to be retrieved. This was to be ex-
pected because we cued the most frequent bit pattern. Further,
the behavior of the ACT-R model was completely dependent
on the cue; its behavior was the same for all five frequency
ratios. In contrast, the CAN model exhibited a strong fre-
quency effect across the frequency ratio spectrum. We will
come back to this latter point shortly.

The set of simulations (Study 2b) that cued the less fre-
quent bit pattern z2 are shown in Figure 5. The comparison
between ACT-R and CAN showed clear differences. As in
Study 2a, the ACT-R model was completely driven by the cue
and showed no effect across the frequency ratio conditions.
In other words, the partial matching term overwhelmed the
base-level activation, partly due to the large size of the fully-
specified pattern (16 slots). However, for the CAN model
we see see an interaction (of sorts) between the context of
the cue and the frequency ratio of what was learned. For
lower frequency ratios, the CAN model cued accurately but
for higher frequency ratio conditions, the frequency factor
drove the probability of retrieval. This, in fact, is the same ef-
fect we saw in Study 2a for the CAN model–the probabilities
of retrieval decreased as the frequency ratio became smaller,
conditions for which the learning context was against, in a
relative sense, the more frequent bit pattern z1.

In summary, in both Study 2a and 2b, we see a strong fre-
quency effects for the CAN model and not for the ACT-R
model under cuing conditions.

Figure 4: A comparison between the ACT-R (top panel) and
CAN (bottom panel) attitude models in the probability of re-
trieval as a function of each of five conditions of the frequency
ratio of the two basis patterns z1 and z2 (the former is 65280;
the latter is 61680) in Study 2a. The cue was the more fre-
quent pattern z1.
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Figure 5: A comparison between the ACT-R (top panel) and
CAN (bottom panel) attitude models in the probability of re-
trieval as a function of each of five conditions of the frequency
ratio of the two basis patterns z1 and z2 (the former is 65280;
the latter is 61680) in Study 2b. The cue was the less frequent
pattern z2.

Conclusions

In conclusion, the differences in the retrieval behavior of the
ACT-R and CAN attitude models were greater than the sim-
ilarities. Cued recall, a more realistic conceptualization of
the human attitude problem, showed marked differences be-
tween the two models. The ACT-R attitude model was driven
by the cue; the CAN model was driven by both cue and learn-
ing frequency, sometimes to the extent that the cue was ef-
fectively ignored. Although ignoring cues can be adaptive in
some tasks, we do not see the value in the context of atti-
tudes unless other social processes or motives were modeled
in conjunction.

To what extent does this stand as an indictment of the CAN
attitude model? On one hand, the declarative memory model
in ACT-R could be seen to serve as a kind of validation com-
parison: it represents human memory in a way that is not jus-
tifiable for the CAN model. In the CAN model’s defense, we
note that the CAN model was not developed in the context of
memory models. The CAN model was an outgrowth of what
is called the psychological networks approach, an approach
for using graph structure as an alternative measurement ap-
proach for psychological survey or clinical data.

We see our work presented here as highly provisional, a
useful first step in reconciling learning to the structural ap-
proach to attitudes. Future work should study the following
issues: (i) the degree of learning in the Hopfield network
would impact the results, yet it is not clear to what extent
or precisely how, (ii) formal mathematical analysis and com-
parison of learning and retrieval in both the ACT-R and CAN
models, (iii) evaluating the impact of different representations
in the ACT-R model, e.g., by representing each belief as a
separate chunk, (iv) whether the results generalize to partial
cueing of a subset of the full belief set, and (v) the impact
of factors such as recency if a real time learning schedule is

used.

References

Anderson, J. R. (1990). The adaptive character of thought.
Lawrence Erlbaum Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
the mind. Psychological review, 111(4), 1036.

Corneille, O., & Stahl, C. (2019). Associative attitude learn-
ing: A closer look at evidence and how it relates to attitude
models. Personality and Social Psychology Review, 23(2),
161–189.

Dalege, J., Borsboom, D., van Harreveld, F., van den Berg,
H., Conner, M., & van der Maas, H. L. (2016). Toward
a formalized account of attitudes: The causal attitude net-
work (can) model. Psychological review, 123(1), 2.

Dalege, J., Borsboom, D., van Harreveld, F., & van der
Maas, H. L. J. (2018, Oct). The attitudinal entropy
(ae) framework as a general theory of individual atti-
tudes. Psychological Inquiry, 29(4), 175–193. doi:
10.1080/1047840X.2018.1537246

Dalege, J., & van der Maas, H. L. J. (2020, Nov). Accurate by
being noisy: A formal network model of implicit measures
of attitudes. Social Cognition, 38(Supplement), s26–s41.
doi: 10.1521/soco.2020.38.supp.s26

Eagly, A., & Chaiken, S. (1993). The psychology of attitudes.
Orlando, FL: Harcourt Brace Jovanovich.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to

the theory of neural computation. Addison-Wesley.
Hopfield, J. J. (1982). Neural networks and physical systems

with emergent collective computational abilities. Proceed-

ings of the National Academy of Sciences, 79, 2554–2558.
Orr, M., Stocco, A., Lebiere, C., & Morrison, D. (2021).

Attitudinal polarization on social networks: A cognitive
architecture perspective. In Proceedings of the 19th inter-

national conference on cognitive modelling.

Pirolli, P. (2016a). A computational cognitive model of self-
efficacy and daily adherence in mhealth. Translational be-

havioral medicine, 6(4), 496–508.
Pirolli, P. (2016b). From good intentions to healthy habits:

Towards integrated computational models of goal striving
and habit formation. In 2016 38th annual international

conference of the ieee engineering in medicine and biology

society (embc) (pp. 181–185).
Pirolli, P., Bhatia, A., Mitsopoulos, K., Lebiere, C., & Orr, M.

(2020). Cognitive modeling for computational epidemiol-
ogy. In 2020 international conference on social comput-

ing, behavioral-cultural modeling & prediction and behav-

ior representation in modeling and simulation (spb-brims

2020).

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

124



Predicting Learning and Retention in a Complex Task

David Peebles (d.peebles@hud.ac.uk)

Department of Psychology, University of Huddersfield,
Queensgate, Huddersfield, HD1 3DH, UK

Abstract

This paper reports an experiment investigating learning and re-
tention in a complex task over multiple sessions across an ex-
tended period of time. The primary aim of the experiment is to
evaluate the Predictive Performance Equation (PPE: Jastrzem-
bski & Gluck, 2009) a model of learning and forgetting that
predicts retention based on past performance. The second aim
is to test a taxonomy for knowledge, skills and attitudes and a
competence retention analysis technique developed to improve
competence retention in military training (Cahillane, Launch-
bury, MacLean, & Webb, 2013). Participants were trained over
16 weeks on the Multi-Attribute Task Battery (MATB: Com-
stock Jr & Arnegard, 1992), a computer-based task analogous
to piloting an aircraft. The study reveals significant variation
in learning profiles for the MATB subtasks and demonstrates
the PPE’s ability to make accurate predictions of human per-
formance over intervals ranging from 27 to 111 days.
Keywords: MATB; Predictive Performance Equation

Competence retention and training

Many military personnel are required to maintain high levels
of task knowledge and skill performance and so are subjected
to regimes of regular testing and refresher training to combat
the effects of skill fade. The schedule of retraining is typi-
cally not determined on an individual basis but is standard-
ised (e.g., calendar-based) and the acceptable threshold crite-
rion is either a general numerical measure such as the number
of training hours completed or a qualitative “pass/fail” score.
However, because there are substantial differences in peo-
ple’s ability to learn and retain information, it may be the case
that two individuals with the same training schedules perform
(possibly safety or mission critical) tasks at very different lev-
els of effectiveness.

To complicate matters, there is strong evidence from the
psychological literature that knowledge and different types
of skills decay at different rates (e.g., Wisher, Sabol, & El-
lis, 1999; Stothard & Nicholson, 2001). Together, these two
factors suggest that a more efficient and productive approach
to training and skill maintenance would be to derive per-
sonalised training schedules through detailed analysis of the
knowledge, skills and attitudes involved in the task and from
each individual’s learning and retention profile.

This paper describes an experimental study that aims to in-
vestigate and integrate two approaches to the understanding
and improvement of competence retention and the personal-
isation of learning for Defence. The first involves the appli-
cation of a model of learning and retention called the Pre-

dictive Performance Equation (PPE)—to create personalised
training schedules based on predicted memory retrieval fail-
ure (Jastrzembski & Gluck, 2009). The second approach re-
lates to research conducted by the UK Defence Science and

Technology Laboratory (Dstl) to develop a set of principles
for improving competence retention in military training, to-
gether with a competence retention analysis (CRA) technique
to support competence retention through training (Cahillane
et al., 2013). The paper will proceed by first describing the
two strands of research, then outlining the details of the ex-
periment, and finally discussing some of the key results, im-
plications and limitations of the study.

The Predictive Performance Equation

The acquisition and retention of knowledge are influenced by
three primary factors: the amount of practice (the frequency
effect), the amount of time elapsed since the last practice
session (the recency effect), and the temporal distribution of
practice (the spacing effect). The spacing effect is less intu-
itive than the others but is a ubiquitous occurrence in learn-
ing in which practice sessions which are more widely dis-
tributed over time result in better retention compared to iden-
tical training sessions scheduled closer together. The ben-
eficial effect of increasing the study interval works only up
to a certain point; intervals beyond a certain threshold di-
minish final retention (Benjamin & Tullis, 2010), but it has
been argued that informed use of the spacing effect can have
significant positive implications for education and training
(Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012).

The PPE characterises the combined effects of recency, fre-
quency and spacing on retention and subsequent task perfor-
mance (Jastrzembski & Gluck, 2009; Walsh, Gluck, Gunzel-
mann, Jastrzembski, & Krusmark, 2018). When calibrated
to individual task performance data gathered over a series of
sessions, the PPE is able to account not only for existing per-
formance data but is also able to make precise, quantitative
predictions of an individual’s performance at later points in
time, sometimes many months into the future (Jastrzembski
et al., 2017). It does so by calculating the expected stability
of knowledge and skills on the basis of the previous train-
ing history and using this measure to predict the expected re-
tention of knowledge and skills across periods of non-use or
further practice (Jastrzembski, Portrey, Schreiber, & Gluck,
2013). The PPE is able to provide an accurate estimate of the
time when performance has declined to such an extent that
refresher training is required.

A key premise of the PPE is that learning new information
creates traces in Long-Term Memory (LTM) and that each
trace has a degree of activation, which determines the proba-
bility that it can be subsequently retrieved and the speed with
which that retrieval will be accomplished. The mechanism of
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activation to explain the effect of elapsed time and practice
on task performance. According to this account, LTM traces
vary in their base level of activation (often referred to as the
“strength” of the trace) depending on how frequently or re-
cently they have been used and a trace’s strength determines
its general availability. The strength of a trace changes grad-
ually; it decays over time but can be progressively increased
by repeated practice. The availability of a memory trace is
what affects performance.

The PPE equation (Equation 1) predicts the activation of a
memory trace, which is subsequently converted to a perfor-
mance prediction.

Mn = (N +a)c ·T�d (1)

The PPE assumes that performance increases as a power
function (with learning rate c) of the number of practice
episodes N, decreases as a power function (with decay rate
d) of elapsed time (in seconds) since the episodes occurred
T , and that the effects of practice and elapsed time are mul-
tiplicative in nature (although, as described above, this effect
is on the activation, M of a memory trace, n rather than on
performance directly). Finally the a parameter represents an
individual’s prior experience in the task, adding to the number
of practice episodes to increase ease of activation.

In order to incorporate the spacing effect into the equation,
a conception of time is introduced in which T is computed
as the sum of the time (ti represents the time of encounter
i) since each of the previous study or practice events, each
weighted, wi so that the most recent events are given extra
prominence—the older an encounter the smaller the contri-
bution of that encounter to the total time.

T =
n�1

Â
i=1

wi · ti (2)

Weight is an exponential decay function of time accord-
ing to Equation 3. In this equation, shorter time distances
(i.e., more recent encounters with the material) are weighted
more heavily, with the x parameter determining the degree of
prominence given to shorter time delays. The x parameter is
typically set to 0.6 as this provides a good fit to data in many
studies.

wi =
t
�x

i

Ân

j=1 t
�x

j

(3)

Equation 4 determines the rate of decay, d for memory
traces and is defined to capture the spacing effect in which
longer delays between practice episodes result in a reduc-
tion in decay rate—and as a consequence produce more sta-
ble knowledge (Jastrzembski & Gluck, 2009; Walsh, Gluck,
Gunzelmann, Jastrzembski, Krusmark, Myung, et al., 2018).

As the interval between study and test increases, the lower
decay rate associated with spaced versus massed repetitions
enhances retention. To capture this effect, the function in-
corporates the history of lags (i.e., time differences) between

successive events and is a linear function of the average of
one over the sum of the natural logarithm of the lags. In this
equation, b and m are parameters that determine the decay
intercept and slope of the function and correspond to an in-
dividual’s overall level of forgetting and their susceptibility
to the spacing effect respectively. When lags are long, the
value inside the brackets approaches zero, reducing decay to
the asymptotic value determined by the b parameter. In con-
trast, when the lags are short the value inside the brackets
approaches one, increasing decay.

dn = b+m ·
 

1
n�1

·
n�1

Â
j=1

1
log(lag j + e)

!
(4)

Finally, the level of activation, Mn, computed in Equation
1 is transformed into a continuous response value that repre-
sents performance, Pn according to Equation 5. Performance
is a logistic (sigmoid) function of activation with range [0,1]
where the t parameter determines the sigmoid’s midpoint and
the s parameter determines the logistic growth rate (i.e., the
steepness of the curve).

Pn =
1

1+ exp
� t�Mn

s

� (5)

The PPE has been tested in several studies to determine
its ability to predict skill fade and when individuals need to
return for retraining on critical tasks (Jastrzembski, Gluck, &
Rodgers, 2009; Jastrzembski et al., 2013; Gluck et al., 2019;
Jastrzembski et al., 2017) and the results so far indicate that
the PPE is able to track and predict performance accurately
at the individual learner level over timescales ranging from
seconds to months.

Competence Retention Analysis

Competence retention analysis (Cahillane et al., 2013) is a
novel approach developed by the UK Ministry of Defence
(MoD) aimed at formulating a set of generic principles and
guidance for the optimisation of competence retention in mil-
itary training. To achieve this, a new classification of the
knowledge, skills and attitudes (KSA) was developed that
was consistent with the current psychological literature on
mechanisms underlying competence retention and their dif-
ferential rates of decay.

The primary aim of the CRA is to be a framework grounded
in psychological evidence that can provide generic advice and
guidance for training designers. Once tasks have been anal-
ysed in terms of their cognitive components, designers can
consult the CRA to determine the likely retention profiles for
the individual components and the task as a whole and then
plan refresher training schedules accordingly.

The CRA is based on a three-level categorisation of reten-
tion, defined on a criterion value of 50% competence after a
given period of time since the last training session. Accord-
ing to this classification, a “high” level of retention is greater
than 50% competent after 12 months non-practice, a “moder-
ate” level is 50% competent after 5 months non-practice, and

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

126



a “low” level of retention is 50% competent after two months
non-practice.

In addition, the relationship between psychological com-
ponents and retention categories can be moderated by the
frequency with which they are applied when performing a
given task. The CRA defines three frequency levels: “very
frequent” (more than once every two months), “moderately
frequent” (between once every two months and once every
five months), and “infrequent” (once in a period greater than
five months). The resulting taxonomy consists of a knowl-
edge domain and four types of skill:

• Explicit knowledge. Knowledge required to conduct a
task, such as facts, concepts and theories. Retention: High,
Frequency: Infrequent.

• Continuous psychomotor skills. Tasks requiring the abil-
ity to perform well-trained and practiced motor actions that
do not have distinct beginnings or endings (e.g., driving,
flying an aircraft and target tracking). Retention: High,
Frequency: High/Moderate.

• Discrete psychomotor skills. Physical tasks with dis-
crete beginnings and endings that rely on both procedural
and perceptual motor skills (e.g., disassembling a weapon
or other weapon handling tasks). Retention: High, Fre-
quency: High/Moderate.

• Procedural skills. Tasks requiring working memory to re-
member a sequence of steps and their order nature (e.g., us-
ing a Battlefield Information Management System (BIMS)
to create map overlays (Cahillane & Morin, 2012)). Reten-
tion: Low, Frequency: High/Moderate/Infrequent.

• Decision making skills. Tasks involving the application
of cognitive processes such as, judgement, problem solv-
ing and analysis in order for an individual to arrive at a de-
cision (e.g., troubleshooting faulty equipment). Retention:
Moderate, Frequency: Infrequent.

Experiment

To reiterate, the experiment has two aims. The first is to deter-
mine whether the retention profiles of individuals engaged in
a complex task can be captured by the PPE to allow accurate
prediction of future performance. The second is to investi-
gate the learning and retention profiles of tasks involving the
different psychological domains identified by the CRA.

To achieve both aims, the task selected for the experiment
was the Air Force Multi-Attribute Task Battery (AF-MATB;
Comstock Jr & Arnegard, 1992; Miller, Schmidt, Estepp,
Bowers, & Davis, 2014). MATB is a computer-based interac-
tive multitasking environment consisting of a set of four sub-
tasks designed to be analogous to those performed during air-
craft piloting. It has been widely used to study the effects of
various factors (e.g., automation, priorities, instructions, task
difficulty, etc.) on a range of behavioural measures, includ-
ing multitasking, attention management, vigilance, decision

making, ocular behaviour, prospective memory and subjec-
tive mental workload. Crucially for this study, MATB is rele-
vant to Defence and consists of multiple components involv-
ing different skill domains where performance can be quanti-
tatively measured. In addition, it has been demonstrated that
people learn and improve over time during the task (e.g., Fair-
clough, Venables, & Tattersall, 2005; Kee et al., 2019).

Figure 1: The AF-MATB task interface.

A detailed description of the AF-MATB can be found in
Miller et al. (2014) but to summarise, the display consists of
four task windows and two information windows (shown in
Figure 1). The four tasks and their performance measures are:

• System monitoring (SYSMON). Participants monitor
gauges and warning lights and must respond to changes by
pressing an appropriate key within a time interval. Perfor-
mance is measured as the proportion of correct responses.

• Tracking (TRACK). Participants must use a joystick to
keep a randomly moving cursor inside a target area. Per-
formance is measured as the root mean square deviation
(RMSD) distance between the central crosshair and target.

• Communication (COMM). Participants must respond to
specific auditory messages by adjusting radio and fre-
quency values based on the message. Performance is mea-
sured as the proportion of correct adjustments.

• Resource management (RESMAN). Participants must
maintain the fuel tank levels within target ranges by turning
on or off a set of pumps. Performance is measured as the
root mean square deviation (RMSD) between actual and
target fuel levels.

For the purposes of this study, three of the subtasks were
associated with CRA skill domains: the TRACK task with the
continuous psychomotor (high retention) domain, the RES-
MAN task with the decision making (moderate retention) do-
main, and the COMM task with the procedural (low retention)
domain. To the extent that these subtasks require the use of
a particular CRA cognitive domain, it is expected that their
retention profiles will differ. Specifically, the TRACK task
should be retained better than the RESMAN task which in
turn should be retained better than the COMM task.
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(a) COMM (CM-P) (b) RESMAN (RM-P) (c) TRACK (TR-P)

(d) SYSMON Gauge (SG-P) (e) SYSMON Light (SL-P) (f) Performance ranges

Figure 2: 2a–2e: Learning profiles for the three training schedule conditions over the four training sessions. 2f: Range of
performance (P) and task completion times (RT) values for each subtask. Error bars indicate standard deviation.

Participants and materials

Participants were 27 staff, faculty and students from the Uni-
versity of Huddersfield. All participants were 18 years old
or over, had normal or corrected to normal eyesight, and
were paid £10 per session. The experiment was conducted
on PCs running Microsoft Windows 10 with 24-inch displays
at 1080p resolution. Participants interacted through the com-
puter keyboard and a Logitech G Extreme 3D PRO joystick.

Design and procedure

The experiment lasted 16 weeks and consisted of four train-
ing sessions followed by two assessment sessions1. There
were three training schedule conditions. Participants in the
“massed” condition (9 in total) attended once a day for 4 con-
secutive days in Week 4. Participants in the “spaced” condi-
tion (8 in total) attended once a week (on the same day) for 4
consecutive weeks, while participants in the “mixed” condi-
tion (10 in total) attended twice a week for 2 alternate weeks.

For all conditions, the fifth and sixth testing sessions were
approximately 42 days (Week 10) and 84 days (Week 16)
after the last training session. The aim of creating differ-
ent scheduling conditions was to provide variation in training
spacing as this is a key determinant of the PPE model’s pre-
dictions. Because the spacing effect is a very well-established
result however (e.g., Latimier, Peyre, & Ramus, 2021), this

1The study was preregistered with the Open Science Framework
(osf.io/uc4fy) and was approved by the Research Ethics Commit-
tees of the Ministry of Defence and the University of Huddersfield
School of Human and Health Sciences

experiment was not designed to include statistical analysis of
any effects of spacing on human performance.

MATB event schedules were created to define three 10-
minute trials which were different in terms of their event
scheduling but equal in difficulty (i.e., number of events and
the degree of multitasking required to process them). The
trials were designed to be challenging to enable continued
performance improvements over the sessions and minimise
the likelihood of performance reaching ceiling. A previ-
ous MATB study of learning found that sustained learning
was only observed in trials where the task demand was high
(Fairclough et al., 2005).

Before the first session, participants were introduced to the
MATB task via a video which explained the four subtasks and
how to interact with the software. Training and assessment
sessions consisted of three 10-minute trials (in random order)
separated by rest intervals of up to 5 minutes. After each
trial, the experimenter would restart the software and ensure
that participants had a break and were ready to continue.

Results

Space limitations preclude a full account of the analyses here
but further details and data are provided on the study’s OSF
web page. The sections below will first describe the results of
applying the PPE to predicting individual performance in the
two test sessions and then report the learning profiles for the
MATB subtasks over the four learning sessions.

PPE predictions of human performance While it is pos-
sible to apply the PPE to predict performance on the individ-
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Table 1: Comparison between human performance and model predictions, sessions 5 and 6

Session 5 Session 6
P Schedule Human Model R

2 RMSE Days 4-5 Diff Human Model R
2 RMSE Days 5-6 Diff

1 Mixed 0.654 0.644 0.931 0.024 42 -0.031 0.627 0.618 0.881 0.031 42 0.016
2 Mixed 0.620 0.581 0.887 0.032 42 0.003 0.623 0.580 0.857 0.036 42 -0.022
3 Mixed 0.645 0.636 0.155 0.034 43 -0.059 0.583 0.601 0.010 0.052 48 -0.071
4 Mixed 0.568 0.589 0.518 0.026 42 0.004 0.583 0.589 0.428 0.028 42 -0.011
5 Mixed 0.613 0.672 0.959 0.019 42 0.117 0.624 0.662 0.938 0.023 43 0.100
6 Mixed 0.856 0.846 0.949 0.008 63 -0.036 0.855 0.844 0.895 0.012 28 0.000
7 Spaced 0.553 0.610 0.920 0.025 42 0.084 0.545 0.585 0.842 0.030 42 0.015
8 Spaced 0.495 0.620 0.923 0.017 42 0.080 0.543 0.553 0.695 0.031 42 0.018
9 Mixed 0.673 0.735 0.932 0.019 42 0.035 0.694 0.702 0.822 0.028 41 0.007

10 Mixed 0.702 0.695 0.949 0.021 41 -0.037 0.693 0.688 0.934 0.023 43 0.024
11 Mixed 0.754 0.751 0.863 0.016 41 -0.026 0.760 0.734 0.720 0.021 43 -0.051
12 Spaced 0.729 0.731 0.918 0.025 56 -0.002 0.746 0.712 0.847 0.034 27 -0.014
13 Spaced 0.772 0.809 0.844 0.016 42 0.028 0.781 0.788 0.724 0.020 42 0.028
14 Mixed 0.719 0.728 0.911 0.020 41 0.071 0.778 0.721 0.887 0.022 43 -0.031
15 Spaced 0.761 0.769 0.970 0.014 42 0.026 0.757 0.761 0.943 0.019 42 0.030
16 Spaced 0.797 0.777 0.954 0.014 42 0.007 0.749 0.769 0.913 0.019 42 0.033
17 Spaced 0.820 0.746 0.512 0.026 42 -0.111 0.786 0.752 0.431 0.031 42 -0.022
18 Spaced 0.552 0.576 0.855 0.027 42 0.003 0.551 0.568 0.823 0.030 42 0.036
19 Massed 0.756 0.732 0.877 0.021 50 -0.043 0.708 0.728 0.857 0.022 41 0.041
20 Massed 0.786 0.784 0.623 0.020 42 0.026 0.790 0.787 0.648 0.020 42 0.026
21 Massed 0.679 0.775 0.896 0.025 42 0.087 0.734 0.711 0.740 0.036 42 -0.036
22 Massed 0.783 0.803 0.946 0.017 49 0.008 0.778 0.775 0.916 0.020 35 0.005
23 Massed 0.605 0.666 0.899 0.027 47 0.044 0.615 0.616 0.846 0.032 37 0.012
24 Massed 0.784 0.803 0.738 0.011 42 0.007 0.809 0.794 0.723 0.011 42 0.000
25 Massed 0.748 0.769 0.834 0.026 42 0.041 0.729 0.750 0.817 0.026 42 0.063
26 Massed 0.785 0.811 0.693 0.015 42 0.027 0.791 0.806 0.664 0.016 35 0.051
27 Massed 0.771 0.787 0.935 0.015 35 0.004 0.756 0.743 0.838 0.023 111 0.002

Mean 0.703 0.720 0.829 0.021 43.7 0.013 0.703 0.701 0.764 0.026 43.1 0.009
StDev 0.095 0.080 0.186 0.006 5.4 0.050 0.091 0.084 0.202 0.009 14.3 0.036

ual MATB subtasks, for this study the subtask measures were
transformed onto a common scale and then averaged for each
participant to create a single, global MATB score.

The PPE’s predictions were tested on sessions 5 and 6, ap-
proximately 43 and 86 days respectively after a participant’s
fourth training session. For each test, the model was fitted to
the individual’s performance data from the previous sessions
by adjusting five free parameters: b and m, representing the
intercept and slope of the decay function (Equation 4) respec-
tively, t and s which determine the intercept and slope of the
activation transformation function (Equation 5) respectively,
and a representing an individual’s prior experience (Equation
1). The fitted model was then used to predict performance at
the date and time of the first trial of the test session.

Table 1 displays the results of the modelling, showing par-
ticipants’ performance, model predictions, and the difference
in participants’ performance from the last trial of the previ-
ous session and the first trial of the current session. Partici-
pants’ performance varies widely in both sessions (e.g., com-
pare participants 6 and 8) but there was typically little change
in performance between sessions, despite a mean interval of
approximately 43 days, indicating that, in general, retention
remained stable. With a few notable exceptions (e.g., partic-
ipants 3 and 17 who showed little decay in performance or,
somewhat counterintuitively, performance improvements, af-
ter time delays), the PPE was able to provide a close fit to the
data and make accurate predictions beyond the training set.
Subtask learning profiles Figure 2 shows the learning pro-
files for the MATB subtasks over the 12 trials of the four

learning sessions. All performance measures are scaled to
the range [0,1] to allow comparison. Figure 2f depicts the
range of performance scores and task completion times pro-
duced by each schedule condition for the different subtasks.
For example, the low performance range for the TRACK task
reflects the relatively shallow learning curves, in contrast to
the much greater changes found in the SYSMON gauge task.

Although the relatively small number of participants limits
comparison of the schedule conditions, interesting features
can seen in the individual subtask data for all three. First,
there was a general level of consistency in performance be-
tween the three training schedules, not only in the ranges of
values produced but also in the performance profiles across
the training phase. Performance differences were also evi-
dent in the four subtasks. For example, participants in all
three conditions quickly achieved and maintained very high
levels of accuracy in the COMM task, whereas in the RES-
MAN task, performance increased more gradually by approx-
imately 30% to 40% during the course of training.

These differences are likely due to the nature of the inter-
actions required. For example, the time constraints of the
COMM task demand immediate attention and a rapid se-
quence of actions to encode, retain, and then enter informa-
tion into the system, a task that participants cannot complete
much faster than 4.5 seconds. Performance improvements
in the other subtasks are likely to be due to, amongst other
things, the refinement of local and global strategies, for ex-
ample revising priorities when balancing different resources
in the RESMAN task and more efficiently allocating attention
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when managing competing demands from subtasks.

Discussion

This experiment has generated a rich dataset of individual
learning and forgetting in a complex task involving multiple
sub-tasks which is yet to be fully analysed. The main anal-
ysis reported here however provides additional support for
the PPE by demonstrating its ability to predict performance
accurately over retention intervals ranging from 27 to 111
days. While the limited number of participants precludes rig-
orous statistical analysis of the training schedule conditions,
the different subtask learning profiles do provide valuable ini-
tial pointers for further investigation. While the pattern of
differences in learning are not consistent with the classifi-
cation provided by the CRA, additional analysis of the data
from sessions 5 and 6, combined with a detailed task analy-
sis, may provide further insight into differences in retention
over longer intervals.

Acknowledgments

This work was funded by the Defence Science and Tech-
nology Laboratory (Dstl) on behalf of Ministry of Defence
(MOD). The author would like to acknowledge the sup-
port and contributions of Dstl, the Human Social Science
Research Capability (HSSRC), MOD Stakeholders, partici-
pants in the experiment and Tiffany Jastrzembski and Michael
Krusmark for their help and advice in developing the model.

References

Benjamin, A. S., & Tullis, J. (2010). What makes distributed
practice effective? Cognitive Psychology, 61(3), 228–247.

Cahillane, M. A., Launchbury, C., MacLean, P., & Webb,
S. (2013). Competence retention (Tech. Rep. No. DHC-
STC_12_T_T2_001_1.1/005 V5.0). Defence Science and
Technology Laboratory.

Cahillane, M. A., & Morin, C. (2012). Skills retention in
a complex battlefield management system: A pilot study.
Journal of Battlefield Technology, 15(1), 65.

Carpenter, S. K., Cepeda, N. J., Rohrer, D., Kang, S. H. K., &
Pashler, H. (2012). Using spacing to enhance diverse forms
of learning: Review of recent research and implications for
instruction. Educational Psychology Review, 24(3), 369–
378.

Comstock Jr, J. R., & Arnegard, R. J. (1992). The multi-

attribute task battery for human operator workload and

strategic behavior research (Tech. Rep. No. NASA-TM-
104174). National Aeronautics and Space Administration.

Fairclough, S. H., Venables, L., & Tattersall, A. (2005). The
influence of task demand and learning on the psychophysi-
ological response. International Journal of Psychophysiol-

ogy, 56(2), 171–184.
Gluck, K. A., Collins, M., Krusmark, M., Sense, F., Maaß,

S., & van Rijn, H. (2019). Predicting performance in car-
diopulmonary resuscitation. In Proceedings of the 17th

international conference on cognitive modelling. ICCM

2019. Montreal, Canada.

Jastrzembski, T. S., & Gluck, K. A. (2009). A formal com-
parison of model variants for performance prediction. In
A. Howes, D. Peebles, & R. P. Cooper (Eds.), Proceedings

of the 9th international conference on cognitive modeling.

Manchester, UK.
Jastrzembski, T. S., Gluck, K. A., & Rodgers, S. M. (2009).

The predictive performance optimizer: An adaptive analy-
sis cognitive tool for performance prediction. In Proceed-

ings of the human factors and ergonomics society annual

meeting (Vol. 53, pp. 1642–1646).
Jastrzembski, T. S., Portrey, A. M., Schreiber, B. T., & Gluck,

K. A. (2013). Improving military readiness: Evaluation
and prediction of performance to optimize training effec-
tiveness. In W. Arthur, Jr., E. A. Day, W. Bennett, Jr., &
A. M. Portrey (Eds.), Individual and team skill decay (pp.
177–199). Routledge.

Jastrzembski, T. S., Walsh, M. M., Krusmark, M., Kardong-
Edgren, S., Oermann, M., Dufour, K., . . . Stefanidis, D.
(2017). Personalizing training to acquire and sustain com-
petence through use of a cognitive model. In D. Schmorrow
& C. Fidopiastis (Eds.), Augmented cognition. Enhancing

cognition and behavior in complex human environments.

AC 2017 (Vol. 10285). Springer.
Kee, T., Weiyan, C., Blasiak, A., Wang, P., Chong, J. K.,

Chen, J., . . . Asplund, C. L. (2019). Harnessing CU-
RATE.AI as a digital therapeutics platform by identifying
N-of-1 learning trajectory profiles. Advanced Therapeutics,
2(9), 1900023.

Latimier, A., Peyre, H., & Ramus, F. (2021). A meta-
analytic review of the benefit of spacing out retrieval prac-
tice episodes on retention. Educational Psychology Review,
33, 959–987.

Miller, W. D., Schmidt, K. D., Estepp, J. R., Bowers, M.,
& Davis, I. (2014). An updated version of the US Air

Force multi-attribute task battery (AF-MATB) (Tech. Rep.
No. AFRL-RH-WP-SR-2014-0001). Air Force Research
Laboratory.

Stothard, C., & Nicholson, R. (2001). Skill acquisition and

retention in training: DSTO support to the army ammuni-

tion study (Tech. Rep. No. DSTO-CR-0218). Electronics
and Surveillance Research Laboratory, Defence Science &
Technology Organisation.

Walsh, M. M., Gluck, K. A., Gunzelmann, G., Jastrzemb-
ski, T., Krusmark, M., Myung, J. I., . . . Zhou, R. (2018).
Mechanisms underlying the spacing effect in learning: A
comparison of three computational models. Journal of Ex-

perimental Psychology: General, 147(9), 1325–1348.
Walsh, M. M., Gluck, K. A., Gunzelmann, G., Jastrzembski,

T. S., & Krusmark, M. (2018). Evaluating the theoretic
adequacy and applied potential of computational models of
the spacing effect. Cognitive Science, 42, 644–691.

Wisher, R. A., Sabol, M. A., & Ellis, J. A. (1999). Staying

sharp: Retention of military knowledge and skills (Tech.
Rep. No. 39). US Army Research Institute for the Behav-
ioral and Social Sciences.

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

130



How to Match Cognitive Model Predictions with EEG data

Kai Preuss (preuss at tu-berlin.de)

Cognitive Modelling in Dynamic Human-Machine Systems, Technische Universität Berlin, Marchstraße 23, 12051 Berlin

Christopher Hilton (c.hilton at tu-berlin.de)

Klaus Gramann (klaus.gramann at tu-berlin.de)

Biological Psychology and Neuroergonomics, Technische Universität Berlin, Fasanenstraße 1, 10623 Berlin

Nele Russwinkel (nele.russwinkel at uni-luebeck.de)

Institute of Information Systems, Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck

Abstract

Reliably identifying relevant brain areas implicated by the
simulated activity from cognitive models is still an unsolved
problem for cognitive modeling, particularly when match-
ing model output with human electroencephalography (EEG)
data. We propose a new method involving post-processing
of ACT-R module activity and clustered EEG component ac-
tivity, and performing generalized least squares (GLS) analy-
sis to find matching patterns between predicted and observed
data, thereby inferring neural substrates of distinct cognitive
processes. This approach holds several advantages over other
methods by controlling for autocorrelation and unequal vari-
ances. To exemplify its application, we used a cognitive model
and EEG data from a mental spatial transformation study to
show how this method finds areas involved in representational
and transformational spatial processing. Parietal areas in-
volved with spatial activity were identified, in line with prior
studies on spatial cognition. In addition, previously estab-
lished associations between ACT-R and brain areas were con-
firmed. Finally, we discuss limitations and possibilities of the
approach.
Keywords: Electroencephalography; cognitive modeling; in-
dependent component analysis; generalized least squares;
mental spatial transformation

Introduction

Simulating the activation strength of specific, functional ar-
eas of the human brain constitutes a complex problem. Bi-
ologically plausible cognitive architectures, such as ACT-R
(Anderson et al., 2004), facilitate the creation of cognitive
models that can produce differentiated activity during prob-
lem solving, which can in turn be related to functional brain
areas. Establishing associations between simulations of cog-
nitive processing and neural activity opens up a wide spec-
trum of possibilities, including further refinement of cogni-
tive models to improve predictability and accuracy, assign-
ing functional interpretability to neural substrates, and dis-
ambiguation of higher-order cognitive functions.

In the case of ACT-R, cognition is simulated by so-called
modules, which independently process symbolic information
and interact through a procedural production choice system.
Module activity produced in ACT-R therefore lends itself to
comparisons with neuroimaging data. These comparisons
are usually performed on pre-selected neural substrates from
fMRI data (e.g., Anderson et al., 2008; Borst & Anderson,
2017). Matching modeled predictions with recorded EEG
data in a data-driven manner is rarely done, and no estab-
lished methodology seems to be agreed upon. Exploratory

search for EEG correlates of model output is a compelling
possibility, as complex tasks may rely on higher-order cog-
nition that might not be reproduced sufficiently by estab-
lished cognitive processes only, and may require high tempo-
ral resolution to allow for its analysis. High task complexity
can impede the application of prior knowledge or hypothe-
ses about involved neural substrates, at which point an EEG-
based, data-driven approach could deliver insight.

Only a few methods have so far been proposed for as-
sociating cognitive model output to areas of EEG activity.
Canonical correlation was used by van Vugt (2012) to relate
the time series of four ACT-R modules during an attentional
blink task to EEG activity in six different frequency bands,
which produced topography maps for model activity corre-
lates. An early outline by Prezenski and Russwinkel (2016)
suggested the use of cross-correlation for model-human data
comparison. Still, these methods are not perfect: Anderson et
al. (2008) outlined the difficulty of model-brain comparisons
for complex cognition tasks, with difficulty of model-fit as-
sessment, temporal variability between datasets and neglect
of autoregression inherent in time series highlighted as the
main problems. The authors suggest to mitigate these issues
by minimizing the squared deviation between observed and
predicted data, using event-locked data, and controlling for
autocorrelation of predictions errors, respectively.

Generalized least squares regression (Lawson & Hanson,
1995) has proven to be a promising variant of linear models
for brain activity analysis (e.g., Katanoda et al., 2002; Sato
et al., 2006). It allows for the definition of data-specific cor-
relation structures, which control for autocorrelation of the
predictors, and variance structures, which control for unequal
(condition-specific) variance. Compared to ordinary least
squares regression, this increases its robustness with tempo-
rally or spatially correlated data. As such, it is especially
suited for gauging the effect of multiple time series on one
another.

Using GLS regression, patterns in module activity pro-
duced by cognitive models can be matched to patterns in EEG
activity by fitting a model where the latter is predicted by the
first. Significant predictivity by trial- or group-level EEG sig-
nals of module activity can then suggests a functional link
between module and neural substrate. In turn, this reveals
module-brain correlates that are not reliant on prior assign-
ment of functionality to specific brain regions.
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Figure 1: Example for the combined mental rotation and fold-

ing task.

In this paper, we present an approach of finding correlates
between cognitive modeling and EEG data using GLS regres-
sion. We demonstrate the feasibility of this method by apply-
ing it to a mental spatial transformation study: in a combined
mental rotation and folding task (cMRF) based on the men-
tal rotation (Shepard & Metzler, 1971) and mental folding
(Shepard & Feng, 1972) paradigms, participants gauged if a
marker on two simultaneously presented figures each would
align after spatial transformation was applied. During the ex-
periment, EEG activity was recorded. In addition, a cognitive
model for the task was created in ACT-R, and activity predic-
tions of individual modules during trials were generated. Our
aim was the characterization of spatial processes, the identi-
fication of their neural substrates, and the differentiation of
these processes by storage- and manipulation-related cogni-
tive loads. We will show how to apply the methodology, how
it can be further adapted, what caveats remain, and provide
an example for how this approach succeeded in its goal.

Methodology

Experiment

37 participants took part in the experiment, solving 610 tri-
als in 5 blocks, in a pseudo-randomized order. After a fix-
ation cross, the reference figure was presented, which was
either a two-dimensional cube net or a partially folded three-
dimensional structure, depending on the experiment condi-
tion. The base square was marked in blue and contained a
yellow marker in one of the square’s corners. One second
later, the target figure was presented alongside the reference
stimulus. The target was a two-dimensional cube net in all
conditions, and had a blue marker in one corner of a cube
face at the end of one of the “arms” originating from the base
square. The task was to decide if the blue marker on the tar-
get figure would be positioned above the yellow dot on the
reference figure, by rotating and/or folding the target figure
to match the reference figure shape. 3 different rotation con-
ditions (0°, 50°, or 150° rotation disparity) and 3 folding con-
ditions (0, 3, or 6 squares to fold) resulted in 9 conditions
overall, with the easiest being a visual baseline condition, as
it required no spatial transformation. Figure 1 shows an ex-
ample trial: the reference figure (left) is three-dimensional
and partially folded, while the target figure (right) is rotated
clockwise by 50 degrees. After rotating and folding the nec-

essary pieces, the blue dot will be positioned above the yellow
dot, inducing a “match” response.

Modeling data

Cognitive model A cognitive model was created in ACT-
R solving a simulated version of the experiment, consisting
of the same time settings, conditions and figure types. It in-
corporated mental spatial transformation processes suggested
by e.g. Just and Carpenter (1976); Yuille and Steiger (1982);
Wright et al. (2008). After target onset, the model decides
between a direct visual comparison, tries mental rotation,
or tries mental folding, mediated by reinforcement learning
through rewards for correct answers. Over the course of a
trial, it will switch between rotation and folding, depend-
ing on the experiment condition. Learning behavior is fur-
ther simulated by allowing the model to associate shapes to
finished transformations and/or trial outcomes, and retrieve
these declarative memories at later points in the experiment.
The cognitive model made use of a spatial module extension
to ACT-R (Preuss et al., 2019; Heimisch et al., 2023), which
generalizes mental spatial transformation processes and com-
putes a delay for those processes based on a number of fac-
tors. Output from the spatial module is separated into rep-
resentation and transformation activity, allowing for differ-
entiated analyses of spatial processes. For our example, we
focused on the visual, imaginal, retrieval, and spatial mod-
ules. The default ACT-R modules were included to serve as
an indicator of the sensibility of the resulting matches.
Model fit Once the cognitive model is completed, its be-
havioral data predictions must be fit as close as possible to
the actual experiment results before more complex data com-
parisons take place. Typically, good model fit is indicated by
high correlation and low RMSE after parameter fitting, e.g.
by a successive grid search over a sensible range of parame-
ters. The RMSE value can also be used as an indicator of a lag
between the model predictions and the observed data, which
can be manually corrected (see Time correction). The qual-
ity of fit can be gauged by performing an ANOVA with data
source as a factor – if no significant influence of modeled or
human data on RT is found, the goodness of fit should be con-
sidered high. Results from our example are shown in Figure
2. In our case, our model was on average slightly slower than
human solvers (Mexp = 3.44, SDexp = 2.17; Mmodel = 4.14,
SDmodel = 1.56), and showed high correlation on group level
(r = .86, p < .001). While human solvers had a success rate
of 92.5% (SD = 26.4%), the model reached 100% correct-
ness. An ANOVA as described above showed a significant
effect of data source on RT (F(1,3171) = 594.6, p < .001),
implying that the model does not fit the data perfectly. How-
ever, as average RTs in this experiment and differences be-
tween participants were quite high, this discrepancy in fit was
considered acceptable.
Data generation After model optimization, activity predic-
tions can be generated. If the order or type of trials presented
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Figure 2: Comparison of RTs from experiment data and model predictions.

to each participant is known, it is possible to increase data
comparability further by using individual model instances to
simulate specific participants: by following the individual
trial order, the simulated activity can be controlled for se-
quence or learning effects. In addition to modeling the trials
of the main experiment, prior training trials, fixation crosses
before trials, and breaks between experiment blocks should
also be included to control for memory formation and reten-
tion effects. The activity of the modules during a cognitive
model run should be sampled with the same rate of the final
EEG data, which in our case was 250 Hz. Afterwards, the
generated data can be aggregated at individual or group level,
which for our example was the latter, thereby transforming
binary activity data into proportional activity values.
Data smoothing The model-produced activity could con-
tain a high number of angular features, highly deterministic
processes (i.e., always active or non-active) or single-sample
spiking, inhibiting its suitability for linear regression. For this
reason, a smoothing algorithm can be applied. For our exam-
ple, we chose kernel smoothing (Wand & Jones, 1994), and
picked its parameters to reduce these features while retaining
each time series’ characteristics as much as possible (first-
degree local polynomials, number of grid points equaled sam-
ple length, with a bandwidth of 24.). An example of data
smoothing on the single conditions of the retrieval module is
shown in Figure 3. The end result of the cognitive modeling
pipeline will subsequently be referred to as module activity.

EEG data

EEG processing In our experiment, EEG was recorded
continuously with 64 active electrodes, including one EOG
electrode to identify eye movement artifacts. The electrodes
were arranged in the extended 10-20 system and data was
recorded with a 500 Hz sample rate, bandpass-filtered from
.016 to 250 Hz, and referenced to the FCz electrode. Fur-
ther pre-processing was applied using the EEGLab toolbox
(Delorme & Makeig, 2004), with the BeMoBIL pipeline
(Klug et al., 2022). Individual subject data was low-pass fil-
tered at 124 Hz and subsequently downsampled to 250 Hz.
ZapLine Plus (Klug & Kloosterman, 2022) was used for fre-
quency noise detection and filtering, resulting in 50 Hz line
noise being removed from all datasets. Bad individual chan-
nels were interpolated using spherical interpolation and re-
referenced to an average reference.
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Figure 3: Example of model data smoothing for the re-
trieval module, separated by condition. Module output (a)

is smoothed by kernel regression (b).

Independent component analysis Independent compo-
nent analysis (ICA) is able to separate independent sources
that are mixed together across several sensors, including sig-
nals originating from the brain and non-brain artifacts. We
used an adaptive mixture ICA (AMICA; Palmer et al., 2008)
with default time-domain cleaning parameters, and an 1.5 Hz
high pass filter, which were both applied only to the AM-
ICA computation and not the final dataset. For each result-
ing spatial filter, equivalent dipole models were generated
(Oostenveld & Oostendorp, 2002). Afterwards, both spatial
filters and dipole models were applied to the pre-processed
data.

Epoching A 75 Hz low-pass filter was applied. We selected
only components identified by ICLabel (Pion-Tonachini et
al., 2019) as brain processes with 70% likelihood. Data
streams were then epoched to 200 ms before reference figure
onset to 10,000 ms after target onset, and baseline-corrected
on the 200 ms pre-reference period. Only “match” trials were
retained to filter out implausible reasoning processes. We re-
jected epochs with RTs beyond 3 median absolute deviations,
as well as the 5% noisiest epochs per subject and condition.

IC Clustering (optional) If analysis on group level is de-
sired, the individual components of each subject that repre-
sent activity from a common source region need to be identi-
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fied. In our case, we decided on a repeated weighted k-means
clustering algorithm. With this approach we ran 10,000 clus-
tering iterations and selected the best solution based on hav-
ing the highest number of participants with ICs in a specified
ROI cluster and a low spread of IC dipole locations within
each cluster (see Klug et al. (2022) for a detailed description
of the clustering approach and parameters). We chose a target
number of 16 clusters, as was used in prior spatial transfor-
mation studies (Hilton et al., 2022; Preuss et al., 2023), and
specified the central parietal cortex as our ROI (Talairach: x
= 0, y = -66.7, z = 41.1), based on an area involved in spatial
processing as suggested by a meta-analysis of spatial transfor-
mation studies (Zacks, 2008). ICs with dipoles further than
2.5 SD from any cluster centroid were excluded. We then
calculated group ERPs for each cluster.
Frequency band filtering (optional) At this point, the
cluster ERPs can be further filtered into specific frequency
bands. Several studies have focused on specific bandwidths
of EEG frequency to focus on specific aspects of cognitive
processing, e.g. to analyze spatial processing by alpha-wave
activity (e.g. Hilton et al., 2022), or to match cognitive model
activity to multiple frequency bands during an attentional
blink task (van Vugt, 2012). For this study, no band filter-
ing was applied.
Hilbert transform So far, the cluster ERPs still represent
oscillations, i.e. both positive and negative amplitudes from
baseline can be considered to be reflective of activity. To
achieve a linear signal, the ERPs are Hilbert-transformed.
This results in the analytical signal for each ERP, reflecting
the non-negative strength of the signal (Le Van Quyen et al.,
2001; Kozma et al., 2007). As dissimilar start and end values
of the time series can produce artifacts, padding should be
added at the beginning and end of the data time series before
application of the transform. In our case, we padded each
ERP with its reversed first and last 500 ms before and after
the signal. After application of the transform, the padding
is removed. Figure 4 demonstrates the steps of this process.
This final step of the EEG processing pipeline results in what
will in the following be referred to as cluster activity.

Time correction

Data lag (optional) To get an idea of the specificity of the
model fit in time, cross-correlation can be performed. Cross-
correlation allows for checking the correlation between two
time series in a specific range of sample lag. After individ-
ual module output is generated, it can thus be compared to
EEG activity to see if lagging the data would result in a bet-
ter fit on the one hand, and how specific in time a given fit
is on the other hand. If need be, it can then be corrected by
applying an appropriate lag on module output. Note that as
cross-correlation does not account for e.g. autocorrelation or
variance, we recommend its use only as a descriptive statistic.
In our example, we used cross-correlation to examine possi-
ble lag in the ideal correlation of module activity to cluster
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Figure 4: Example of Hilbert transforming a cluster ERP. The
original ERP (a) is padded by adding its reversed first and
final values (b). After applying Hilbert transform to receive
the absolute analytical signal (c), the padding is removed (d).

activity, especially for the spatial module, which is shown in
Figure 5. We explored a range of ± 500 ms. The represen-
tational output shows a good, determinate fit with multiple
clusters, including the ROI cluster. At the same time, a drift
for parietal clusters 5 and 16 by 40 (160 ms) respectively 60
samples (240 ms) is apparent, implying representation output
to be too slow to fit well to these clusters. Transformational
output shows a good but indeterminate fit to the ROI cluster,
as well as to most other clusters. Based on these results, we
chose not to apply lag correction.

Time warping (optional) If the fit in response times be-
tween the experiment data and model-generated output dur-
ing individual trials is not close enough, some authors sug-
gest time warping of model activity to match human RTs
(Anderson et al., 2008; Borst et al., 2011). While this in-
creases comparability of overall model activity, it might fal-
sify the individual predictions of the involved processes. If
no time warping is applied, the shorter dataset should instead
be zero-filled until the maximum trial length to facilitate av-
eraging of trials. We chose not to perform time warping on
our generated data, as we were especially interested in spe-
cific intra-trial processes and their individual predictive qual-
ity, instead of overall activity during trials.

GLS regression

Ideally, both module and cluster activity match in their post-
processing sample rate. If not, one of the datasets needs to
be adjusted by down-sampling, in which case we recommend
resampling module activity as it has a lower information rate
per sample. For our datasets, both sample rates matched at
250 Hz. Furthermore, module and cluster activity should be
limited to the respective time range of activity of the module
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Figure 5: Cross-correlation for the representational and the transformational spatial module output. ROI cluster highlighted.

(i.e., its first and last sampled activity) to avoid zero inflation
in comparing the two datasets.

Finally, group-level GLS linear regression for each mod-
ule is performed with all available clusters as predictors, and
added structures to control for autoregression of predictors
and variance differences in conditions. It is possible to use
GLS regression over all data, or group it into conditions. In
our case, we used first-order autocorrelation (Box et al., 2015)
and scaled identity variance structures (Carroll & Ruppert,
2017), grouped by the 9 difficulty conditions. Any cluster
that forms a significant coefficient is considered a match for
that specific module, with the significance threshold set at
p = .001. Goodness of fit of each GLS linear model is then
determined by comparing its likelihood ratio with that of a
null model, and testing the significance of the improvement.

Results

For each module, matches between module and cluster activ-
ity were identified. The clusters found to be significant now
form a cluster structure, which are associated with the func-
tion of that module and should form a cohesive brain area.
The clusters with the best fit resulting from our example anal-
ysis, judged by the strength of their coefficients in the GLS re-
gressions, are shown in Figure 6, while Figure 7 displays the
resulting cluster structures for each selected module. Note
that while the imaginal and retrieval module share a right
parietal cluster as the best match for activity, both differ in
their final cluster structures. The visual structure consists of a
single, superior parietal cluster. For imaginal activity, a struc-
ture of parietal, right parietal, and right frontal clusters was
identified. Retrieval activity is matched by right, central, and
left parietal, as well as left and right frontal clusters. Activ-
ity reflecting spatial representation formation is reflected by
central, left, and right parietal clusters. Finally, spatial trans-
formative activity matches a central and left parietal cluster
structure.

Discussion

By applying the analysis outlined in this paper on example
data from a cognitive model and EEG recordings from a com-
bined mental rotation and folding task, we were able to de-
duce cohesive, sensible structures from clustered EEG activ-
ity that were matched to simulated activity produced by dis-
tinct cognitive processing units during trials. In our example,
our goal was to identify neural substrates for spatial activity,
for which we were able to uncover parietal areas matching

our model predictions, as well as results from several prior
studies (e.g., Harris et al., 2000; Zacks, 2008). Moreover,
the resulting structures show differentiation between repre-
sentative and transformative activity, affirming previous stud-
ies that have found spatial storage and manipulation activity
to differ in lateralization (Milivojevic et al., 2003; Gardony
et al., 2017; Hilton et al., 2022; Preuss et al., 2023). Our ad-
ditional analyses of non-spatial modules could be considered
a sanity check (anchoring an exploratory search for appro-
priate brain areas on known module-brain associations), and
yielded similar results to Borst and Anderson (2013), albeit
seemingly biased towards spatial processing (e.g., identify-
ing no occipital clusters for the visual module). With regard
to these results, we believe our approach to be ideally suited
for finding neural correlates of cognitive activity without a

priori established locations.
The application of this approach opens up additional possi-

bilities. While our example used data from an ACT-R model
and EEG recordings, the steps outlined herein should largely
hold true for data from other cognitive architectures and/or
neuroimaging techniques. A basic requirement for this are
event-matched time series from both simulated and recorded
experiment output, sampled with a high enough frequency to
detect features of interest. Furthermore, instead of averaging
over all conditions, an intriguing use case lies in the appli-
cation of this method separately for contrasting conditions,
e.g. baseline vs. target, and comparing the respective struc-
tures with each other. Another possibility to further refine the
outcome manifests in comparing module and cluster activity
in the time-frequency domain: in the case of certain cognitive
functions or brain areas, different frequency bands are associ-
ated with distinct functions. Exploration of data in this man-
ner could help, and may indeed be necessary, to reach more
fine-grained conclusions. Finally, the resulting cluster struc-
tures lend themselves to additional analysis. For instance, the
functional influence of the structures on one another could be
investigated by connectivity analysis. Used as an exploratory
tool, brain areas suggested by this method could be consid-
ered ROIs in further studies, giving initial insight into hitherto
unexplored, specific cognitive functions.

Of course, the methodology comes with several caveats.
Linear regression with GLS, including correlation and vari-
ance structures, is computationally heavy: for our example
data, fitting a single GLS model took 5 orders of magnitude
longer than a regular linear model on mid-range consumer
hardware. High CPU and RAM resources are recommended.
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Figure 7: Brain renderings showing cluster structures com-
prised of every matching cluster per module.

While the cluster structures uncovered in our example are
largely reasonable, the method essentially identifies match-
ing patterns between the simulated and recorded datasets, and
does not explicitly signify functional matches. In addition,
individual clusters with a significant predictivity of module
activity are not necessarily exclusive to a single module, but
can be shared among multiple structures. In our case, a right
parietal cluster reached significance for three different mod-
ule GLS regressions. Depending on the usage scenario, this
could add complexity to the understanding of the results, or
further analyses thereof. Sensible interpretation of the pro-
duced structures is therefore especially advisable.

At the time of writing, multiple upcoming studies make use
of the methodology presented in this paper, including results

from separate mental rotation and mental folding experiments
(Preuss et al., 2023). Further work on the cMRF dataset will
extend the approach with a subsequent connectivity analysis,
focusing on the influence of each cluster structure on each
other cluster structure.

To summarize, we have presented a method that facili-
tates finding neural substrates of simulated activity produced
by cognitive models, and which is especially suited for ex-
ploratory work on specific cognitive functionality. Applied
on data from a mental spatial transformation study, we have
found spatial activity in several parietal areas that could be
differentiated in representational and transformational cluster
structures. On a final note, we do consider the development
of this method an ongoing process, and would welcome feed-
back and improvements on it.
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Abstract 
The field of Artificial Intelligence (AI), particularly in the area 
of computer vision, has experienced significant advancements 
since the emergence of deep learning models trained on 
extensively large labeled datasets. However, reliance on human 
labelers raises concerns regarding bias, inconsistency, and 
ethical issues. This study aimed to replace human labelers with 
an interactive cognitive model that could address these 
concerns. We investigated human behavior in a two-phase 
image labeling task and developed a model using the VisiTor 
(Vision + Motor) framework within the ACT-R cognitive 
architecture. This study was designed based on a real labeling 
task of identifying different crystals in optical microscopy 
images after various treatments for inhibiting the formation of 
the crystals. The outcomes from the image labeling 
experiment, which included both learning and testing phases, 
revealed meaningful observations. The observed decrease in 
task completion times for all participants during the learning 
phase suggests an increased familiarity with the image features, 
facilitated by the reference images presented in all four 
consecutive example tasks. It was also discovered that the 
subtle distinctions between classes led to confusion in making 
decisions about labels. The developed interactive cognitive 
model was able to simulate human behavior in the same 
labeling task environment, while the model achieved high 
accuracy, it still relies on pre-defined features therefore limited 
its application to seen data only. Our findings suggest that 
interactive cognitive modeling offers a promising avenue for 
replacing human labelers with robust, consistent, and unbiased 
labeled datasets.  

Keywords: Object labeling; Cognitive modeling; ACT-R; 
Learning 

Introduction 
Artificial Intelligence (AI) advances have been significantly 

boosted since the publication of 'ImageNet Classification 

with Deep Convolutional Neural Networks' (Krizhevsky et 

al., 2012). In the fields of computer vision and deep learning, 

such as with Convolutional Neural Networks (CNNs) and 

Vision Transformer (ViT), utilizing datasets consisting of a 

vast number of labeled images, such as ImageNet (Deng et 

al., 2009), is essential for building models for image 

classification, image segmentation, or object detection. 

Therefore, human labelers are tasked with reviewing and 

annotating data, such as images, text, or videos, by assigning 

labels and tags that will be used for training these models. In 

general, crowd-sourcing services, such as Amazon’s 

Mechanical Turk (MTurk), have been widely used for image 

annotation, thanks to their relatively low cost and quick 

turnaround  (Rashtchian et al., 2010). 

Concerns have arisen regarding human labelers in 

annotation tasks despite mentioned progress. The presence of 

labeler bias in datasets can lead to inaccurate or unfair 

decisions in various fields, including law enforcement, 

healthcare, and education, due to the labelers who hold 

stereotypes based on different ethnicities and genders 

(Haliburton et al., 2023). Moreover, labeling inconsistencies 

resulting from labelers' inherent judgments and other factors 

can lead to significant errors in decision-making, particularly 

in clinical settings (Sylolypavan et al., 2023). Furthermore, 

ethical concerns have been raised regarding the use of 

humans as labelers. Several social issues related to manual 

image labeling work performed by humans have been 

divulged as a result of its low pay, poor working conditions, 

and psychological repercussions (Hagendorff, 2020). 

Therefore, there is a need to replace human labelers with 

models or at least part of the labeling process. The best 

candidate for this role would be a cognitive model, as 

cognitive models can serve as surrogate labelers. However, 

building a robust cognitive model capable of taking over the 

role of humans as labelers presents a significant challenge. It 

is imperative to understand human behavior and predict 

human performance in order to address this challenge, which 

has remained a long-standing issue for researchers. 

Nevertheless, this endeavor will help us gain insights into 

why people perform better in certain situations and why they 

may not perform as well in others.  

The cutting-edge method of simulating behavior involves 

the use of cognitive architectures (Kotseruba et al., 2016). 

These architectures are capable of replicating the cognitive 

processes that the human mind undergoes to complete tasks. 

By accurately modeling the human cognitive process using 

cognitive architectures, researchers can predict completion 

times for actions such as eye movements and motor actions 

(i.e., physical actions). Additionally, cognitive modeling of 

human behavior enhances our understanding of cognitive 
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processes across various domains. Unlike data-analytical 

models, these cognitive models provide a deeper theoretical 

insight into cognitive functions and how the mind works 

(Pinker, 2003). 

Newell (1990) introduced the concept of unified theories 

of cognition, which involves acquiring knowledge, problem-

solving, and perception. Cognitive architectures, such as 

Adaptive Control of Thoughts-Rational (ACT-R) (Anderson 

et al., 1998; Anderson & Lebiere, 2014; Ritter et al., 2018) 

and SOAR (Laird, 2019), have been developed to model 

human cognition in various cognitive tasks. ACT-R can 

interact with the environment through modules like 

perception (vision) and action (motor) modules. This 

mechanism enables the integration of human cognition to 

simulate human cognition and behavior (Tehranchi & Ritter, 

2017, 2018). 

ACT-R is limited interaction ability with dynamic 

environments because it interacts with environments either 

constructed within ACT-R’s simulated Lisp environment and 

facilitated through its device interface (Byrne, 2001). Hence, 

we use the VisiTor framework to make ACT-R interact with 

dynamic task environments, such as the experiment 

environment. VisiTor (Vision + Motor) facilitates ACT-R’s 

interaction with diverse environments through two main 

modules: Vision and Motor, so that participants’ visual 

attention and mouse control can be simulated (Bagherzadeh 

& Tehranchi, 2022; Bagherzadehkhorasani & Tehranchi, 

2023). 

In this study, we investigate the behavior of labelers and 

the capabilities of a developed interactive cognitive model for 

simulating and understanding human behavior in image 

labeling tasks. Our aim is to understand how labelers behave 

in the image labeling task. To achieve this, we designed the 

task with two phases: learning and testing. Throughout the 

study, we collected participants' interaction data via a 

research-grade eye-tracking device to examine their visual 

attention on the presented objects. Understanding human 

behavior in this task is crucial for building a cognitive model 

capable of simulating human cognition. Furthermore, we 

explore the capability of VisiTor to simulate human behavior 

in the same image labeling task. We use only the testing 

phase data for developing a cognitive model using the 

VisiTor framework. 

Methodology 
This study aims to understand human behavior in an image 

labeling task. Also, the task is designed to observe 

participants' visual attention using an eye-tracker while they 

navigate the environment. The task is designed in a Google 

Forms. Participants can interact with the form and select 

items. We used VisiTor to simulate participants’ behavior in 

the same task environment that participants used (i.e., Google 

Forms) that is a dynamic task environment. This approach 

allows us to develop an interactive cognitive model using the 

ACT-R. This study was approved by the Institutional Review 

Board of The Pennsylvania State University (IRB approval 

number: STUDY00024434). 

Task Environment Design 
The form for the image labeling study consists of two phases: 

the learning phase and the testing phase.  

In the learning phase, we plan to examine what features of 

the objects in each class are visually explored by the 

participants. Therefore, this phase is composed of two stages. 

The first stage of the learning provides reference images for 

each of the four classes. Each reference image consists of four 

objects, cropped from the optical microscopy image, with 

each object corresponding to a similar shape within its 

respective class, as shown in Figure 1 (a) and (b). We do not 

provide any descriptions of the shape features of each class, 

except for class 4, because it is an object belonging to neither 

Class 1, 2, nor 3. The second stage of the learning is 

composed of four example tasks, one for each class. The 

answers with the reference images for each class are given in 

all the examples to help participants understand what the 

main tasks look like and how they can answer the questions 

in the testing phase.  

Figure 1: (a) The reference images for Class 1. (b) The 

reference images for Class 4. (c) A portion of the original 

microscopy image showing the target object of Task 14. (d) 

A magnified view of the target object. 

In the testing phase, participants will encounter a total of 

20 tasks, distributed evenly across four classes, resulting in 5 

tasks per class. Each task will feature an image containing 

multiple objects, with one object of interest highlighted by a 

red bounding box. To aid in the examination of this object, a 

magnified view of the area within the bounding box will also 

be provided, ensuring participants can closely analyze the 

target object, as shown in Figure 2. Unlike the examples 

provided in the learning phase, the reference images are not 

provided in the testing phase. Therefore, participants will 

have to rely on their memory. 

Image Dataset The optical microscopy image was captured 

during an experiment investigating the effect of various 

treatments on inhibiting the formation of calcium oxalate 

crystals. Therefore, the objects appearing in the image are 

crystals, which may be various forms of calcium oxalate 

crystals or other undefined crystals. Each class—1, 2, and 

3—corresponds to COM-I (individual calcium oxalate 

monohydrate), COM-aggregates (aggregated calcium oxalate 

monohydrate), and COD (calcium oxalate dihydrate), 

respectively. These crystals were labeled by an expert in the 

field. Each object used for the reference images, examples, 
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and main tasks, was cropped from the original microscopy 

image. 

 

 
Figure 2: The image labeling task Google Forms. Left 

image is an image with multiple objects including a target in 

the red bounding box. Right image is a magnified view of 

the area withing the bounding box. 

Eye-tracking Data Collection 
The participants’ eye movements were collected by the 

GazePoint GP3 HD eye tracker, as shown in Figure 3(a). The 

device was positioned directly below the computer monitor 

at approximately 65 cm from the participants’ eyes, to ensure 

accurate tracking of eye movements during the study.  

The visualization of these movements was achieved 

through a Fixation Map in GazePoint Analysis 6.11.0, as 

illustrated in Figure 3(b). Two computer monitors were 

utilized: one monitor recorded participants' eye movements 

using the GazePoint Analysis software provided by the 

manufacturer, while the other was designated for participants 

to perform the image labeling task, as illustrated in Figure 4. 

This setup allowed for the tracking and collection of visual 

attention data based on the participants' eye movements. 

   

 
Figure 3: (a) GazePoint GP3 HD eye-tracker device.  

(b) The eye movement recording process. 

 

Description of the eye-tracker The GazePoint GP3 HD eye 

tracker is a research-grade eye tracker. It has a sampling rate 

of 60 to 150 Hz, meaning that eye movements are recorded 

as frequently as every 6.7 ms at 150 Hz, and a visual angle 

accuracy of 0.5° to 1°. 

User Study Procedure 
Participants were welcomed to sit in a chair in front of the 

computer screen, adjusting their position to comfortably 

reach the mouse and ensure their eyes were within the eye-

tracking device's detection range. They were then briefed on 

the study's purpose and procedure and asked to read the 

instructions that appeared throughout the study carefully. 

Before the learning phase began, the eye tracking calibration 

process was implemented for each participant to optimize eye 

movement tracking. After the calibration process was 

completed, and the recording of eye movements began, 

participants transitioned into the learning phase. During this 

phase, they were given ample time to familiarize themselves 

with the features of each class through the two stages: the 

reference images and the four example tasks. Having 

completed these preparatory stages, participants then moved 

on to the testing phase, where they worked on the image 

labeling tasks based on what they had observed in the 

learning phase. After they completed all the 20 tasks, they 

were asked to submit their answers, after the 20th question the 

recording was stopped. 

 

 
 

Figure 4: User study setup: The screen on the right with 

the eye-tracker is where a participant performs tasks, and 

the participant’s eye movements are recorded on the left 

screen. 

 

Demographics The participants (n = 5, Female: 2) are 

graduate students and faculty members from the 

Pennsylvania State University. 

Interactive Cognitive Modeling Approach 
An interactive cognitive model for simulating human 

behavior in the image labeling task was developed using 

VisiTor. VisiTor consists of two main modules: Vision and 

Motor. These modules work alongside (or enable) cognitive 

architectures in dynamic environments to perform tasks. The 

Vision module identifies a matched object in a given 

environment through a template matching pipeline using the 

OpenCV library, while the Motor module executes desired 

manual actions (e.g., moving a cursor, clicking) through 

using PyAutoGUI library in python (Bagherzadeh & 

Tehranchi, 2022). To build an interactive cognitive model in 

ACT-R, it is necessary to define both declarative knowledge 

(chunks) and procedural knowledge (production rules). The 

model was specifically designed to perform tasks exclusively 

during the testing phase. This emphasis on testing phase 

performance highlights the experimental nature of the model, 

particularly in its application to the image labeling task with 

the VisiTor framework. Also, we used the default learning 
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parameters within the ACT-R that are recommended by the 

ACT-R user manual (Bothell, 2017). 

We began with declarative knowledge, wherein attributes 

and their corresponding values were defined for each visual 

object such as target object images. From the original optical 

microscopy image, which contained various objects, a total 

of 20 target object images were cropped, resulting in 5 target 

object images for each class. The semantic meanings defined 

for each class in declarative knowledge, rather than the 

specific chunks for each object image, were used to 

determine the class of each target object image. Additionally, 

images from the image labeling task (i.e., the form) that 

contained 'Class' options and a 'Next' button were cropped, 

and chunks were defined for these User Interface (UI) 

elements. Following this, production rules were established 

to execute the Vision module in ACT-R for shifting visual 

attention and the Motor module in ACT-R for actions 

including clicking, pressing a key, and moving the cursor.  

The flowchart detailing the defined procedural knowledge 

for the task is illustrated in Figure 5. The task initiation is 

represented by the examination of the first cropped target 

object image. The Vision module then shifts attention based 

on the cropped image's defined patterns to locate the target 

object within the larger, original microscopy image that 

contains various objects. Subsequently, the Motor module is 

engaged to press the ‘End’ key, scrolling the form to the 

section where a multiple-choice option is located. Utilizing 

the pattern matching algorithm, the model shifts its attention 

to the correct choice among four options. At this stage, the 

Motor module moves the mouse cursor to the identified 

option and selects it. The process continues with the model 

finding the ‘Next’ button through pattern matching, shifting 

attention to this button, moving the cursor to it, and executing 

a click. These steps are repeated for each test until the task is 

completed. A recursive loop, indicating this repetition until 

the task's conclusion, is represented by a blue arrow in Figure 

5. 

Figure 5: Flowchart representing the implementation of 

production rules in the interactive cognitive model 

developed with the VisiTor framework within the ACT-R. 

Results
Task completion time was measured for each participant (n = 

5) during both the learning and testing phases. This

measurement was used instead of labeling accuracy to

analyze the participants' behavior in each phase because all

participants provided the same incorrect answer. In addition,

an interactive cognitive model, constructed within the ACT-

R using the default learning parameters, was developed to

simulate human behavior and predict completion time in this

image labeling task using the VisiTor framework

(Bagherzadeh & Tehranchi, 2022).

Learning Phase 
We measured how much time the participants spent on 

reference images and each example. All the measured times 

are provided in Table 1. The completion time for the 

reference images was measured by counting the time frames 

after a participant moved to the Reference section page. Since 

participants scrolled up and down during the Reference 

section, we decided not to calculate the time spent on each 

class. Instead, we measured the total time spent in the entire 

Reference section. Similarly, the completion time for the 

Example section was measured by counting the time frames 

each participant spent on each example. However, in 

calculating the total time spent in the learning phase, we 

excluded the time participants spent reading the instructions 

that appeared before the beginning of the Example section to 

navigate participants to the new section, as well as the time 

taken for Google Forms to reload its content. We observed 

that the participants spent more than 30 percent and up to 55 

percent of their total time in the learning phase. Additionally, 

a trend was discovered where the time spent by participants 

on each example decreases as they progress through the 

examples.  

Table 1: Participants’ task completion time during the 

learning phase for each example. 

Participant Reference 
images 

Example 1 
(Class 1) 

Example 2 
(Class 2) 

Example 3 
(Class 3) 

Example 4 
(Class 4) 

P1 36s 12s 9s 10s 6s 
P2 20s 11s 7s 10s 5s 
P3 18s 15s 10s 10s 8s 
P4 42s 21s 15s 5s 3s 
P5 30s 11s 6s 4s 4s 

Testing Phase 
Task completion time for each participant was measured by 

calculating the time frames from the moment the task 

contents were fully reloaded to when the ‘Next’ button was 

clicked. On average, each participant experienced a 1-second 

delay in content reloading after clicking ‘Next’ button. Table 

2 displays the average completion time for each class, 

calculated by dividing the total completion time of tasks for 

each class by five, to account for the five tasks per class. 

Additionally, the ‘Total’ column in Table 2 presents the 

calculated average task completion time for each task during 

the testing phase for each participant. 
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Table 2: Each ‘Class’ column represents the average 

completion time per class and ‘Total’ column represents the 

total average completion time during the testing phase. 

 

Participant Class 1 Class 2 Class 3 Class 4 Total 
P1 4.2s 3.8s 6.8s 2.4s 4.30s 
P2 4.0s 5.0s 4.8s 4.0s 4.45s 
P3 6.0s 7.0s 7.8s 5.4s 6.55s 
P4 3.2s 5.0s 5.4s 2.8s 4.10s 
P5 2.8s 3.4s 6.6s 2.8s 3.90s 
 

In most tasks, all participants completed tasks around their 

average task completion time per class. However, in Task 5 

(for Class 3), for both participants 1 and 5, outliers with 

significantly longer task completion times—17 and 19 

seconds, respectively—were observed compared to their 

average task completion times of 4.3 and 3.9 seconds, 

respectively. This discrepancy in completion times, though 

notable, did not affect the accuracy of their responses, as both 

participants 1 and 5 selected the correct answer for Task 5. In 

the case of Participant 5, after initially selecting ‘Class 2’ as 

the answer for Task 5, he moved on to Task 6. However, after 

briefly working on Task 6, he returned to Task 5 and changed 

his answer to ‘Class 3’. The returning time was also included 

in the Task 5 completion time.  

 
Figure 6: (a) A portion of the original microscopy image 

showing the target object of Task 5. (b) A magnified view 

of the target object. 

 

Moreover, for Task 14, all five participants selected the 

same incorrect answer. Figure 1 (c) and (d) display the 

images presented in Task 14. The correct answer, ‘Class 1’, 

is illustrated in Figure 1 (a). However, they submitted ‘Class 

4’, as shown in Figure 1 (b), as their answer. Hence, they all 

attained the same score, 19 out of 20, in the image labeling 

task. 

Interactive Cognitive Model Implementation 
The human cognition process in a dynamic environment, 

specifically the image labeling task, was simulated by the 

ACT-R model. The Vision and Motor modules introduced by 

VisiTor enabled the development of an interactive cognitive 

model tailored to this task. Based on the designed flowchart 

for the image labeling task, as depicted in Figure 5, we 

successfully crafted and executed the interactive cognitive 

model to simulate human behavior in the task. 

Figure 7 illustrates the model's functionality during the 

testing phase of the image labeling task. Figure 7 (a) 

showcases the 'Shifting attention' capability of the Vision 

module, showing its process for identifying a matching object 

within the image through a template. This action is 

represented by positioning the eye icon near the red bounding 

box. Subsequently, Figure 7 (b) reveals the outcome of 

triggering the 'Press “End” key' operation, succeeded by 

'Shifting attention' again to pinpoint the correct choice using 

the model's pre-set memory chunks. Figures 7 (c) and (d) 

demonstrate the successful sequential execution of 

production rules: 'Moving the cursor', 'Clicking “Class 2”', 

'Shifting attention', 'Moving the cursor', and 'Clicking 

“Next”', in that order. The model's implementation in the 

actual image labeling task, as depicted in Figure 7, indicates 

that the developed model is capable of simulating human 

behavior within the task in a dynamic environment. This 

environment reflects the actual actions of the participants 

during the task, including movements of the mouse cursor, 

page scrolling, and updates to content on the page. 

 

 
Figure 7: Sequential demonstration of the developed 

interactive model's cognitive processes during the testing 

phase (The eye icon represents where the model looks). 

 

However, as mentioned in the Methodology section, the 

learning parameters within the ACT-R model were not 

modified to optimize the model's memory retrieval 

performance. Consequently, the completion time for nearly 

all tasks and the average completion time across classes were 

consistently 0.805 seconds, with the exceptions of Task 20 

and Class 1, as illustrated in Figure 8. A completion time of 

0.755 is because Task 20 is the last task so there is no need 
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for firing procedural rules for preparing the next batch for 

starting the new task. 

 

 
Figure 8: (a) The model completion time plotted for each 

task. (b) Averaged model’s completion time plotted for each 

class. 

Discussion 
The observed outcomes from the behavioral study of humans 

in the image labeling task, along with the development of an 

interactive cognitive model for simulating human behavior in 

the same task, present many novel findings. This is despite 

the study being an initial labeling study with simple but real 

labeling tasks. 

The findings from the image labeling experiment, which 

consisted of two phases, uncover human behavior and 

suggest limitations. In the learning phase, the observed trend 

of decreasing completion times as the participants progressed 

through the example tasks implies that the participants might 

study the characteristic patterns of each class not only from 

the Reference section but also from the Example section, 

given that all the example tasks include the reference images 

for each class. Consequently, the participants spent the least 

time on Example 4, having learned the features of each class 

as they completed the preceding tasks. During the testing 

phase, several interesting findings emerged. Notably, 

participants 1 and 5 exhibited significantly longer completion 

times for Task 5, likely due to shaded zones around the target 

object. Figure 6 (b) reveals that these shades, caused by the 

protruding object and optical microscopy lighting, initially 

confused the participants. However, once they recognized 

that the black areas were merely shadows, both participants 

successfully identified the target as belonging to Class 3. This 

insight explains the additional time they needed before 

reaching the correct conclusion. Additionally, all participants 

selected the same incorrect answer for Task 14. As illustrated 

in Figures 1 (a), (b), and (c), the distinction between Class 1 

and Class 4 is subtle in this case. This uniform error may be 

attributed to the insufficient provision of reference images, 

which restricted the participants' capacity to adequately learn 

and differentiate the characteristic patterns of each class. 

Moreover, the study's depth into human behavior was limited 

by the small number of participants and tasks, preventing the 

derivation of substantial insights. The simplicity of object 

shapes and the scant variety of classes further narrowed the 

scope of our observations. Additionally, the eye-tracking 

device's accuracy fell short in tracking eye movements across 

edges or lines crucial for label determination. Therefore, we 

utilized the eye-tracking data to observe where the 

participants looked and for how long (i.e., shifting attention). 

We developed an interactive cognitive model, drawing 

inspiration from human behavior observed during the image 

labeling task. Utilizing the VisiTor, the Vision module 

performed visual searches to identify matching objects via 

template matching, achieving high accuracy and consistently 

selecting the correct answers. This approach enabled the 

model to effectively simulate the human cognitive process 

within the task, incorporating both Vision and Motor modules 

along with well-defined declarative and procedural 

knowledge. However, the model's reliance on simple pattern 

matching faces challenges with unseen images, as its image 

labeling capabilities are restricted to data it has previously 

encountered or specified by modelers, due to the dependence 

on pre-defined features and sample images for pattern 

recognition. 

Conclusion and Future Work 
In this work, we have interpreted human behavior in the 

image labeling experiment and successfully demonstrated the 

capability of the interactive cognitive model by integrating 

the VisiTor (Vision + Motor) framework for performing the 

image labeling task and predicting completion time. This 

achievement not only showcases the model's practical 

applicability but also lays the groundwork for further 

exploration into simulating human cognitive processes, 

drawing on observations from the experiment in dynamic 

labeling task environments. However, certain challenges 

remain to be addressed in future research. 

In future research, it is important to involve a larger number 

of participants and introduce tasks featuring objects of more 

complex shapes and a greater variety of classes within the 

image labeling experiment. A learning curve could be more 

accurately observed with a significantly increased number of 

tasks along with a larger pool of participants. Furthermore, to 

ensure the integrity of individual task assessments, 

participants will be informed that returning to previous tasks 

after making a selection will not be permitted. This measure 

aims to prevent decisions based on direct image comparisons. 

Additionally, we plan to fine-tune the learning parameters to 

enhance the retrieval performance of the ACT-R model. 

Currently, our model skips the learning phase and did not 

learn the task through the Reference section and Example 

section. We plan to develop visicon (ACT-R visual scene) 

and visual objects using vision-language models instead of 

pre-defining them for the model.    

Drawing on the insights from this study aimed at 

understanding human behavior and developing a cognitive 

model for image labeling tasks, we take a step forward in our 

endeavor to replace human labelers with a cognitive model. 

This transition not only addresses ethical concerns associated 

with human labeling but also aims to construct a more robust 

large-scale labeled dataset. 
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Abstract 
How do people reason about possibilities in everyday life? 
Most cognitive scientists, including readers of this article, are 
likely to believe that they rely on a logic, albeit one beyond the 
grasp of introspection. There are logics for dealing with 
possibilities—modal logics, and they are useful in software 
engineering and other domains. This article describes the 
mental model theory of possibilities and reports two 
experiments corroborating its central claim that individuals 
make inferences in default of knowledge to the contrary—a 
principle inconsistent with all standard modal logics. It also 
shows that the theory’s implementation in a computer program, 
mModal, accounts for differences from one individual to 
another in how they reason about possibilities. 

Keywords: Modal logic; possibilities; individual differences; 
mental models, reasoning strategies 

Introduction 
Consider the following inference: 

It is possible that Ann is in Rio and it’s possible that Ben 
     is in Ulm.  
\ It is possible that Ann is in Rio and that Ben is in Ulm. 

This inference condenses two possibilities into one. How 
reasoners make such an inference about possibilities is a 
major puzzle. They might rely on some sort of logic for 
possibilities—a modal logic (e.g., Osherson, 1976). Yet, 
despite the plausibility of the preceding inference, it is invalid 
in all standard modal logics (e.g., Chellas, 1980). In this 
article, we present a theory of modal reasoning based on 
mental models. It predicts that naive individuals—those who 
know little or nothing about logic—will accept the inference. 
Previous studies have borne out other predictions of this 
theory (see, e.g., Johnson-Laird et al., 2024; Johnson-Laird & 
Ragni, 2019; Ragni & Johnson-Laird, 2020). The aim of our 
article is therefore to test the theory’s predictions for 
inferences akin to the example above, and to show that its 
computer implementation (the mModal program) yields the 
first working simulation of how individuals differ from one 
another in their modal reasoning.  It does so with just two free 
parameters. 

A major goal for cognitive scientists is indeed to determine 
how naive individuals make modal inferences. They have 
carried out empirical studies (e.g., Piéraut-Le Bonniec, 
1980), and they have studied how children develop notions 
of possibility (Shtulman & Carey, 2007) and how adults 
deduce conclusions about possibilities from factual claims 

(e.g., Bucciarelli & Johnson-Laird, 2005; Hinterecker et al., 
2016). A pioneering investigation showed that a close 
relation failed to occur between human reasoning and a 
subset of a modal logic (Osherson, 1976). What complicates 
such studies are different sorts of modalities, such as alethic 
possibilities for inferential relations, epistemic possibilities 
arising from knowledge, and deontic possibilities based on 
moral norms and other conventions. A further complication 
is the number of modal logics. There is a denumerable 
infinity of them (Chellas, 1980; Ragni & Johnson-Laird, 
2018). So, the problem of pinning down which of them, if 
any, underlies reasoning in daily life seems almost 
insuperable. It may explain the dearth of pertinent studies. 

The argument of the present paper is straightforward. It 
begins with an account of modal logics, and then with the 
mental model theory and its implementation in the mModal 
program. It describes two crucial experiments contrasting 
modal logic and mental models. And it shows how the 
program fits the reasoning results of different individuals. 
Finally, it discusses the implications of these studies for the 
nature of human cognition and for theories of reasoning. 

Modal logics 
Modal logics formalize various modalities, which include 
possibility and necessity (e.g., Chellas, 1980; Fitting & 
Mendelsohn, 2023). These logics are useful in software 
engineering, artificial intelligence (e.g., Kontchakov et al., 
2010), and philosophy (e.g., Gödel’s ontological proof for 
God’s existence, see Benzmüller & Woltzenlogel Paleo, 
2014).  Our concern is with how individuals make immediate 
inferences from a single modal premise to a modal 
conclusion, and we examined logics based on a system 
underlying infinitely many others. It is known as system K in 
honor of the logician Kripke for reasons we explain below. 
System K and its cognates combine the sentential calculus, 
which concerns negation (not), and compound assertions, 
such as conjunction (Ù), disjunction (Ú), and conditionals 
(®), with modal operators for possibly (¯) and necessity 
(£). The two modal operators are interdefinable: if 
something is possible, then it is not necessarily not the case. 
System K has only a single axiom, which asserts in effect that 
the necessity of if A then B implies that if A is necessary then 
B is necessary:  
£ (A ® B) ® (£A ® £B). 
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The logics built on K introduce further axioms. All these 
modal logics can rely on a possible worlds semantics, and so 
the assertion: 

Possibly A: (¯A) 
is true provided that A is true in at least one relevant possible 
world, and the assertion: 

Necessarily A: (£A) 
is true provided that A is true in all relevant possible words. 
Kripke (1963) showed that different assumptions about the 
relevance of worlds—or their “accessibility” as it is known—
parallel the different axioms for modal logics.  This discovery 
led to a burgeoning of modal logics. We say no more about 
possible worlds, because they seem too vast and too 
numerous to be a plausible psychological basis for meanings 
(but cf. the ‘miniworlds’ of Kripke, 1980, p. 15-20). 
Moreover, standard modal logics differ from the mental 
model theory. It postulates that individuals should accept the 
condensation of consistent possibilities, as in our opening 
example: 

¯A Ù ¯B 
          \ ¯(A Ù B) 
Yet, such inferences are invalid in all standard modal logics, 
which admit a counterexample in which the premise is true, 
but the conclusion is false, i.e., there is a possible world in 
which A is true, and another possible world in which B is 
true, but no possible world in which both are true. 

The model theory of modal reasoning 
The theory is based on an update of ideas going back to 19th
century physics and to Craik (1943): humans construct 
mental models of the world. What counted as a model for 
Craik was that it computes the same results as reality, and it 
needs to have no other resemblance to what it models. In 
contrast, the present theory treats mental models insofar as 
possible as having the same structure as what they represent: 
models are iconic. One other principle is due to the late Peter 
Wason (e.g., Johnson-Laird & Wason, 1970), and has been 
part of the theory in one guise or another from its beginnings 
(e.g., Johnson-Laird, 1983, see also Kahneman, 2011). There 
are two systems of human reasoning. One is intuitive (system 
1), and the other is deliberative (system 2). The intuitive 
system has no access to a working memory for intermediate 
results, and so its computational power is equivalent to a 
finite-state automaton (Hopcroft & Ullman, 1979).  As a 
result, it tends to use just one intuitive model of a possibility 
at a time. These models represent only those constituents of 
sentences that are true in the possibility.  For instance, an 
exclusive disjunction, such as: 

Either there is a circle or a triangle, but not both. 
has a conjunction of intuitive models of possibilities: 

� (Possibility 1) 
r (Possibility 2)

where each row in this diagram represents a different 
possibility, and each of them holds in default of knowledge 
to the contrary (Johnson-Laird & Ragni, 2019). The theory 
therefore predicts that individuals should infer from the 
disjunction above, e.g.: 

It is possible that there is a circle. 
System 2, which is elicited when individuals deliberate, has 

access to human working memory. Hence, it constructs 
models that represent both what is true and what is false in 
each model of a possibility. The deliberative models of the 
disjunction above are as follows, where “¬” is a symbol for 
negation: 

� ¬r 
¬�   r 

Negation cannot have an iconic representation, but it is linked 
to a semantic procedure. These models make clear that the 
inference of the possibility that there is a circle holds only in 
case there is not a triangle. 

Epistemic possibilities are akin to subjective probabilities: 
They come in degrees, e.g., an event can be barely possible, 
highly possible, and at the ends of the scale it is either 
impossible or certain (see Lassiter, 2017). Unlike standard 
modal logics, the model theory postulates that an assertion, 
such as: 

It may be raining. 
presupposes that it may not be raining. If this presupposition 
is false, then rain is certain. Table 1 summarizes the mental 
models of the various sorts of modal assertion. 

Table 1: The intuitive (system 1) and deliberative models 
(system 2) of the four basic epistemic modal assertions about 
possibilities, where ‘. . .’ denotes an intuitive model with no 
explicit content, and ‘¬’ denotes negation. 

Assertions Intuitive 
models 

Deliberative 
models 

Possible that A A 
   … 

A 
¬ A 

Possible that not A ¬ A 
    … 

¬ A 
A 

Not possible that A ¬ A ¬ A 
Not possible that not A A A 

Because both intuitive and deliberative models hold in 
default of knowledge to the contrary, the theory predicts three 
sorts of default inference that reasoners should accept: 

1. It is possible that A or it is possible that B, or both.
\ It is possible that A.

2. If A then B.
It is possible that A.

    \ It is possible that B. 
3. It is possible that A and it is possible that B.
\ It is possible that A and that B.

None of these inferences is valid in modal logic, but they 
have been supported in previous studies (e.g., Ragni & 
Johnson-Laird, 2020). Our present experiments examine the 
third of these predictions, the condensation of possibilities, 
both to replicate the phenomenon and to determine whether 
the mModal program can account for the differences in 
individual reasoning strategies. 

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

146



The mModal program for modal inferences 
With the help of David Gürth, we developed a computer 
program mModal, that implements the model theory for 
modal sentential reasoning. Its source code in Python and 
relevant data are available online1. It adds modal operators, 
such as possible and certain, to an earlier program for 
sentential reasoning, and it deals with alethic, deontic, and 
epistemic modalities. Among a variety of inferential tasks, 
which include drawing its own conclusions, it also evaluates 
given inferences. It allows that reasoners may rely only on 
system 1 or that in addition they may invoke system 2. In 
system 1 the intuitive model (cf. Table 1) is built. In System 
2 deliberative models (cf. Table 1) are built by the processes 
described in Figure 2. For an inference, such as: 

     It is raining. 
\ It is raining or it is hot, or both. 

its implementations in both systems 1 and 2 yield the 
evaluation:   
\ The conclusion is possible given the premises. 

In contrast, the inference is valid in any normal modal logic 
and sentential calculus. Both systems in the model theory 
likewise cope with condensations of possibilities, such as: 

It is possible that it is raining and it is possible that it is 
hot. 

\ It is possible that it is raining and that it is hot. 
System 1 condenses the possibilities in the premise into a 
single model: 

raining  hot 
 .  .  .     

where the ellipsis represents the other possibilities.  So, the 
conclusion above follows as necessary.  If system 2 is called 
on to evaluate the inference, it constructs explicit models of 
all four possibilities: 

raining  hot 
raining ¬ hot 

¬ raining hot 
¬ raining ¬ hot 

So, the correct evaluation is that the inference follows only as 
a possibility. In other words, system 2 gives a normative 
account of everyday modal reasoning. 

The program implementing the theory allows that 
knowledge modulates the interpretation of assertions, and 
one of its effects is to block the construction of a model of a 
possibility in system 2 (for evidence, see, e.g., Quelhas et al., 
2019). Its knowledge-base contains fully explicit models 
representing, for example, that if and only if a person is 
married then the person is not single: 

Person:  married ¬ single 
¬ married  single 

The interpretation of an assertion such as: 
It is possible that he is married and it is possible that he is 

 single. 
triggers these explicit models. They block the condensation 

1https://github.com/CognitiveComputationLab/cogmods/tree/ma
ster/modal 

Figure 1: A diagram of the mModal program implementing  
the mental model theory. The boxes denote its main 
components and the arrows denote the flow of control from 
one component to another. 

of the possibilities into one. The model of the possibility that 
a person is married and single: 
 Person:  married  single 
is not consistent with either of the two explicit models in the 
knowledge base, and the inconsistency would yield the null  
model. Hence, the interpretation of the sentence does not 
condense the two possibilities.  

Standard logics evaluate inferences as valid or invalid, 
where a customary definition is “A valid inference is one 
whose conclusion is true in every case in which all its 
premises are true.” (Jeffrey, 1981).  It allows that any 
conclusion whatsoever follows as a valid inference from a 
contradiction—the validity is vacuous, because there are no 
cases in which the premises are true.  Individuals in daily life 
do not infer arbitrary conclusions from contradictions, and so 
the logical conception of validity is inappropriate for 
everyday reasoning. 

The model theory and mModal use alethic modals to 
evaluate inferences. If the premises and a conclusion have no 
atomic propositions in common, then the program evaluates 
the conclusion as irrelevant to the premises. Otherwise, a 
conclusion that describes only one or more possibilities that 
the premises refer to, and that does not deny any of them, is 
necessary. A conclusion that is inconsistent with the premises 
is impossible.  And any other sort of conclusion is possible— 
one that refers to many of the premise models is highly 
possible (probable).  An inference of the sort: 
        The treat is in the cup or the mug.  It is not in the cup. 
     \It is in the mug. 
is necessary and logically valid.  In contrast, this sort of 
inference: 
        The treat is in the mug. 
     \It is in the mug or the world will end shortly, or both. 
is not necessary, though it is logically valid.  People reject it. 
Alethic necessity can be problematic in certain cases.  An 
inference such as:  

Parser

Reasoner module
Implements reasoning tasks, 

does defeasance

Agent 
Simulates a reasoning agent, 

stochastic parameters

Model builder 
System 1 (intuition)

Scan model

Build Conclusion

Conclude

Revise modelBuilds 
mental model

System 2 (deliberation)
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\ It is raining or else it’s cold, but not both. 
The intuitive models of the premise correspond to the 
conjunction of three default possibilities: 

raining 
cold 

raining  cold 
The conclusion holds in first two of these models, but not in 
the third model—indeed, it denies this possibility.  So, strictly 
speaking, it is not a necessary inference, but we refer to it as 
a case of weak necessity because it fails only in denying a 
possibility that the premise allows.  The converse inference: 

       It is raining or else it’s cold, but not both. 
      \ It is raining or it’s cold, or both. 
is logically valid, but it is not necessary, because nothing in 
the premise describes the possibility that both events occur. 

Strategies in modal reasoning 
The theory implies that people should differ in the 
conclusions that they draw, and so for the first time we 
examine individual differences in modal reasoning. To 
understand our procedure, we need to explain the overall 
organization of the mModal program. It has four main 
modules: an agent, a reasoner, a parser, and a model builder. 
Figure 1 depicts these modules, describes their main 
functions, and shows the relations between them. 

The agent uses two free parameters to model reasoning. 
One parameter (*sigma*) is the probability that system 2 is 
invoked to make an inference, and so its values range from 0 
to 1. The other parameter (*gamma*) is the probability that 
the program uses weak necessity to assess inferences. A third 
but pertinent distinction is whether individuals evaluate 
conclusions as necessary or as possible: the program allows 
both options. Table 2 summarizes the six alternative 
strategies that mModal predicts. 

Table 2: Eight alethic reasoning strategies implemented in 
mModal for the evaluation of inferences in which premises 

and conclusion share at least one atomic proposition 

System Given the premises, it can 
evaluate the conclusion as: 

Intuitive (1) necessary 
weakly necessary 
possible 
impossible 

Deliberative (2) necessary 
weakly necessary 
possible 
impossible 

In order to compare the theory’s predictions about how 
individuals’ differ in their reasoning strategies, and also to 
examine how well their performance fitted standard modal 
logics, we used the CCOBRA system (see 
https://github.com/CognitiveComputationLab/ccobra) to 
analyze mModal. It examined the program’s predictions, 
manipulating the free parameters in its Agent component to 

make an optimal fit with the data from each participant, and 
it computed the numbers of participants at each percentage 
level in the accuracy of mModal’s prediction. It likewise 
computed the numbers of participants at each percentage 
level in matching the inferences common to four modal logics 
(systems K, T, S4, and S5), using the Modal-Logic-Tableaux-
Solver2, which Joey Thaidigsman devised. We present these 
results for each experiment. 

Experiment 1: Condensation of modals 
The experiment examined a representative set of inferences 
from a single modal premise to a single modal conclusion to 
contrast the mental model theory’s predictions about 
condensations with those of standard modal logics. The main 
set of 18 inferences included cases of this sort:  

Premise: It is possible that A and it is possible that B. 
Conclusion: It is possible that A and that B. 

where A and B are sensible assertions (see below). The theory 
predicts that individuals should make this condensation in 
default of knowledge to the contrary. It is invalid in standard 
modal logics because A and B could be inconsistent with one 
another, and thus jointly impossible. In the experimental 
inferences, the modals in the premise and conclusion were 
always the same, as were the connectives. The modals were 
of three sorts: possible, necessary, and impossible; and the 
connectives were of three sorts: and, exclusive or, and 
inclusive or. There were two versions of these nine sorts of 
inference. In one version, both clauses in the premise had its 
own modal and the conclusion had single modal, i.e., a 
condensation such as: 

¯A and ¯B \ ¯(A and B) 
In the other version, the premise and conclusion were 
swapped round: 

¯(A and B)  \ ¯A and ¯B 
The theory predicts that participants should accept all 18 of 
these inferences, whereas in the modal logics eight of them 
are invalid (see Table 3 below). As a control, the experiment 
examined a further nine inferences that the theory predicts 
should be rejected, but here we focus on those that it predicts 
should be accepted.  

The contents of the inferences were sensible everyday 
assertions about the locations of two individuals in well-
known cities, and the participants’ task was to answer the 
question: Does the premise imply that the conclusion is true? 
They responded either ‘yes’ or ‘no’. The inferences were 
presented to each of them in a different random order. The 67 
native English speakers in the experiment had no knowledge 
of logic. They were tested on Amazon’s Mechanical Turk. 

Results 
Table 3 presents the results for the inferences for which the 
mental model theory predicts acceptances. The participants 
made 80% of the theory’s predicted evaluations but only 56% 
evaluations that fit modal logic, and the difference was robust 
(Wilcoxon test, z < 6.0, p < .00001). For inferences in which 
the mental model theory diverged from modal logic, the 
predicted ‘yes’ evaluation occurred on 84% of trials, which 
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Table 3: The percentages of participants accepting the 18 
immediate inferences in Experiment 1 (N = 67) for which the 
mental model theory predicts acceptances. Percentages in 
bold are for inferences that are invalid in standard modal 
logics (systems K, T, S4, and S5). 
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was reliably greater than logical ‘no’ evaluations (Wilcoxon 
test, z = 5.9, p <. 00001).  The control filler inferences tended 
to elicit rejections of the inferences (75%). 

Figure 2 presents bee-boxes comparing how well mModal 
and the modal logics accounted for the performance of the 
different participants. As it shows, mModal’s predictions are 
more accurate about individual participants (median of 69% 
accuracy) than modal logic (median of 52% accuracy). The 
difference was reliable (Wilcoxon test based on participants, 
z = 7.85, p < .115, r = .96).  

We compared the fit of the identified strategies to each 
participants response pattern: It showed that the majority of 
them relied on system 1: 52% used it to evaluate necessary 
conclusions, 24% used it to evaluate possible conclusions, 
and 10% used it to evaluate weakly necessary conclusions.  
The remaining 14% used system 2 and were divided in almost 
equal proportions among the three different modal 
evaluations. 
 

 
 
Figure 2: The accuracy of mModal and modal logic in 
predicting the evaluations of individual participants in 
Experiment 1 (N = 67): each dot shows the proportion of a 
participant’s evaluations that mModal predicts (the left box) 
and that the modal logics endorse (the right box). Each bee-
box shows the four quartiles of the participants, with the two 
central quartiles divided by a horizontal line denoting the 
median, and the two whiskers denoting the upper and lower 
quartiles. 

Experiment 2: The consistency of 
condensations 

This experiment tested the mental model theory’s principle 
that individuals condense possibilities only when they are 
consistent. The experiment compared assertions that were 
consistent with those that were inconsistent and that should 
block the inference, e.g.: 

Premise: It is possible that Tom is single and it is possible  
that Tom is married. 
Conclusion: It is possible that Tom is single and married. 
Does the premise imply that the conclusion is true? 

We tested 53 participants from the same population as before. 
They acted as their own controls and evaluated 12 
condensations: inferences from clauses in the premises that 
were each asserted to be possible to a conclusion that was 
asserted to be possible. Half the inferences had conclusions 
that were consistent, e.g.: It is possible that Tom is married 
and that Ben is single; and half had conclusions that were 
inconsistent, e.g., It is possible that Tom is married and that 
he is single. Within each of these halves, the inferences were 
based either on conjunctions in both the premise and 
conclusion, or on inclusive disjunctions in both of them. The 
problems were presented in a different random order to each 
participant. The procedure was identical to the one in the 
previous experiment. 

Results 
Table 4 presents the results of the experiment. They 
corroborated mModal’s predictions: The participants 
accepted the conclusions for 74% of consistent conclusions, 
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but for only 21% of inconsistent conclusions (Wilcoxon test, 
z = 5.7, p < .00001). 

Table 4: The percentages of the participants’ acceptances 
(‘yes’ evaluations) of the four sorts of inference in 
Experiment 2 (N = 53) depending on whether the connective, 
in the premises and conclusion, was a conjunction or an 
inclusive-or, and on whether the clauses A and B, were 
consistent with one another or inconsistent. 

Status of the conclusions 
Sort of inference Consistent Inconsistent 
¯A and ¯B 

  \¯(A and B)   89 27 

¯A or ¯B 
 \¯(A or B) 58 15 

The participants also tended to accept inferences based on 
conjunctions more often than those based on disjunctions 
(Wilcoxon test, z = 3.68, V = 108, p < .0002, r = 0.36)—a 
known phenomenon that the mental model theory predicts 
(García-Madruga et al., 2001). The interaction between these 
two variables was also significant with conjunctions yielding 
a larger difference between consistent and inconsistent 
inferences than disjunctions (Wilcoxon test, z = 3.43, V = 
81.0, p < .0001, r = 0.34).  We surmise that the greater 
difficulty of disjunctive inferences led to a ‘floor’ effect on 
accuracy with inconsistent inferences. 

Figure 3 shows the accuracy of mModal and modal logic 
using the same sort of bee-plots as before. As they indicate, 
mModal makes a greater proportion of accurate predictions 
(median of 72%) than modal logic (median 50%; Wilcoxon 
test z = 6.8, p < .10-12, r = .84). The automated analysis 
showed that all the participants tended to evaluate the 
necessity of inferences, with 61% of them relying on system 
1, and the remainder relying on system 2. 

Figure 3: The accuracy of mModal’s predictions and modal 
logic’s predictions: each dot shows the proportion of a 
participant’s evaluations that the relevant approach predicted 
correctly in Experiment 2 (N = 53). 

General Discussion 
The experimental evidence corroborates three aspects of the 
mental model theory of modal reasoning, and its computer 
implementation, mModal. Contrary to standard modal logics 
such as system K, reasoners tend to condense possibilities 
into one (Experiment 1), but they do not do so when 
inconsistent predicates would hold for the same individual 
(Experiment 2), and their inferential strategies usually rely on 
the intuitive system for reasoning, and on evaluating whether 
a putative conclusion is necessary (Experiments 1 and 2).  So, 
they accepted inferences such as: 

     It is possible that Ben is alive and it is possible that Tom 
     is dead. 
\ It is possible that Ben is alive and that Tom is dead. 

But, they rejected condensations if Tom’s respective 
possibilities are being alive and being dead. Earlier results 
showed that individuals accept inference of the sort: 
        It is possible that A or it is possible that B, or both. 
\ It is possible that A. 

and: 
        If A then B. 
        It is possible that A. 
\ It is possible that B. 

Hence, the evidence bears out the theory of mental models, 
and rules out standard modal logics as playing even a 
normative role in everyday reasoning. People have a natural 
tendency to treat epistemic possibilities as akin to subjective 
probabilities (see also Lassiter, 2017), as presupposing the 
possibility of their denials, and as holding only in default of 
knowledge to the contrary.   

Despite its predictive success, the mModal program has yet 
to embody several aspects of the mental model theory, such 
as its account of counterfactual assertions. A major lacuna in 
the theory itself is its rudimentary treatment of multiple 
modal operators in the same assertion, e.g.:  
        It’s possible that the conclusion may follow of necessity. 
Likewise, the theory makes many predictions that have yet 
to be tested. But no other theory of reasoning accounts for the 
present results. Theories that have replaced logic with the 
probability calculus (see, e.g., Oaksford & Chater, 2020) 
have yet to address modal reasoning, and probability cannot 
account for the meaning of permissibility, i.e., deontic 
possibility. Meanwhile, it seems safe to conclude that 
normal modal logics yield implausible accounts of naive 
reasoning from premises containing modal operators. 
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Abstract 
It is widely accepted that there are five senses. There, however, 
appear to be many more. This paper provides a comprehensive list 
of sensors that will be found in a complete cognitive architecture. 
We also briefly note how widely used these senses have been and 
which ones could yet be implemented in an architecture.  

Keywords: senses, cognitive architecture 

Introduction 
It is widely accepted that there are five senses (e.g., Sekuler 

& Blake, 2001). There has always seemed to be more. A 

recent review of cognitive architectures (Kotseruba & 

Tsotsos, 2020; in press) provides a wide enough review to 

suggest that there are other senses (ways of knowing the state 

of the world or the agent using a sensor) that have sometimes 

been included in cognitive architectures. Upon further 
reflection, there appear to be far more than five senses. This 

paper describes a comprehensive list of sensors that might be 

found in a complete cognitive architecture. We also briefly 

note how widely used these senses have been.  

There are also numerous measures of the body that are not 

available or not completely available to cognition, such as 

calorie needs, water intake, blood sugar, and insulin levels. 

These measures have to be measured externally, suggesting 

that not all aspects of the human state are available directly 

as a sense.  

Thus, the first column of Table 1 provides the start of a 
comprehensive list of human senses for inclusion in a com-

prehensive cognitive architecture. The table is divided into 

external senses, which measure the world, and internal senses 

that tell cognition about the body. The second column of 

Table 1 represents corresponding human sensory systems.  

Additionally, aspects such as perception of time, emo-

tional senses, and social tension perception could be consid-

ered integral aspects of human cognition that are not tradi-

tionally categorized as the five basic senses. These compo-

nents may draw from multiple senses and aspects of 

cognition, contributing to the complex interplay of cognitive 

processes and should be acknowledged in discussions of 
cognitive architectures.  

There are some further senses that some animals have, 

such as a measure of magnetic fields. If we are to build a 

cognitive architecture for animals, we will need those senses. 

If we are building a superhuman model, for example, or a 

robot, we may wish to have those as well. Or we way may 

find that humans have vestigial versions of these senses.  

It is worth noting that the information presented in Table 

1 is not exhaustive, and our scientific understanding is 

constantly evolving. Recent research suggests the possibility 

of a subconscious magnetic sensory system in humans (Wang 

et al., 2019), challenging previous assumptions.  

The remainder of this paper explains each of these senses 

in more detail. With the description in hand, we then discuss 

the implications for modeling cognition and performance.  

This is a conference paper, so the review will necessarily 
be brief and preliminary. If we have left out major results, we 

beg readers to allow us some grace and provide feedback—

to not bite our finger but note where we are pointing.  

Brief Description of the Senses 
In this section, we briefly describe each sense in Table 1 and 

how they have been used in cognitive architectures. When we 

do not note a documented sense, we do not know of work 

using this sense in generative cognitive modelling.  

External senses 
These senses tie the body to world in various ways.   

1 Sight. It is expected that the visual modality takes first 

place here, because it provides the fastest way to transmit 

information about objects in the environment. This modality 

is also most widely used in human-machine interfaces (HMI) 

(e.g., Rydström & Bengtsson, 2007). The importance of 

vision for obtaining information about the world around us 

and surviving is evidenced by the fact that the brain devotes 

more space and resources to processing information coming 

from the visual system than to information coming from all 
other senses combined. The visual modality in cognitive 

architectures is most often implemented using physical sen-

sors or simulations (Kotseruba & Tsotsos, 2020).  

2 Hearing. Audition is the second most frequently used 

modality in modern HMIs. It is often used to provide an ad-

junct to the visual channel, to unload the visual channel for 

receiving information and duplicating it. Auditory modality 

is recommended for use in cases of difficulty or unavailabil-

ity of the visual system like high positive accelerations, 

oxygen deprivation, unnatural lighting or its absence, the 

need to change working position, etc.  

There are two ways to transmit auditory information to a 
person: verbal and audio signals. Words are a fundamental 

aspect of auditory communication and can greatly impact hu-

man cognition and behavior. When presented verbally, words 

engage cognitive processes related to language comprehen-

sion, semantic interpretation, and working memory.  
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Table 1.  A relatively complete list of human senses. 

Senses Sensory systems 

External/Distal 
1 Sight Visual system 

2 Hearing Auditory system 

3 Taste Gustatory system 

4 Smell Olfactory system 
5, 6, 7, 8  Touch 

- touch

- temperature

- nociception (pain, skin)

- vibrations

Somatosensory System 

- mechanoreceptors

- thermoreceptors

- nociceptor

- mechanoreceptors

Internal 
9 Sense of balance or 

equilibrioception, vertigo 

(loss of balance) 

Vestibular System 

10 Air pressure (popping 

ears) 

Auditory system 

Vestibular System 

11 Time (passage of) Interoceptive system and 

other systems 
12 Proprioception (body 

position, all limbs & 

head) 

Somatosensory System 

- proprioceptors

13 Energy level/fatigue Interoceptive system and 

other systems  
14 Need for sleep Interoceptive system and 

other systems 

15 Emotions (e.g., I am 

feeling anger) 

Interoceptive system and 

other systems 
16 Body temperature Interoceptive system 

- thermoreceptors

17 Nociception (pain, 

inside) 

Interoceptive system,

Somatosensory 

System 

- nociceptors

18 Need for air up to 

suffocation 

Interoceptive system

- chemoreceptors

19 Thirst Interoceptive system

- osmoreceptors

and other systems
20 Hunger see Fig. 2 

21 Nausea (Stomach, gut, 

lower gut) 

Interoceptive system 

- mechanoreceptors

- chemoreceptors

- osmoreceptors

22 Need to void (urine) Interoceptive system

- mechanoreceptors

23 Need to void (solid) 

24 Need to void (gas) 

Interoceptive system 

- mechanoreceptors

- chemoreceptors

Sound signals, including tones, beeps, alarms, and melo- 

dies, serve various purposes in HCI and can significantly in-

fluence human cognition and behavior. The characteristics of 

sound signals, such as frequency, amplitude, duration, and 

temporal pattern, play a crucial role in determining their im-

pact on the user.  

The auditory modality in cognitive architectures is most 

often implemented simulating the results (hear: “Hello”) or 

using physical sensors (Kotseruba & Tsotsos, 2020). ACT-R, 

for example, has a simple ear (Byrne, 2001). A design for a 

more complete auditory system has been contemplated 
(Ritter, Brener, Bolkhovsky, 2023). Most architectures do not 

yet hear all these kinds of sounds or even simulate them. 

3 Taste. At its core, the gustatory system governs the execu-

tion of behavioral sequences necessary for locating, inspect-

ing, and ingesting food, a critical function for the survival of 

all animals.  

Taste perception involves complex cognitive processes 

that go beyond mere sensory input. Additionally, taste can 

evoke emotional and physiological responses, further shap-

ing human behavior. For instance, the taste of certain foods 

may elicit pleasure or disgust, leading to corresponding emo-

tional reactions and can influence decision- making processes 
regarding food selection and consumption. MicroPsi appears 

to be the only system with taste (Bach, 2008) because it mod-

els finding food, discriminating, and eating. 

4 Smell. The olfactory system plays a significant role in 

human life but is underrepresented in scientific research (van 

Hartevelt & Kringelbach, 2015). This system not only helps 

us select food and ensure survival, but is also unique in its 

structure and functioning. Unlike other sensory systems, 

olfactory information does not pass through the thalamus, but 

goes directly to cortical areas such as the orbitofrontal cortex. 

Numerous studies point to a deep relationship between the 
olfactory system and emotions. This is due to the fact that 

they use common brain structures for processing: amygdala, 

hippocampus, insula, anterior cingulate cortex and orbito-

frontal cortex (Soudry et al., 2011). Smells can evoke emo-

tional reactions, positive or negative, and can lead to nausea, 

which is then sensed and perhaps amplified as an emotional 

feeling. Some scents can systematically evoke certain emo-

tions, and a person's emotional state can influence the percep-

tion of odors in the environment.  

Impaired sense of smell can lead to anhedonia. This 

phenomenon leads to a decrease in motivation and pleasure 

and is a symptom of many mental illnesses: schizophrenia, 
Parkinson's disease, eating disorders, borderline personality 

disorder, etc. (Pelizza & Ferrari, 2012).  

Smell is represented as a sensory modality in the DAC 

(Mathews et al., 2009), GLAIR (Shapiro & Kandefer, 2005) 

and PRS (Taylor and Padgham 1996) architectures. PSI 

(Dörner, 2000) and MicroPsi (Bach, 2008) also has it because 

their models find food and eat.  

5,6,7,&8 Touch+Temperature+Nociception+Vibration. A 

human receives the majority of information in control sys-

tems through visual and auditory analyzers. The tactile ana-

lyzer is relatively rarely used in architectures, despite its 
immense potential. In real life, humans perform numerous 

gnostic (touch, palpation, contour following, etc.), 

controlling, and identifying movements with their hands.  

There are numerous theories about cutaneous sensitivity, 

which are largely contradictory. However, it is established 

that cutaneous receptors (see Somatosensory system below) 
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include receptors responsible for modalities such as touch, 

pressure, vibration, temperature, and nociception (pain).  

Humans can fairly accurately determine the location of a 

stimulus, the distance on the skin between points of stimula-

tion, distinguish the degree of stimulation, etc. Thus, with the 
help of a multidimensional signal (e.g., a combination of vi-

bration frequency+point of stimulation+amplitude+interval 

between signals), a significant amount of information about 

the control object can be transmitted (such as its state, posi-

tion in space, speed, and assessment of time intervals).  

The vibrotactile modality is often used in devices such as 

smartphones and tactile navigation devices. The cutaneous 

sensory system has also been used for recognizing visual pat-

terns using discrete points, duplicating the visual modality 

(Lindsay & Norman, 1972). In some cases, tactile perception 

surpasses vision. Through touch, a human can assess the 

weight of objects, and determine their temperature and hard-
ness directly.  

Many robotic platforms are equipped with sensor bump-

ers necessary for effective problem-solving in movement and 

ensuring safety during motion. The touch modality is imple-

mented only in 21% of cognitive architectures (Kotseruba & 

Tsotsos, 2020).  

Internal senses 
These are senses that the architecture would use to recognize 

the state of cognition or of the body. 

9 Sense of balance. Just as vision provides information about 

the external environment, the sense of balance, or equilibri-
oception, provides internal feedback about the body's orien-

tation and movement in space, joint position, muscle force, 

and effort. Our sense of balance helps us maintain stability 

and adjust our posture to prevent falls and maintain equilib-

rium. Many of us can remember the emotions that arise even 

when we feel slightly dizzy, especially when we realize that 

this could happen in dynamic situations, such as driving a car. 

Even short-term difficulties perceiving the position or move-

ment of body parts can lead to difficulty performing tasks that 

require precise movements or spatial navigation. The vestib-

ular system is an important component of proprioception and 
is responsible for maintaining static, mixed or dynamic 

balance. A human can improve balance and movement per-

ception by training proprioception (Zsolt, 2018).  

10 Air pressure (popping ears). In addition to external stim-

uli like sound waves, our bodies also perceive changes in air 

pressure. Similar to how we perceive changes in external air 

pressure, such as when flying in an airplane or diving under-

water, our internal sensors detect shifts in atmospheric pres-

sure and respond accordingly by “popping” our ears and 

equalizing this pressure. In cognitive modeling of certain 

types of activities, knowledge of how to reset the sensor after 

pressure changes will be useful to match human behavior. 
11 Time (passage of). The perception of time is fundamental 

to human cognition (e.g., Taatgen, Van Rijn, & Anderson, 

2007; Stine, Klein, & Yatko, 2001; Wittmann, 2009) as it 

provides the framework within which events are ordered, 

episodic memories are formed, and plans are made. Under- 

standing how the brain processes and perceives time is cru-

cial for developing accurate cognitive models, especially in 

areas such as decision-making, planning, and memory. 

12 Proprioception (body position, all limbs, and head). 
This internal sense allows us to coordinate movements and 
maintain balance without constant attention to external visual 

or tactile signals. Robots use this sense, but we know of no 

models that do. 

13 Energy level/fatigue. Similarly to how we perceive exter-

nal stimuli like temperature or texture through touch, our 

bodies internally perceive changes in energy level and fatigue 

in ourselves. This internal feedback informs us of our body's 

physiological state, ranging from feelings of alertness (which 

may be a separate sense) and vitality to sensations of tired-

ness and depletion, influencing our physical and mental per-

formance. There are quite a few known models of physical 

fatigue. Liang et al. (2009) considered, for example, 24 static 
and three dynamic muscle fatigue models. Taking into 

account fatigue during mental work or social interaction is no 

less important, but no models are tied to cognition but for PSI. 

Patzelt and Shepherd (2024) recently presented a fatigue 

model of social venturing and showed that social project fa-

tigue leads to an entrepreneur's disengagement from goals 

and decreased sensitivity to social issues, diminishing the en-

trepreneur's prosocial motivation to achieve goals and/or 

prompting them to abandon social projects altogether. Cor-

rect assessment and modeling of various types of fatigue will 

be necessary to determine the optimal mode of work and rest 
and will be very important for cognitive modeling long-term 

tasks. 

14 Sleep, need for. Comparable to how we respond to exter-

nal cues like darkness or noise to initiate sleep, our bodies 

internally perceive signals indicating the need for rest and 

sleep. While this sense may be imperfect and not always align 

with external factors, such as work schedules or environmen-

tal conditions, it plays a crucial role in regulating our sleep-

wake cycle and overall well-being. The need for sleep is 

essential for cognitive recovery, memory consolidation, and 

our overall brain health.  

15 Emotions. Emotional senses, including the recognition 
and interpretation of emotions in oneself and others, play a 

central role in human social interaction, decision-making, 

and overall well-being. Some of this processing is just cogni-

tive. This information might appear from vision, but noticing 

the emotions in oneself might be seen as a sense that varies 

across people and may be tied to the gut.  

Social tension perception (external) refers to the ability to 

sense and respond to social cues, hierarchies, and dynamics 

in interpersonal interactions. This aspect of cognition is crit-

ical for navigating complex social environments, forming 

alliances, and predicting others' behavior. Incorporating so-
cial tension perception into cognitive models can lead to more 

realistic simulations of human behavior and societal dynam-

ics. Knowing yourself (and others) is perhaps now a type of 

sense to put on our list.  
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Emotions and internal sensations are closely intertwined. 

Similar to how external stimuli can elicit emotional re-

sponses, our internal experiences of emotions such as anger 

or shame can be a form of sensory perception. Just as we 

interpret external stimuli to generate emotional responses, 
our internal emotional states also provide feedback about our 

psychological well-being and inform our thoughts, behaviors, 

and decision-making processes.  

This highlights the importance of developing emotional 

models for cognitive architectures as well as in human-robot 

interactions. An emotion ontology (e.g., www.ebi.ac.uk/ols4/ 

ontologies/mfoem) can be a starting point for this.  

16 Body temperature. Analogous to how we perceive exter-

nal temperatures, our bodies internally sense changes in our 

body temperature. This internal feedback informs us of our 

body's thermal state, whether we feel warm or cold, and trig-

gers physiological responses such as shivering or sweating to 
maintain homeostasis.  

Humans and animals have several internal highly sensi- 

tive (molecular) “thermometers”, presented in the form of 

transient receptor potential channels (TRP), which ensure the 

maintenance of internal body temperature with minimal 

energy expenditure.  

Temperature sensitivity has not yet been sufficiently stud- 

ied. For example, “mild cooling is detected by the menthol- 

sensitive TRPM8 ion channel, but how painful cold is de-

tected remains unclear” (Buijs & McNaughton, 2020). 

17 Nociception (pain). A human has pain-sensitive receptors 
also in the internal organs. Experts distinguish between the 

concepts of “nociception” and “pain” (Sneddon, 2018).  

Nociception is the ability to detect and respond to various 

stimuli. Our body instantly responds to the stimulus with pro-

tective reflexes, which are called nocifensive. If these reac-

tions become long-lasting and change our behavior, it may be 

a sign of discomfort associated with pain. Thus, pain is not 

only a physical sensation, but also a complex emotional and 

behavioral experience. Here, we count internal pain.  

Additionally, there is an understudied role for passive 

nociception. Passive nociception involves the participation of 

inactive nociceptors in controlling our behavior. They seem 
to “push” us and direct us to ensure that actions do not cause 

pain or injury (Armstrong, 2024). This, for example, explains 

periodic stretching during prolonged sitting. There may be 

multiple types of receptors.  Autonomic systems may provide 

an analogy.   

18 Need for air. Comparable to how we respond to external 

stimuli like smoke or carbon monoxide by seeking fresh air, 

our bodies internally perceive the need for oxygen and re-

spond to insufficient oxygen levels with sensations of suffo-

cation or breathlessness. This internal sense of respiratory 

distress prompts behaviors to ensure adequate oxygen intake, 
such as adjusting breathing patterns or seeking oxygen-rich 

environments. This is an important sense and can be confused 

by carbon monoxide and nitrogen.  

19 Thirst. Analogous to how we respond to external cues like 

dryness or saltiness by feeling thirsty, our bodies internally 

sense the need for hydration through the sensation of thirst. 

Osmoreceptors of the interoceptive system play an important 

role in detecting water imbalance and drinking behavior in 

humans. This internal feedback signals dehydration and 

prompts behaviors to seek and consume fluids to maintain 

fluid balance and prevent dehydration. Dehydration can lead 
to cognitive deficits, including problems with concentration, 

memory, mood regulation, etc.  

Mechanoreceptors of the interosceptic system, which 

respond to changes in pressure in the hollow organs, help us 

perform reflex acts of urination and defecation. ACT-R/Phi 

has worked in this area.  

20 Hunger. See example description below. 

21 Nausea (Stomach, gut, lower gut). A major aspect of 

human thought and knowledge has been left out of all cogni-

tive architectures, even PSI (Bach, 2008; Dörner & Güss, 

2013). This aspect is the gut brain (Mayer, Nance, & Chen, 

2022) that mobilizes the movement of food through the body 
with around 100 million nerve cells, and has concurrent 

effects on mood and that informs or indirectly leads to 

changes in multiple internal measures, such as need to void.  

Nausea serves as a warning sign of digestive disturbances 

or toxin exposure, influencing cognitive and behavioral re-

sponses. Nausea and hunger can impair concentration and 

decision-making, leading to decreased performance and mo-

tivation. Osmoreceptors, together with chemoreceptors, help 

a human determine the presence and concentration of harmful 

substances in the body. Mechanoreceptors are responsible for 

reflex coughing and vomiting.  
22 Need to void (urine). The urge to urinate signals the 

body's need to eliminate liquid waste products and maintain 

urinary function. Ignoring or delaying this sensation can lead 

to discomfort and distraction, affecting cognitive focus and 

productivity, and has even killed people (e.g., Tycho Brahe). 

Acknowledging and responding to the need to void is essen-

tial for maintaining physical comfort and supporting cogni-

tive well-being.  

23, 24 Need to void (solid, gas). Humans, like animals, can 

generally know that they need to void their solid waste. They 

also often, but not infallibly know whether it will be solid, 

liquid, or gas.  

Human Perceptual Systems 
To understand how a human interacts with the world and how 

we can model this process, we briefly consider a few sensory 

systems. We leave out the most commonly covered, vision 

and hearing. This survey, in turn, will help us create a more 

advanced and comprehensively meaningful cognitive archi-

tecture.  

Somatosensory System 
Purpose: Provides the brain with information about various 

sensations inside and around the body, including touch, pres-

sure, vibration, pain, temperature, and body position in space. 

It includes the cutaneous sensory system and the musculo-

skeletal sensory system. 

Main Function: Transmitting sensations for awareness and 

response to external and internal stimuli. 

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

155



Receptors: Mechanoreceptors such as Merkel discs and 

Meissner's corpuscles (sense touch, pressure and vibration), 

thermoreceptors (sense temperature), nociceptors (sense 

pain), proprioceptors (perceive body position in space). 

As mentioned above, proprioception ranks third in num-
ber of implementations after vision and symbolic input. 

Therefore, we will present a brief look at the proprioceptor 

sensory system as a part of Somatosensory System: 

Purpose: Provides the brain with information about move-

ment, the position of body parts relative to each other, and the 

force necessary to perform movements. 

Main function: Movement planning and control. 

Receptors: Proprioceptors (this is a type of mechano-recep-

tor) - in muscles, joints, tendons, ligaments and connective 

tissues. 

Gustatory system 
Purpose: Provides the brain with information about the taste 
of food. 

Main Function: Perception of taste qualities of food. 

Receptors: Proprioceptors in the tongue and other areas of the 

oral cavity react to various taste qualities of food, including 

sweet, salty, sour, bitter, and umami. 

Olfactory system 
Purpose: responsible for perceiving odors. 

Main Function: Assessing appetitive aspects of food. The 

Olfactory System plays a vital role in evaluating the aromatic 

properties of food and can influence the desire to consume 

particular items. 
Receptors: Olfactory receptors located in the nasal cavity. 

These receptors respond to chemical substances in the air we 

inhale. They detect various aromatic molecules. 

Vestibular System 

Purpose: responsible for perceiving body position and move-

ment in space. It includes the ear and a set of neural connec-

tions that help maintain balance, coordinate movements, and 

control spatial orientation. 

Main Function: The main function of this system is to main-

tain the body's balance and orientation in space. It allows an 

individual to assess whether they are in a vertical position, 

moving, or stationary. 
Receptors: Vestibular receptors located in the inner ear. 

These receptors respond to head movements and body 

posture. They perceive acceleration and changes in head 

position, enabling the assessment of the body's position in 

space. 

Interoceptive System 
Purpose: Provides the brain with information about internal 

physiological states of the body, such as hunger, thirst, 

fatigue, pain, temperature, organ conditions, and other bio-

logical aspects. This system plays a key role in self-

awareness of physiological states and responding to them.  
Main Function: Perception of internal sensations. 

Receptors: Interoceptive receptors in various organs includ-

ing the stomach, intestines, and other internal parts, detecting 

glucose levels, pressure, temperature, and other internal 

parameters.  

A semantic network (Fig. 1) was developed to formally 

describe this knowledge. It describes how a Human uses sen-

sory systems to perceive the outside world, including: the 

Visual, Auditory, Gustatory, Somatosensory, Olfactory, 

Vestibular, and Interoceptive systems.  

Figure 1. Formal representation of knowledge about the 
human sensory system. 

In addition, the Sensory System consists of the following 

set of receptors: chemoreceptors, mechanoreceptors (that in 
turn include proprioceptors), photoreceptors, thermorecep-

tors, nociceptors. Figure 1 shows only a fragment of the 

semantic network to not make the picture noisy, only Soma-

tosensory system receptors are indicated.  

How do humans use their sensory systems? 
Let's consider this using the example of a feeling that each of 

us has experienced at least once in our lives—the feeling of 

hunger. The main human sensory systems associated with 

feelings of hunger and satiety are:  
• Taste. It is associated with the perception of the taste of

food. Receptors in the tongue and other parts of the oral 

cavity respond to different taste qualities of food  

•Olfactory system. The sense of smell plays a key role in

assessing the appetizing aspect of food. Smells can greatly 

influence appetite and anticipation of food intake  
• Somatosensory system. It is responsible not only for

sensations associated with the bodily senses, but also for sen-

sations associated with digestion. Mechanoreceptors in the 
stomach and intestines respond to organ distension and chem-

ical changes associated with food intake. Chemoreceptors 

found in the stomach, intestines and other parts of the diges-

tive tract respond to chemical changes in the body, including 

changes in the levels of hormones such as ghrelin (the hunger 

hormone) and leptin (the satiety hormone). They help regu-

late feelings of hunger and satiety by interacting with the 

hormonal systems, which are also involved in this regulation. 

Based on information received from sensory systems, the 

brain decides how the body should respond. These reactions 

may include: 
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• Appetite regulation: The brain can regulate appetite

levels by influencing hormonal systems such as hormonal 

appetite regulators including ghrelin and leptin  
• Stimulate digestion: The brain can send signals that

stimulate digestive processes in the stomach, intestines and 

other parts of the digestive system, preparing the body to eat. 

In doing so, the brain initiates a response that involves acti-

vating the autonomic nervous system (responsible for auto-

matic body functions, including the digestive system) and 

coordinating this response within the digestive system  
• Metabolic regulation: The brain influences the body's

metabolism by controlling how quickly food is processed and 

how energy is distributed. 

• Induction of hunger or satiety: The brain can induce
feelings of hunger or satiety depending on the body's current 

needs, food information, and other factors.  
Based on the above, a model was built (in the form of a 

semantic network) of how a human feels hunger (Fig. 2).  

Figure 2. How a human feels hunger. 

Discussion and Conclusion 
What will we do with such lists? We can use the list to look 

for senses to include in cognitive architectures. First, there 

are many more senses than five! There are some external 

senses that can extend our cognitive and physiological 

(Hester et al., 2011) architectures. The internal senses are 

basically not included in cognitive architectures, but some are 

in agent and robots.  

Kotseruba and Tsotsos (2020; in press) provide an exten-

sive review of 84 cognitive architectures and defined the 

nomenclature of sensory modalities the architectures use. 

Here is their list, ordered in descending order of the number 
of modalities used: vision, symbolic input, proprioception, 

other sensors, audition, touch, smell and multi-modal.  

External senses have tended to be more difficult to model 

than cognition; they require transducers to the real world (or 

models of them) and may require more knowledge and pro-

cessing than cognition does. Including further external senses 

will also require tasks that use them. Most tasks studied to far 

do not use touch, smelling, hearing, or taste, partly because 

they are complicated to model and because psychology tends 

not to study them as often as the distal ones. 

The internal senses are not often used in classic psychol-

ogy studies. For example, only when we create longer run-

ning models (e.g., driving a great distance, Wu, Bagherzadeh, 

Ritter, & Tehranchi, 2023), will hunger, thirst, and voiding-

related senses be necessary. Time estimation is a task, but it 
is not often used. It is used in more complex tasks that have 

not yet been modelled but is probably ubiquitous in all 

behavior.  

The list of senses also suggests types of cognitive 

knowledge that are missing, for example, adjusting your body 

can reduce pain, or that a smell can be followed in the same 

way that active vision can lead to further information 

(Findlay & Gilchrist, 2003).  How stress is perceived could 

be part of this story as well or for sense interaction.  

When we consider the significance of this list of sensory 

modalities for cognitive architecture, it becomes evident that 

our understanding of sensory perception is constantly evolv-
ing. Recent discoveries, such as the identification of a sixth 

taste modality linked to lipid perception (Besnard, et al., 

2016), complement traditional notions of sensory processing. 

Research on animal sensory systems also aids in designing 

and validating models for humans. For instance, insights into 

the sexual dimorphism of the olfactory system in mammals 

(Samaulhaq et al., 2008) corroborate findings (Oliveira-Pinto 

et al., 2014) showing that human dimorphism is conditioned 

by feminine characteristics. This, in turn, may explain the 

superior performance of women compared to men in 

olfactory tests.  
Additionally, a number of studies have examined the intri-

cate relationship between senses such as emotions and smells, 

as well as balance and nausea. Smells, just like emotions, can 

elicit positive, negative, or neutral reactions and influence our 

perception and behavior. This suggests common neural 

substrates underlying these phenomena.  

The five senses have been mapped to brain regions. This 

larger list suggests that there are further regions to be 

assigned to the further senses. This mapping will help explain 

why we have such a big brain and how we use it.  

This review shows that it is a big world out there still, and 

a big world even within ourselves yet to be modelled. We will 
need multiple sensors and multiple tasks to exercise these 

sensors.  
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Abstract 
Cognition and emotion must be partnered in any complete 
model of a humanlike mind. This article proposes an extension 
to the Common Model of Cognition – a developing consensus 
concerning what is required in such a mind – for emotion that 
includes a linked pair of modules for emotion and 
metacognitive assessment, plus pervasive connections between 
these two new modules and the Common Model’s existing 
modules and links.  

Keywords: Common Model of Cognition; emotion, 
metacognitive assessment; cognitive architecture 

Introduction 
The Common Model of Cognition (Rosenbloom, Lebiere & 
Laird, 2022) – née the Standard Model of the Mind (Laird, 
Lebiere & Rosenbloom, 2017) – is a developing consensus 
concerning what must be in a cognitive architecture to 
support humanlike minds. The consensus is derived from 
existing cognitive architectures, from researchers who study 
them, and from results relevant to them, with humanlike 
minds comprising human minds plus any other natural or 
artificial minds similar enough to be modellable in the same 
manner at the chosen level of abstraction. 

The Common Model is not intended to be a cognitive 
architecture in the traditional sense, in being abstract, 
radically incomplete, and not directly executable. What it 
includes is limited to what the community can reach a 
consensus on concerning its necessity for humanlike 
cognition. Sufficiency considerations play into what topics 
are considered for consensus building but play no direct role 
in judging what is actually to be included. 

This article reports on an effort to address one major source 
of incompleteness in the Common Model – concerning 
emotion – that has not yet reached a consensus with respect 
to necessity. It thus amounts to a proposal for how to extend 
the Common Model to particular aspects of emotion but not 
(yet) an actual extension of the Common Model to emotion. 

As stated in Larue et al. (2018), “Modeling emotion is 
essential to the Common Model of Cognition … because 
emotion can't be divorced from cognition. … Emotions play 
an important functional role, with the purpose of helping us 
to survive and adapt in complex and potentially hazardous 
physical and social domains (Panksepp & Biven, 2012). They 

aren’t necessarily finely tuned but guide our behavior in 
directions evolution has taught us are wise.” 

What is proposed here is nowhere near a full model of 
emotion. It focuses on only the architectural aspects of how 
emotional states arise and affect cognition; and this it only 
does abstractly, not delving into the details of appraisal and 
dimensional models. It also has nothing to say at this point 
about such topics as how emotional states are reflected in 
external expressions. Still, the intent is to take a significant 
step in considering how emotion relates to architectures that 
align with the Common Model. 

The next section provides background on the Common 
Model and how we arrived at this proposal. The subsequent 
two sections provide more details on two new modules that 
are proposed for inclusion into the Common Model – one for 
emotion and one for metacognitive assessment – and how 
they interact with the rest of the model. The final section 
summarizes what has been proposed here. 

Background 

Figure 1: The Common Model of Cognition. 

Figure 1 shows the basic structure of the Common Model. It 
comprises a central working memory, two long-term 
memories, and perception and motor modules. Working 
memory (WM) represents the current situation. Procedural 
long-term memory, which consists generically of rule-like 
structures, has direct access to all of WM. The other modules 
interact with it through dedicated buffers. Declarative long-
term memory here does not (yet) distinguish between 
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semantic and episodic knowledge. The perception and motor 
modules are minimally defined. 

This figure is accompanied by sixteen assumptions about 
how it all works, divided up according to whether they bear 
on: (A) structure and processing; (B) memory and content; 
(C) learning; or (D) perception and motor control. Key
assumptions, for example, include: (A3) there is significant
parallelism both within and across the modules; (A4)
sequential behavior arises from a cognitive cycle operating at
~50 msec in humans; (B1) long-term memories contain
symbolic data with associated quantitative metadata; (B2)
global communication occurs via WM; and (C2) learning
occurs incrementally as a side effect of performance.

A broad survey of cognitive architectures can be found in 
Kotseruba and Tsotsos (2020), including examples of 
architectures with aspects of emotion. The proposal here, 
however, grew more directly out of an earlier analysis of the 
relationship of emotion to the Common Model (Larue et al., 
2018) that later fed into a virtual workshop on the topic in 
June 2022. Out of the final session of that workshop came an 
initial consensus (Figure 2). 

Figure 2: A version of the initial CMC+Emotion synthesis 
from the 2022 workshop. 

The core of this figure is the pre-existing Common Model. 
Added to it is an affect module intended to capture key 
aspects of emotion. It receives input from physiology, to react 
to bodily state; from perception, to invoke immediate 
reactions to the state of the world without requiring direct 
cognitive participation; from its WM buffer, to invoke 
reactions to the state of the cognitive system; and from WM 
more broadly, and likely more diffusely, to set the context for 
affective processing. In return, the affect module provides 
input to its WM buffer, to enable reasoning by the cognitive 
system about its results; it filters communications between 
the other modules and WM; and it directly affects perception 
(see, e.g., Zadra & Clore, 2011). 

In this model, reasoning about emotion – that is, the “cold” 
aspects of emotion, whether concerning oneself or others – is 
presumed to occur via standard cognitive processing within 
the original modules of the Common Model. The higher-level 
aspects of appraisal theory (e.g., Marsella & Gratch, 2009; 
Moors et al., 2013; Scherer, 2001) would thus fit here. The 
“hot” aspects of emotion are presumed to be the province of 

the physiological system that is not shown but that provides 
input to the affect module (e.g., Dancy, 2013). The model 
provides scope for both of these aspects of emotion but has 
nothing further to say about either of them. 

What was termed the “warm” aspects of emotion at the 
workshop are the architectural facets of emotion processing, 
such as processing within the affect module itself, how 
metacognitive assessment lays the groundwork for it, and its 
impact on the rest of the Common Model. As with cold and 
hot emotion, the model does not delve into the internals of 
these two warm modules, but it does propose extending the 
Common Model’s architecture to include them. Still, given 
that warm emotion is architectural, it would make sense for 
future work on the Common Model to accrete further details 
about how they operate. 

One example architectural precedent for key aspects of this 
proposal can be found in the Sigma cognitive architecture 
(Rosenbloom, Gratch & Ustun, 2015). Attention there 
differentially abstracts messages throughout the cognitive 
system, affecting both communication across modules and 
within them, driven by a combination of two low-level, 
architecturally computed appraisals – desirability and 
surprise – which are themselves a function of what is 
perceived, what is learned, and what is in WM. The results of 
these appraisals then arrive back in WM. Other examples 
include West and Young’s (2017) proposal for a similar 
extension to the Common Model that accesses WM like 
procedural long-term memory while providing subsymbolic 
evaluations back to both long-term memories, and Smith et 
al.’s (2021) argument for activation in ACT-R to include 
emotion via an additive scalar term. 

Although there was a sense of consensus coming out of that 
workshop with respect to something like Figure 2, it was the 
result of only a few days' work by a subset of the community 
that did not actually come together until the final session. It 
thus did not seem right to consider it by itself as an official 
consensus. And, even if it were to become such, and thus part 
of the Common Model, it was quite minimal. So, the first four 
co-authors on this article set out to push the model further 
before going back to the community to see if a more thorough 
consensus was reachable. The proposal here is the product of 
these deliberations. 

Outline of the Proposal 
Figure 3 outlines this new proposal. The changes in module 
locations from Figure 2 are purely cosmetic, to simplify and 
deconflict the resulting diagram. Each of the remaining 
changes reflects refinements that have been made to the 
initial CMC+Emotion model in Figure 2. This is a complex 
figure that will be broken down further in the next two 
sections. 

One change that may look cosmetic is relabeling the affect 
module as emotion. Significant consideration went into the 
question of exactly what function this module – which has at 
various times been labeled affect, emotion, or physiology – 
should serve, as well as how it connects to the other modules. 
It being labeled emotion in Figure 3 implies this concluded 
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with the idea that while it senses physiology this module’s 
role is to generate emotional vectors, such as <valence, 
arousal> or more extended vectors, that are central to 
dimensional models of emotion (e.g., Juvina, Larue & 
Hough, 2018; Mehrabian & Russell, 1974; Rubin & Talarico, 
2009), but without a commitment to the size or contents of 
such a vector. 

Figure 3: Refined CMC+Emotion synthesis that is the basis 
of the current proposal. 

One major change was due to noticing that an important 
pathway, and associated module, was missing from Figure 2 
that generates low-level appraisals based on observing the 
existing modules and the traffic among them, and transmits 
the results to the emotion module. This has taken the form 
here of a metacognitive assessment module that is discussed 
after the emotion module. 

A second major change is that the emotion module here not 
only filters communications between other modules and WM 
but also affects how the modules themselves operate. One 
simple example of the latter is how emotions may yield 
rewards for reinforcement learning in procedural long-term 
memory (e.g., Marinier & Laird, 2008), or somatic markers 
in declarative long-term memory (Damasio, 1994). 

More broadly, extensive evidence indicates that emotions 
can exert specific influences on memory storage and 
retrieval, affecting the processing of learned 
information. These include much-studied everyday effects 
such as state-dependent memory (e.g., Eich, 1995) and 
clinical effects such as post-event emotional and traumatic 
responses (Brewin, 2011) that are directly mediated via 
cortico-amygdala loops (e.g., Fadok et al., 2018; 
Grundemann et al., 2019). Several specific hypotheses about 
the nature of the effects of emotional content on memory 
storage, retrieval, and inference can be posed both 
behaviorally and neurally to clarify features of emotion-
memory interactions (e.g., Fadok et al., 2018; Janak & Tye, 
2015; Kesler, 2001; Saarimaki, 2016).  

The emotion and metacognitive assessment modules can 
both be seen as analogous to the perception module, although 
they perceive physiology and the cognitive system 
respectively rather than the external environment. Similar 
analogies are also conceivable between these new modules 

and the motor module when their ability to act on their 
environments is considered. 

The beginnings of an attempt has been made to determine 
if a consensus was reachable around this new proposal, 
involving two separate emails to the workshop attendees 
requesting input from them on it, one informal, as free text, 
and one structured more formally as a questionnaire, but this 
process proved insufficient to yield a consensus even among 
the workshop attendees, so no attempt has yet been made at 
achieving a broader community consensus. 

This material is therefore presented as a proposal for 
further consideration rather than as an agreed-upon extension 
to the Common Model. The other two co-authors on this 
paper were workshop attendees who agreed to join in this 
latest stage of proposal refinement and presentation. 

Emotion Module 
Figure 4 is a simplified version of Figure 3 that eliminates 
metacognitive assessment. This version is much like Figure 
2, but for two key extensions. First, there is a connection from 
the emotion module back down to physiology for emotion 
vectors to affect physiology; for example, when a cognitively 
identified threat – such as a verbal threat – requires the body 
to prepare to respond. Second, the dot-dash arrows from the 
emotion box now point to the junctions between the non-WM 
Common Model modules and their links to WM. This is to 
indicate that not only can the vectors from the emotion 
module filter communication along these links, but they can 
also modify how these modules work. Although the model 
does not specify how this happens, examples may include 
altering how procedural memory selects actions to execute 
and how declarative memory determines what knowledge to 
retrieve. 

Figure 4: A version of Figure 3 simplified to omit 
metacognitive assessment. 

In Figure 4, as in Figure 2, there is a WM buffer associated 
with the emotion module. The arrow to this buffer enables the 
vectors generated by the module to appear in working 
memory. In Common Model fashion, these vectors could 
arrive as symbolic data identifying the dimensions of the 
vector with quantitative metadata that specifies their values. 
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The return arrow provides cognitive input to the emotion 
module, including high-level appraisals. As discussed further 
in the next section, low-level appraisals follow a different 
route, via the metacognitive assessment module. With input 
to the emotion module that includes both high-level and low-
level appraisals, and output from it in the form of vectors, this 
proposal implies a connection between appraisal and vector 
models in which the former are inputs to creation of the latter. 
However, vector generation also depends on inputs from 
physiology and perception, and possibly other content in 
WM. 

Two simple examples of how this might proceed based just 
on appraisals, albeit at opposite ends of the vector-length 
spectrum, are (1) generation of large vectors by assigning one 
slot to each appraisal; or (2) generation of intensity and 
valence pairs by aggregating over the values of all appraisals 
for the former and differentially over positive and negative 
appraisals for the latter. Under the second option, 
physiological inputs might combine straightforwardly with 
the two values derived from appraisals. 

Figure 4 includes a bidirectional arrow between emotion 
and perception, although it is shown as a dotted line because 
it remains unclear whether a direct return path from emotion 
to perception is needed in addition to the curved arrow that 
already indicates emotional modulation of perception. 

Metacognitive Assessment Module 
In attempting to include appraisals and their relationship to 
emotions, we ended up modeling them generically as aspects 
of metacognition – where the cognitive system operates on 
itself – a large-scale topic of its own on which an overall 
consensus has not yet been reached with respect to the 
Common Model, although Kralik et al. (2018) did begin 
exploring this question. 

The particular point of interest here is that some forms of 
low-level appraisals, such as surprise and familiarity, can be 
thought of as metacognitive assessment that is grounded in 
fixed, architectural sensors that observe what is happening 
within the overall cognitive system. As one simple example, 
both surprise and familiarity are computed architecturally in 
Sigma based on monitoring its learning process. 

This approach would put such appraisals in the same 
category as, for example, a sensor for feeling of knowing that 
assesses when declarative memory will be able to retrieve an 
appropriate memory given a cue (Nhouyvanisvong & Reder, 
1998). It would also put them in the class of “warm” aspects 
of emotion. 

Figure 5 shows a version of Figure 3 that includes the 
metacognitive assessment module for low-level appraisals, 
but which is simplified via the removal of the dot-dash arrows 
from the emotion module to the relevant Common Model 
modules. 

In this figure it can be seen how the low-level appraisals 
from this new module act as inputs to the emotion module. 
However, it remains unclear in general whether these 
appraisals should arrive directly from the metacognitive 
assessment module via the dotted arrow between the two 

modules, or whether this path can be omitted given the 
existence of the path via solid arrows that traverses WM. 

Figure 5: A version of Figure 3 simplified to omit the dot-
dash arrows from the emotion module to the non-WM 
Common Model modules. 

High-level “cold” appraisals, such as causal attribution, are 
considered to be essentially cognitive in nature, although 
Figure 5 abstracts over whether this form of metacognition 
occurs within (possibly a recursion on) the same cognitive 
system (e.g., Rosenbloom, Laird & Newell, 1988) or via a 
distinct metacognitive system (e.g., Cox, Oates. & Perlis, 
2011; Sun, Zhang & Matthews, 2006). It makes sense to defer 
attempting to resolve such a question until a full exploration 
is begun of how to extend the Common Model to 
metacognition. 

As shown in Figure 5, the metacognitive assessment 
module receives input from each of the other non-WM 
modules in the original Common Model. That these 
connections are from junctures between these other modules 
and their links to WM is intended to indicate that the 
metacognitive assessment module can sense both their 
communication with WM and what is going on within them, 
although the figure abstracts over exactly what is sensed. 
None of this sensing of the cognitive system is reflected in 
Figure 2, but it is intended to effectively be the inverse of how 
the emotion module acts upon these junctures. 

There are no arrows back from the metacognitive 
assessment module to the other modules, which might be 
expected in a full analysis of metacognition, but these do not 
appear necessary for emotional metacognitive assessment. 
Instead, what feedback does occur goes through the emotion 
module before it reaches them. Whether direct backward 
connections are ultimately needed in addition to this route 
through the emotion module remains to be seen. 

Although metacognitive assessment is shown in Figure 5 
as a separate module, it is not yet clear whether it should truly 
be considered a module on its own versus there being merely 
bits of it distributed across the other modules and 
connections, where it is presumed that the sensing actually 
occurs. It is shown as a module here to leave open the 
possibility of architectural across-module appraisals – such 
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as the earlier Sigma example in which attention is based on 
both surprise and desirability – rather than assuming that all 
low-level assessments are specific to one module or that all 
combinations of them happen cognitively. However, the 
necessity of such a possibility remains as another open 
question. 

An arrow is shown in Figure 5 from metacognitive 
assessment to WM to make low-level appraisals accessible to 
cognition in support of higher-level appraisal, including 
complex across-module appraisals, as well as other relevant 
cognitive processing. The reverse arrow, from WM back to 
the module indicates WM affecting metacognitive 
assessment. 

It is left open whether these interactions are as 
unconstrained as those between procedural long-term 
memory and WM or whether they are constrained to go 
through a module-specific buffer, as is the case with the other 
modules. However, if the arrow from WM to the 
metacognitive assessment module is unconstrained, it may be 
able to substitute for Figure 2’s arrow from WM to the affect 
module, supporting a flow from all of WM, through 
metacognitive appraisal, to emotion. 

The previous section raised the question of whether a direct 
connection is required from emotion to perception. In the 
current context, the existence of a pathway from perception, 
through metacognition, to emotion raises the reverse 
question, as to whether a direct link from perception to 
emotion is necessary when this slightly less direct path 
already exists. 

Summary 
The proposal presented here for extending the Common 
Model of Cognition to aspects of emotion includes a new 
emotion module that can affect the workings of the existing 
non-WM modules as well as filter their communications with 
WM. It also includes a new metacognitive assessment 
module that can perceive WM plus the workings of the 
existing non-WM modules and their communications with 
WM. These two modules, plus links between them and 
between the emotion module and physiology, comprise the 
core of the proposed model, as outlined in Figure 3. 

This model is of course incomplete in many ways with 
respect to the full complexity of emotion. It shares the 
Common Model’s natural abstraction and incompleteness in 
terms of only including aspects about which there is a 
consensus, although here this is in terms of what might 
become a consensus. Thus, this article still reflects only a 
beginning of a beginning at extending the Common Model to 
emotion, even while building on multiple earlier efforts in 
this direction. Still, given the importance of the connection 
between cognition and emotion, it hopefully provides a basis 
for a wider discussion of what should be added to the 
Common Model in support of extending it to emotion. 
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Abstract

Collaborative learning is when learners reconstruct one’s
knowledge based on others’ knowledge and then gain under-
standing. However, it is indicated that working memory in-
hibits the cognitive process learners acquire and use other’s
knowledge. Additionally, it is challenging to manipulate learn-
ers’ working memory and capture the cognitive process during
collaborative learning in psychological experiments. There-
fore, this study investigated how working memory influenced
the search for knowledge reconstruction in a psychological ex-
periment and further examined the nature of the cognitive pro-
cess using ACT-R, a cognitive architecture and theory for hu-
man cognition. Both laboratory experiments and simulations
revealed a positive correlation between working memory and
correct. Also, those revealed no correlation between working
memory and incorrect. In model-based simulations, we found
that reconsidering based on others’ knowledge was effective
when working memory was high. This study contributed to
developing pedagogical agents as collaboration members and
teachable agents to support collaborative learning.
Keywords: Collaborative learning; Working memory; Com-
puter simulation; ACT-R

Introduction

The efficacy of collaboration is that learners reconstruct their
ideas based on other people’s knowledge and ideas (Shirouzu
& Miyake, 2002). What learners externalize based on others’
ideas leads to correct knowledge use (Chi & Wylie, 2014).
However, learners contribute less to collaborative learning
than to individual knowledge; this is called “collaborative in-
hibition.” In collaboration, people find it challenging to ac-
quire others’ perspectives (Hayashi, 2020). According to
Shimojo and Hayashi (2019), visualizing each other’s knowl-
edge using concept maps facilitates the use of correct knowl-
edge. Correct knowledge is used so learners can use the cor-
rect knowledge in the text. To fill in the learning text in a link
to concept maps, learners must understand the learning text.
Therefore, acquiring others’ knowledge facilitates the use of
correct knowledge.

Considering these facts, this study investigates how learn-
ers use correct knowledge in a collaborative learning environ-
ment using concept maps based on the human cognitive pro-
cess. Additionally, this study developed a cognitive model to
explain how learners retrieve their knowledge and use correct
and incorrect knowledge in explanation activities to investi-
gate these mechanisms. Subsequently, this paper explains the
factors involved in using knowledge to learn, overview the-
ory, and cognitive model of collaborative learning.

Factor on Knowledge Use During Collaboration

It is commonly believed that learning and individual memory
are closely related, particularly to working memory. There
is a dual-store model as a theory of memory, which indicates
elaboration by rehearsal (Atkinson & Shiffrin, 1968). The
cognitive process by which information is stored in long-term
memory is revealed. However, it has been shown that col-
laboration prevents memories from being stored or recalled.
For example, collaborative memory retrieval results in fewer
than nominal pairs that learners don’t interact (Sjolund, Erd-
man, & Kelly, 2014). It is most likely that collaboration not
only improves memory but also forgetting and error of re-
trieval (Rajaram & Pereira-Pasarin, 2010). Moreover, cogni-
tive load inhibits collaborative learning, called Collaborative
Cognitive Load Theory (CCLT; (Janssen & Kirschner, 2020).
The cognitive load theory is also based on working and long-
term memory (Schweppe & Rummer, 2014). The working-
memory store feature provides information that learners learn
new and activated long-term memory temporarily (Cowan,
Morey, & Naveh-Benjamin, 2020). Therefore, it plays an es-
sential role in working memory when investigating the effects
and inhibitory factors of collaborative learning.

In a collaborative learning environment in which students
reconsider their knowledge based on others, the cognitive
load is higher, and then it is necessary to consider how work-
ing memory is involved. Indeed Engelmann and Hesse (2010)
indicates that acquiring others’ knowledge is inhibited by
working memory. However, as shown in the Interactive-
Constructive-Active-Passive (ICAP) theory, correct knowl-
edge is facilitated by engaging in the deep cognitive process
of reconstructing one’s knowledge based on others’ knowl-
edge (Chi & Wylie, 2014). Consequently, working mem-
ory and reconstruction of one’s knowledge based on others’
knowledge are likely related to the effect of collaborative
learning. Therefore, this study investigates the influence of
working memory on using the correct knowledge and recon-
structing one’s knowledge based on others, as well as the
reason reconstruction of one’s knowledge based on others’
knowledge is effective. This study adopted model-based ap-
proaches to address these research questions.

Cognitive Models of Collaborative Learning

Collaborative learning is effective in terms of memory, but it
has not yet been shown why learners outperform through in-
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teraction in collaboration based on cognitive process. Most
previous studies have investigated theories and models that
are not based on the cognition of humans or theories based on
cognition rather than cognitive models based on human think-
ing and memory. For example, transactive memory refers to
a set of individual memory systems combined with the com-
munication between each individual group member (Wegner,
1987). Moreover, collaborative learning involves divergence
and convergence focused on the essential memory function
of individual working memory (Jorczak, 2011). An individ-
ual’s working memory is involved in collaborative learning
because when externalizing the representation of knowledge
stored in memory, the working memory needs to process re-
lated information from long-term memory. The cognitive
process in collaborative learning is that the externalized infor-
mation is divergent and convergent. Group members store di-
vergent information, and learners identify and select relevant
information, which is a convergence. However, misconcep-
tions are generated not only by relevant information during
divergence information processing (Jorczak, 2011).

In cognitive science, cognitive models have been devel-
oped and simulated, but they don’t focus on collaborative
learning. Adaptive Control of Thought-Rational (ACT-R) ar-
chitecture is designed and used as an intelligent tutoring sys-
tem (Anderson, Corbett, Koedinger, & Pelletier, 1995). ACT-
R is a cognitive architecture and theory for human cognition.
Several studies have developed computational models for col-
laboration. Walker, Rummel, and Koedinger (2014) exam-
ined an adaptive collaborative learning system using a col-
laborative learning model by model trace, learner’s knowl-
edge trace algorithm, machine classification, and Cognitive
Tutor Algebra classification. Hayashi and Koedinger (2019)
investigated the cognitive process by which people share
their differences and knowledge using cognitive task analysis.
Suebnukarn and Haddawy (2006) explored individual and
collaborative student clinical reasoning modeling to develop
an intelligent tutoring system. This is an inferred model for
medical treatment and a minimal reasoning model. However,
these studies don’t focus on human cognition and could not
investigate working memory and reconstructing one’s knowl-
edge based on others’ knowledge based on the cognitive pro-
cess of humans. Therefore, a collaborative learning model
needs the primary memory function of humans using ACT-R.

Consequently, this study investigates the influence of
working memory on correct and incorrect knowledge and the
relationship between reconstruction based on others’ knowl-
edge and working memory. First, we investigated the impact
of working memory in a laboratory experiment and reproduc-
ing human results using simulation. Second, we investigated
the use of correct and incorrect knowledge by observing the
model’s performance of the relationship between the recon-
struction based on others’ knowledge and working memory.
At that time, ACT-R—a cognitive architecture—was used be-
cause it was easier to model working memory and the degree
of memory retrieval based on the knowledge of others by ma-

nipulating parameters, and it has a visual buffer that repro-
duces human thinking and behavior in real situations.

Goal and Hypothesis

This study investigated the influence of working memory
and the reconstruction of one’s knowledge based on others’
knowledge while creating a concept map in collaboration us-
ing laboratory experiments and simulation based on a model-
based approach. The focus on individual working memory
is to understand collaborative learning from the information
processing perspective. Learning and memory are related,
and learning is influenced by working memory, cognitive
load, and knowledge activation. Therefore, if working mem-
ory is greater, learners may use correct knowledge because of
the influence of working memory on the activation of knowl-
edge. In addition, if working memory is greater, learners may
use incorrect knowledge because of the activation of incorrect
knowledge. This study hypothesized that working memory
and the use of correct knowledge were related (H1). Addi-
tionally, working memory and the use of incorrect knowledge
were associated (H2). In the simulation, we investigate the
influence of working memory by manipulating the parameter
on working memory in knowledge activation.

Method

Participants

The participants were 20 university students majoring in psy-
chology (14 women and six men), with a mean age of 19.00
years (SD = 0.89). We also obtained informed consent about
data confidentiality, anonymity, and withdrawal at any time
in writing. Participants did not experience the experimental
task of this study and knew the causal attribution they learned.
This study was approved by the university’s ethics committee,
to which the author belongs.

Experimental Materials

We used learning text that learners read to learn the causal
attribution of success and failure, episode, and created con-
cept maps. Tool-created concept maps were designed col-
laboratively and synchronously. The episode in which a stu-
dent talked about being anxious about a new semester was
used in Weinberger and Fischer (2006). The learning text
included information about internal-external, stable-unstable,
and controllable-uncontrollable. Internal-external is the actor
attributes a cause of a phenomenon to own or external of own.
Stable-unstable is the actor that attributes the cause of the
phenomenon to be stable or unstable over time. Controllable-
uncontrollable is the actor attributes a cause or phenomenon
to controllable or uncontrollable things and others.

Procedure

Learners first learned to create concept maps and conducted
the 2-back task based on Dobbs and Rule (1989) second. In
particular, learners filled in numbers before the n-2 trial in
the n-trial using a keyboard. Third, learners referred to the
learning texts and learned that. Fourth, learners referred to an
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episode in which a student talked about being anxious about a
new semester and then created concept maps individually by
inferring why a person was anxious about the new semester
(10 minutes). Fifth, learners referred to each other’s concept
maps and created them collaboratively (15 minutes). In par-
ticular, learners filled in nodes about anxiety and its cause and
link causal attribution (e.g., anxious-internal-effort) . The se-
quence of the study was repeated. Figure 1 shows a screen-
shot of the collaboration. Concept maps include nodes and
links: a node is about information about the episode, and a
link is about learning the text.

The individual 
concept map

(User1)

Shared-concept map 
(collaboration)

Anxiety External Weber

Possibility of 
losing credits

Cause
Lack of 
comprehension

Controllability

Lazy

Ability Controllability

Controllability

Heredity

Stable
Father

Lack of support
Anxiety

Cause
Possibility of losing credits

Internal
Effort Lazy

Injustice Lack of support

InternalTemporary

Add nodeConnect linkDelete linkDelete node

The individual 
concept map

(User2)

The node refers to cause of  phenomenon in the episode text

The link refers to 3 dimension on attribution theory in the learning text

Anxiety

Figure 1: Capture of the screen during collaborative learn-
ing. The right-hand side shows two windows of concept maps
generated in the individual phase. The left-hand side shows
the shared window for creating collaborative concept maps

Measurement

This section explains the data used in this analysis. Work-
ing memory was adopted as the correct answer rate for the
2-back task. Correct knowledge was used in the number
of links about the three dimensions in collaborative concept
maps (correct links). Learners filled in the correct link about
the three dimensions needed to understand the causal attri-
bution of success and failure correctly. Incorrect knowledge
was used for the number of incorrect links in three dimensions
that were out of three dimensions and mistake links between
nodes in collaborative concept maps (incorrect links). The
correct link was knowledge of the correct or incorrect answer
that did not exist on the individual concept map. The critical
point is that the correct links are an indicator of the collabo-
rative investigation result because of the effect of the collab-
orative discussion. Moreover, this indicator was adopted to
investigate the influence of reconstructing one’s knowledge
based on others’ knowledge of using the correct knowledge.

Result

First, we conducted an analysis using Pearson’s correlation
between the correct answer rate of the 2-back task and the
number of correct links. Figure 2 shows a scatter plot of the
correct answer rate and the number of links. A moderately
positive correlation was observed (r = .46, p < .05). Con-
sequently, H1 was supported, revealing that correct knowl-

edge was related to working memory. Next, we conducted a
correlation analysis between the correct answer rate of the
2-back task and the number of incorrect links to test H2.
Figure 3 shows a scatter plot of the correct answer rate and
the number of incorrect links. No correlation was observed
(r = .06, p = .80). H2 was not supported, revealing that in-
correct knowledge was unrelated to working memory because
selecting knowledge according to the task.

Figure 2: Relationship between the correct answer rate of the
2-back task and correct links

Figure 3: Relationship between the correct answer rate of the
2-back task and incorrect links

Simulation by ACT-R

Psychological experiments have shown a correlation between
working memory and the number of correct links and not a
correlation between working memory and the number of in-
correct links. In other words, learners converged knowledge,
selecting knowledge according to the task. In this section, a
model using ACT-R was created and simulated. We clarify
the relationship between working memory and reconsidering
one’s knowledge based on others’ knowledge. It is challeng-
ing to reconsider one’s knowledge based on the knowledge of
others in laboratory experiments.
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Using the ACT-R architecture (Anderson et al., 1995),
we developed a model of knowledge use and examined the
process of knowledge use during learning based on dif-
ferent types of knowledge based on Hayashi and Shimojo
(2022a, 2022b). Hayashi and Shimojo (2022a) indicated
perspective taking. Also, Hayashi and Shimojo (2022b) re-
vealed retrieved knowledge based on others. The model
replicates the task of creating a concept map in a collab-
orative task (15 min) and assumes that the knowledge of
individual concept maps and the knowledge of the learn-
ing text exist as declarative knowledge. Figure 4 illus-
trates the flow of the model. The specific flow of the
model is as follows: The learner acquires the character
strings in the concept map(”find-unattended-node1-indivi”)
and pays attention to the ones that still need attention(”attend-
node1-indivi”) and add to declarative knowledge(”encode-
node1-indivi”). Learners repeat the same process for con-
cept maps of one proposition (phenomenon, three dimen-
sions, and causes), self, and others (from ”find-unattended-
node1-indivi” to ”encode-node2-other”). They inscribe the
declarative knowledge about one proposition, determine
whether the partner’s and knowledge are different or the
same(”individual-retrieve”), and if different, reconsider based
on knowledge (”knowledge-retrieve-individual”) or partner’s
knowledge(”knowledge-retrieve-other”) based on the utility
value of procedural Knowledge. If the knowledge is iden-
tical (if correct), fill in the text(from ”fill-in-node1” to ”fill-
in-node2”), or do not fill in the text(”fail”). In ”individual-
retrieve,” ”knowledge-retrieve-individual,” and ”knowledge-
retrieve-other,” the model used knowledge activation.

Parameters

This simulation examined the relationship between working
memory and correct knowledge use. (1) expresses knowledge
activation. (2) expresses the noise value. Bi is the chunk base
level, Wk j is the weighting, and S ji is a measure of association
strength. e is the noise. In Matsumuro et al. (2018), W in the
following activity value of (1) is employed as the operating
parameter of the working memory. Therefore, we manipu-
lated the W in (1 to simulate the effect of working memory.
The parameters were set to 0.7, 1, and 1.3.

Ai = Bi +SkS jWk jS ji + e (1)

s2 =
p2

3
S2 (2)

Next, we manipulated the degree to which they used oth-
ers’ knowledge. Specifically, we ran the utility value that
performed memory retrieval based on individual knowledge
to be 10 and the utility of productions that performed mem-
ory retrieval based on others’ knowledge to be 8, 9, 10, 11,
and 12. In figure 4, memory retrieval based on individual
knowledge is ”knowledge-retrieve-individual,” and memory
retrieval based on other’s knowledge is ”knowledge-retrieve-
other”. Probability is the probability that procedural knowl-

edge i will be used. Knowledge i is one of the currently se-
lectable production rules. The equation for the selection rate
of production is shown below, where Ui is the predicted util-
ity, Ui(n) is the utility value for the nth time, a is the learn-
ing rate, and the reward received by the production on the
nth application. We manipulated the parameters to simulate
the effect of memory retrieval based on others’ knowledge of
knowledge retrieval and the use of text using the model.

Probability(i) =
eUi/

p
2s

S jeUj/
p

2s
(3)

Ui(n) =Ui(n�1)+a[Ri(n)�Ui(n�1)] (4)

Result of Simulation

Reproducing Experimental Psychological Data This sec-
tion reproduces the experimental psychological data to in-
vestigate the relationship between working memory and the
number of correct and incorrect links. First, we investigated
the relationship between working memory and the correct
links. The average number of links was 0.5 for 0.7, 1 for
1.0, and 1.5 for 1.3. As working memory increases, memory
is activated, and the number of correct links improves. Next,
we checked whether working memory affected the reproduc-
tion of incorrect link counts. The average number of incorrect
links was 1.5 for 0.7, 2 for 1.0, and 1.5 for 1.3, indicating that
working memory did not affect the number of links, as in the
experimental results. These results are consistent with those
of the laboratory experiments.

The effect of reconstructing based on others Next, we
compared the average number of correct links to explore the
relationship between working memory and memory retrieval
based on knowledge of others Figure 5 compares the num-
ber of links in memory retrieval based on working memory
and the knowledge of others. The results show that the num-
ber of correct links in memory retrieval is based on others’
knowledge when the working memory is low. When working
memory is high, memory retrieval based on others’ knowl-
edge is better. Thus, This result indicates that the effect of
reconstructing one’s own knowledge based on others is only
when working memory is high. Additionally, learners need
to support working memory; the collaborative learning envi-
ronment using concept maps reconsidering knowledge based
on others’ knowledge is essential.

The cognitive process of reconstructing based on others

In this section, we examine in more detail why reconsider-
ing one’s knowledge based on others’ knowledge increases
the number of correct links. We focused on whether recon-
sidering one’s knowledge based on others’ knowledge en-
abled the correct reproduction of links in others’ knowledge
or whether the number of reproduced links increased simply
because memory retrieval was performed more frequently.

First, we compared the number of reproductions of oth-
ers’ links to determine if we could reproduce the correct links
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Figure 5: Comparison of correct links with working memory
and reconstruction

in other’s knowledge. Figure 6 compares the number of re-
productions of others’ links in the working memory and the
reconsidering of one’s knowledge based on others’ knowl-
edge. We find that the number of links to others’ knowledge
increases as the rate of reconsidering one’s knowledge based
on others’ knowledge increases. Therefore, the knowledge of
others activated their inactivated declarative knowledge, and
they could distribute their knowledge and select the proper
knowledge among them. This tendency became slightly more
substantial as the working memory increased.

Next, we compared the number of incorrect links to deter-
mine if the number of links increased simply because more
memory retrieval was performed. Figure 7 compares the
number of incorrect links in the reconsideration of one’s
knowledge based on working memory with other people’s
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Figure 6: Comparison of the number of correct other’s links
with working memory and reconstruction based on others’
knowledge

knowledge. The results show that the number of incorrect
links remains the same because the reconsideration of one’s
knowledge based on working memory and others’ knowledge
is greater. Therefore, it is clear that activation of declarative
knowledge does not necessarily increase the number of in-
correct concepts. The convergence of knowledge is not influ-
enced by the reconsideration of one’s knowledge or working
memory but by the dispersion of knowledge. These results
indicate that reconsidering one’s knowledge based on others’
knowledge activates declarative knowledge and enables cor-
rect knowledge. The cognitive processes of information di-
vergence and convergence, in which knowledge is dispersed
by reconsidering one’s knowledge based on others’ knowl-
edge, are identified and selected from among them.
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Figure 7: Comparison of the number of incorrect links with
working memory and reconstruction based on others’ knowl-
edge.

Discussion

First, we examined replication in a psychological experi-
ment and computational simulation about the relationships
between working memory and correct and incorrect links.
In a laboratory experiment, we found a correlation between
working memory (2-back task) and the reproduction of cor-
rect knowledge and not a correlation between working mem-
ory and the reproduction of incorrect knowledge. Addition-
ally, the simulation results with the working memory parame-
ters were compatible with the data from the psychological ex-
periment. Therefore, these results reveal that working mem-
ory influences collaborative learning.

Second, we examined the effect of reconstructing one’s
own knowledge based on others by observing the model’s
performance using parameters about working memory and
the degree of reconsidering knowledge based on others. The
results show that the number of correct links is not increased
by reconstructing one’s knowledge based on others’ knowl-
edge when the working memory is low. On the other hand,
the number of correct links is increased by reconstructing
one’s knowledge based on others’ knowledge when the work-
ing memory is high. The relationship between reconsidering
one’s knowledge based on others’ knowledge and working
memory suggests that support varies according to the level of
working memory. When working memory is low, reconsider-
ing one’s knowledge based on others’ knowledge is less crit-
ical. Therefore, working memory assistance is necessary and
can explain the effectiveness of the visualization of others’
knowledge (Engelmann & Hesse, 2010; Shimojo & Hayashi,
2019). When working memory is high, reconsidering knowl-
edge based on others is effective. Facilitation to promote
awareness of others’ differences and reconsidering is neces-
sary, which may explain the effectiveness of facilitating re-
considering based on others’ knowledge (Hayashi, 2020).

Third, we examined the cognitive process of reconstruct-
ing one’s own knowledge based on others by observing the
model’s performance in the view of other’s links and incor-

rect links using parameters about working memory and the
degree of reconsidering knowledge based on others. The re-
sults show that reconstructing one’s knowledge based on oth-
ers’ knowledge increases the number of other links. On the
other hand, reconstructing one’s knowledge based on others’
knowledge does not increase the number of incorrect links.
Reconstructing one’s knowledge based on others’ knowledge
does not simply increase reproduction and activation values.
Specifically, the cognitive process of identifying and select-
ing proper knowledge from activated declarative knowledge
by reconsidering one’s knowledge based on others’ knowl-
edge is essential. The externalization of one’s knowledge
and that of others stores distributed knowledge in declara-
tive knowledge, which is then elaborated and converged as
task-relevant knowledge. The cognitive information process-
ing model (Jorczak, 2011) also supports this result. The fact
that misconceptions are not affected by working memory or
the reconsideration of one’s knowledge based on the knowl-
edge of others indicates that knowledge dispersion is a more
meaningful process. Collaboration effectiveness is related
to knowledge divergence. The current results contribute to
a better understanding of the cognitive process in collabora-
tive learning because the cognitive model reproduces human
cognitive processes. The limitation of this study is that col-
laborative learning was represented using a simple cognitive
model of knowledge acquisition and recall, which could not
reflect spoken discussions.

Conclusion

The results showed that working memory influenced collab-
orative learning using concept maps. The simulation results
with the working memory parameters were compatible with
the data from the psychological experiment. Additionally,
the simulation indicated that reconsidering knowledge based
on others is effective when working memory is high. More-
over, simulations regarding using others’ knowledge and in-
correct knowledge showed that reconsidering one’s knowl-
edge based on others’ knowledge activated declarative knowl-
edge and that identifying and selecting whether knowledge
is correct were adequate for using correct knowledge. Ex-
ternalizing one’s and others’ knowledge may have stored dis-
tributed knowledge in declarative knowledge, which was then
elaborated and converged into task-relevant knowledge. The
relationship between reconsidering one’s knowledge based on
others’ knowledge and working memory suggests that sup-
port varies according to the level of working memory. In the
future, it will be possible to develop a learning support sys-
tem using the cognitive model of collaborative learning. By
having an agent equipped with this cognitive model create a
concept map and use it as a collaborative partner, we exam-
ined the effects of learning by teaching and being taught by a
partner, peer tutoring.
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Abstract

Fatigue, if not managed properly, can have dangerous con-
sequences for cognition and performance. It has been well
established that fatigue impairs cognition, but theoretical de-
velopment is necessary to better understand this relationship
and predict conditions when performance may be at risk. In the
present work, we examine a theory of fatigue situated in the
ACT-R cognitive architecture. The theory proposes that fatigue
results in the reduction of activation of task-relevant procedural
and declarative knowledge. However, the relative impacts of
fatigue on these two types of knowledge remains unclear. Here
we investigated a task that requires activation of both proce-
dural and declarative knowledge and we examined the fit of
models assuming different fatigue mechanisms. Thirty-nine
participants completed a 2-back task across 8 sessions over a
24-hour period. There was a significant effect of time on reac-
tion time, hit rate, and false alarm rate. Our ACT-R variants of
the N-back that included the fatigue module similarly showed
an effect of time on those metrics. When comparing our vari-
ants to the behavioral data, the variant that included procedural
lapses fit the data better than the variant that modeled fatigue as
changes in activation strength and the variant that included both.
These results provide information about the generalizability
and boundary conditions of the mechanisms proposed by the
ACT-R fatigue module.
Keywords: Fatigue, ACT-R, N-Back

Introduction

Human cognitive fatigue has costly implications in a vari-
ety of domains, such as aviation (Caldwell, 2005; Gaines,
Morris, & Gunzelmann, 2020), railroad (Gertler, DiFiore, &
Raslear, 2012), and medical (Kancherla et al., 2020) opera-
tions, among others. Fatigue is multifaceted and is affected
by one’s circadian and other biological rhythms (Achermann,
2004; Borbély & Achermann, 1992), sleep loss (Durmer &
Dinges, 2005), and time-on-task (Doran, Van Dongen, &
Dinges, 2001). Fatigue results in degradation to abilities such
as reaction time, hand-eye coordination, situational awareness,
and decision-making, and increases in risk-taking and errors
of omission, among other effects to performance (Lamond &
Dawson, 1999; Miller & Melfi, 2006), increasing safety risk.
Modeling fatigue with cognitive models is useful because it
provides quantitative predictions about how fatigue changes
under different circumstances, such as variations in task or
sleep schedules (Gunzelmann, Gross, Gluck, & Dinges, 2009),
informing potential avoidance and mitigation strategies and
tools.

Models of fatigue’s impact on behavior have typically fo-
cused on the Psychomotor Vigilance Test (Dinges & Powell,
1985, PVT) and the development of a formalization of fatigue

called the fatigue module (Gunzelmann, Gross, et al., 2009).
That work has resulted in successful quantitative predictions
of fatigue utilizing the Adaptive Control of Thought-Rational,
ACT-R (Anderson et al., 2004), cognitive architecture. While
other applications of the fatigue module have utilized more
complex tasks than the PVT, such as a dual-task (Gunzelmann,
Byrne, Gluck, & Moore Jr, 2009), lane-keeping (Gunzelmann,
Moore Jr, Salvucci, & Gluck, 2011) and digit symbol substi-
tution (Honn et al., 2020), less research has focused on the
declarative memory aspect of ACT-R (e.g., see Gunzelmann,
Gluck, Moore Jr, and Dinges 2012). We utilized ACT-R and
the fatigue module in a simulation of the N-Back (Kirchner,
1958) to determine which mechanisms of the fatigue module
generalize in a task that requires activation of both procedural
and declarative knowledge.

Previous work has shown that the N-back is sensitive
to sleep-deprivation (Choo, Lee, Venkatraman, Sheu, &
Chee, 2005; Martı́nez-Cancino, Azpiroz-Leehan, & Jiménez-
Angeles, 2015; Gerhardsson et al., 2019; Lythe, Williams,
Anderson, Libri, & Mehta, 2012; Riontino & Cavallero, 2021).
Here, instead of total sleep deprivation, we measured perfor-
mance across 8 sessions in a 24-hour period while participants
performed crew aviation tasks. In evaluating the fatigue mod-
ule, we were interested in determining if changes in declarative
activation alone could account for performance decrements as
a function of fatigue, or if procedural lapses, as instantiated in
the fatigue module, were necessary for an accurate simulation.

Methods

Participants

Forty-three pilots from Joint Base Charleston participated in
the study; 39 had usable data for the current modeling effort
(Mage = 28; SDage = 3.0; Male = 32). The study was approved
by the Air Force Research Laboratory Institutional Review
Board.

Study Design

The study involved performing in a long-duration mobility
simulator session with various mission tasks as a 3-person
crew over a 24-hour period. During the 24 hours, participants
underwent a cognitive battery at approximately 1200 (labeled
Pre), 1315, 1650, 2326, 0230, 0456, 0925, and 1200 hours.
Participants practiced the cognitive battery before the day of
the simulator session. The cognitive battery consisted of the
N-back, PVT, and Change Signal task (Brown & Braver, 2005;

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

172



Moore Jr & Gunzelmann, 2013). During breaks, participants
were able to eat, drink, and take naps, with start and end time
of the nap recorded by the researcher. The majority of the
participants completed the cognitive battery at the specified
times, though time points 0230 (77%) and 1200 (62%) had the
lowest participation.

N-Back Task Description

Participants completed 150 trials of a 2-back task (Kirchner,
1958), where they were sequentially presented with a black
letter (A, B, C, D, E, H, I, K, L, M, O, P, R, S, T) on a white
display. Each trial was 4000 ms. The letter appeared on
the screen for 500 ms at the start of the trial. When a letter
appeared 2-back (e.g., in the sequence C-B-C, the first C is
2-back from the second C), participants responded by pressing
the space bar on a keyboard. The probability of a 2-back on
any given trial was set to 0.33.

ACT-R Model

The ACT-R cognitive architecture (Anderson et al., 2004)
consists of discrete modules for distinct types of perceptual
and cognitive processing (visual, audio, declarative memory,
etc.). Buffers within the modules contain information about
what is currently being perceived (visual module), what can be
retrieved from declarative memory (declarative module), and
how the model is interacting with a device (motor module).
Information in the buffers is acted upon by productions, which
are if-then statements based on information within the buffers
that can be used to move information between different buffers
or edit information within a buffer.

Fatigue module

The fatigue module was developed to add biologically plau-
sible mechanisms of fatigue to ACT-R. The module uti-
lizes information about sleep schedule to compute alertness
(McCauley et al., 2013) that is then used to compute moment-
by-moment fluctuations in ACT-R’s procedural and/or declara-
tive modules during a simulation. Whether the fatigue module
affects either or both of the modules is up to the modeler.

When active for solely the procedural module, the fatigue
module diminishes production utility as a function of varia-
tions in alertness due to circadian rhythm and sleep pressure.
Additionally, response threshold is reduced (making errors of
commission more likely) to simulate effort involved in staying
awake and attentive. When no production fires, the model
lapses through one cognitive cycle (50ms, plus noise) and the
probability for another lapse to occur increases. Note that
retrieval activation is tied to time in ACT-R, such that de-
lays caused by lapses also impacts retrieval activation because
declarative representations have more time to decay.

When active for solely the declarative module, alertness
modulates global declarative activation, such that lower levels
of alertness have lower activation values. Lower activation
increases response time and makes it more likely that the the
model will fail to retrieve task relevant information, resulting
in misses in the 2-back task.

When active for both modules, declarative activation is
modulated by both procedural lapses and the state of alertness.

N-Back ACT-R model

The model was designed to detect and respond to stimuli in
the N-Back task environment. The model interacted with a
custom built version of the N-Back in Python with the same
task parameters experienced by the participants (parameters
based on the psytoolkit parameters). ACT-R version 7.14
was used given that it is the most updated version of ACT-R
compatible with the fatigue module.

The core model (Figure 1) was adapted from Held, Rieger,
and Borst (2022). The model starts by building chunks in
declarative memory that include the stimulus currently being
attended and the previous stimulus. After the model has suf-
ficient chunks in memory (2 chunks for a 2-back), the model
performs a retrieval request to retrieve the previously shown
letter (i.e., 1-back). If that retrieval is successful, the model
then performs a second retrieval request to retrieve the letter
preceding the previously shown letter (i.e., 2-back). The model
compares the retrieved information to what is currently pre-
sented. If it is the same letter, then the model responds. Lastly,
the model performs rehearsal (i.e., reactivating the chunk in
declarative memory) by retrieving the current letter, and then
retrieving the previous letter until the next letter appears.

Figure 1: An illustration of the N-back task (text not to scale).
The text to the right represents an abstraction of the model
at the time of viewing the second M. Here, the model would
utilize knowledge in the memory of the previous letter (P) to
retrieve the chunk when P was presented. After a successful
retrieval, the model then can compare the memory of the
previous letter (M) to what is currently being presented (M) to
determine if a response is necessary. We have italicized where
errors could occur: retrieving the wrong chunk (influenced by
parameter :mp), failing to retrieve a chunk at all (influenced
by parameter :rt), and responding incorrectly (influenced by
parameter :ppm).

Response Errors In the core model, errors could only occur
by retrieving the wrong chunk given noise within the declara-
tive memory system. The most likely outcome when retrieving
the wrong chunk is the model not responding given that 14 out
of 15 times it will not be the same letter. The ACT-R parame-
ter most likely to cause an incorrect chunk to be retrieved is
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:mp (i.e., the amount of a penalty applied when information
in chunks mismatch), which was varied in the model fitting
described below.

We added additional sources of error given that the core
model did not consistently produce errors found in the behav-
ioral data (Figure 2). Firstly, the model could fail to retrieve a
chunk. Here, a failed retrieval would result in the model guess-
ing. While true guessing would be responding on 0.33 trials,
we found that 0.165 fit the data better given that participants
had a low percentage of false alarms. The retrieval threshold
(:rt) for declarative activation to be considered successfully
retrieved was varied in model fitting.

Figure 2: Reaction Time (Top), Hit Rate (Middle) and False
Alarm Rate (Bottom) when varying ACT-R parameters. Here,
we can visualize the effects of the different kinds of errors by
viewing how :ppm, :rt, and :mp parameters individually affect
performance. The “All” and “None” refer to versions with all
3 parameters turned on and off, respectively.

We also added motor noise that occasionally resulted in the
model performing the wrong action to mirror how false starts
occurred in the PVT ACT-R model (Gunzelmann, Gross, et al.,
2009). The amount of motor noise was varied in model fitting.
We set the similarity between responding and not responding
to be 0.5 and let the :ppm (i.e., the partial production matching)
ACT-R parameter vary.
Model Variants The variants of the core model differed in
which mechanism of the fatigue module was active. We exam-
ined 4 variants. (1) A baseline model with no fatigue module.
To test whether performance changed with fatigue, one model
had (2) declarative only active to test whether performance
can be captured solely with a change to declarative memory
activation and another model had (3) procedural only active
to test whether performance can be captured with lapses. The
final model was a combination of (4) procedural and declara-
tive to test whether there was an interaction effect on retrieval
activation.

Parameter Fitting We performed parameter fitting such
that each variant started at approximately the same level of
performance and performance in the later parts of the session
being a function of the different kinds of fatigue. Parameter
fitting was achieved by comparing the model variants to partic-
ipants’ reaction time, hit rate, and false alarm rate on the first
N-back completed before engaging in the simulation (labeled
Pre). We performed a grid search on the following ACT-R
parameters :mp, :rt, and :ppm from 2 to 3.2 with steps of 0.15
for each parameter, then a subsequent grid search around the
best fitting combination with variations 0.1 above and below.
The resulting values were the parameter fits (:mp, :rt, :ppm)
for baseline (2.65, 3.1, and 2.4), declarative only (2.7, 3.2,
2.7), procedural only (2.9, 2.9, 3.05), and combined (2.65, 2.9,
2.9) variants. All other ACT-R parameters were kept the same
between the different variants.

Fatigue module parameter 1 values were selected based on
existing fatigue module models (e.g., Walsh, Gunzelmann, and
Van Dongen 2017) and thus in line with typical values in lieu of
a parameter search. Specifically, when the procedural fatigue
was active, we set initial utility to 2.6, the initial threshold to
2.2, :fpbmc to 0.02, :utbmc to 0.01, and reset :fp-dec to 0.9875
each time a stimulus appeared. When declarative fatigue was
active, we set :fdbmc to -0.015, :fdc to 0.97, and reset fd:dec
to 0.9925 each time a stimulus appeared. The only parameter
that was varied for the combined variant was changing :fp-dec
to 0.9925 to mitigate performance being drastically worse in
the combined variant.

Performance Measures

Trial Simulation We simulated the same number of partici-
pants, trials, and stimulus parameters as the original study for
each model variant. Given the impact of sleep schedule on
the fatigue module, we used self-reported information about
nap times that was collected during the original study. We
approximated those schedules as input into the fatigue module,
resulting in 4 schedules approximately equally divided in the
simulations: (1) one hour naps at 1500, 2230, and 0900, (2) a
two hour nap at 1730 and a one hour nap at 0100, (3) a two
hour nap at 2200 and a one hour nap at 0400, and (4) a three
hour nap at 1700.

Dependent Measures Our dependent measures of interest
were average reaction time (RT) on correct trials, hit rate
(correct response / (correct response + misses)), and false
alarm rate (false alarm / (false alarm + correct rejection). To
determine the effects of fatigue, we used linear mixed effects
models (statsmodels mixedlm, Seabold and Perktold 2010),
with participant as a random factor.

To determine which model variant accounts for the data
best, we took the mean of the model’s performance for each
dependent measure, then calculated root mean squared error

1The fatigue module parameters we altered were the fp and fd
biomath constants (:fpbmc and :fdbmc), the fd constant (:fdc), the
utility threshold biomath constant (:utbmc), and fp-dec and fd-dec
that reduces fp-percent and fd-percent each time there is a lapse.
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(RMSE) then normalized the RMSE (NRMSE). We inter-
preted the model with the lowest average NRMSE across the
dependent measures as the best fitting model.

Results

Reaction Time

We found a significant effect of time on reaction time for the
behavioral data [b = 0.005, se = 0.001, z = 5.9, p < 0.001],
the declarative variant [b = 0.001, se < 0.001, z = 15.2, p <
0.001], the procedural variant [b = 0.008, se < 0.001, z = 16.4,
p < 0.001], and the combined variant [b = 0.008, se < 0.001,
z = 16, p < 0.001]. Reaction time increased with time (Figure
3). As expected, reaction time did not significantly change as
a function of time in the baseline variant [b < -0.001, se <
0.001, z = -1.56, p = 0.12].

Figure 3: Reaction Time (Top), Hit Rate (Middle), and False
Alarm Rate (Bottom) for the behavioral data (Bx), baseline
variant (Baseline), the variant with declarative fatigue (Dec),
the variant with procedural fatigue (Pro), and the variant with
combined procedural and declarative (Pro + Dec).

Hit Rate

We found a significant effect of time on hit rate for the be-
havioral data [b = -0.005, se = 0.001, z = 6.05, p < 0.001],
the declarative variant [b = -0.012, se = 0.001, z = -16.9, p <
0.001], the procedural variant [b = -0.003, se < 0.001, z = -6.5,
p < 0.001], and the combined variant [b = -0.012, se = 0.001,
z = -15.3, p < 0.001]. Hit rate decreased with time (Figure 3).
As expected, hit rate did not significantly change as a function
of time in the baseline variant [b < -0.001, se < 0.001, z =
-0.46, p = 0.65].

False Alarm Rate

We found a significant effect of time on false alarm rate for the
behavioral data [b = 0.001, se = 0.001, z = 2.06, p < 0.05], the
declarative variant [b = 0.002, se < 0.001, z = 12.6, p < 0.001],
the procedural variant [b = 0.001, se < 0.001, z = 6.6, p <

0.001], and the combined variant [b = 0.002, se < 0.001, z =
11.7, p < 0.001]. False alarm rate decreased with time (Figure
3). As expected, false alarm rate did not significantly change
as a function of time in the baseline variant [b < -0.001, se <
0.001, z = -0.84, p = 0.4].

Evaluating model variants

The RMSEs for RT were 0.278, 0.262, 0.249, and 0.252 for
the baseline, declarative, procedural, and combined models.
The procedural and combined variants fit reaction time best,
while the declarative variant’s RT increased much more slowly
than the behavioral data. For hit rate, the RMSEs were 0.188,
0.212, 0.179, and 0.21 for the baseline, declarative, procedural,
and combined models. The declarative and combined both
overestimated the impact of fatigue on accuracy, while the
procedural model accounted for the data best. The RMSEs for
false alarm rate were 0.047, 0.054, 0.047, and 0.054 for the
baseline, declarative, procedural, and combined models.

To compare across dependent measures, we then normalized
the RMSEs by dividing RMSE by the average value from the
behavioral data. The averaged NRMSEs for the variants was
0.5035, 0.5556, 0.4921, 0.5564 for the baseline, declarative,
procedural, and combined models. The procedural model
was 12.9% lower than the next best NRMSE from a variant
that showed an effect of fatigue on performance (i.e., the
declarative variant), indicating fairly strong evidence in favor
of the procedural model.

Discussion

We replicated existing work demonstrating an effect of fa-
tigue on performance in the N-Back task (Choo et al., 2005;
Martı́nez-Cancino et al., 2015; Gerhardsson et al., 2019; Lythe
et al., 2012; Riontino & Cavallero, 2021). We implemented a
model in ACT-R and evaluated different fatigue mechanisms
using the fatigue module to determine which mechanisms best
accounted for changes in behavior as a function of fatigue.
Overall, the results suggest procedural lapses were sufficient
to account for performance changes as a function of fatigue in
the N-Back.

The participants and all of the model variants with the fa-
tigue module showed an effect of fatigue on reaction time,
hit rate, and false alarm, indicating strong support for need-
ing some mechanism of fatigue when measuring performance
across time. The variants differed on the magnitude of the
effect of fatigue on performance. The procedural variant fit
best, though the declarative and combined variant still cap-
tured qualitative changes in performance across time. One
factor that could improve the fits of the models is the inclusion
of individual differences (e.g., see Fisher, Morris, Stevens, and
Swan 2024 for potential pitfalls with one-size-fits-all mod-
els). Previous research has shown that individuals experience
neurobehavioral deficits of sleep differently (Van Dongen,
Baynard, Maislin, & Dinges, 2004), which could be instan-
tiated by allowing fatigue module parameters to vary across
simulations.
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The variant based off of declarative activation had limited
flexibility in our demonstration, given that activation value
determined reaction time (i.e., the lower the activation, the
slower the retrieval). Significantly changing activation strength
to create reaction times more in line with behavior would also
impact the model’s hit and false alarm rate. The implication
is that participants were experiencing attentional lapses in the
N-Back which accounted for the reaction time differences. In
the PVT, lapses are typically identified by looking at responses
above 500 ms, which is in the tail of the distribution in the
PVT task. Altering the design of the N-Back by increasing the
inter-stimulus interval or by utilizing Electroencephalography
(EEG) metrics (Curley, Borghetti, & Morris, 2024) could more
explicitly measure lapses in the N-Back.

All of the models tended to overestimate the effects of fa-
tigue during the last two measurements (hours 0925 and 1230).
In other words, while participants still performed worse during
those sessions of the N-Back, the models predicted even worse
performance. The difference was likely not driven by differ-
ence in circadian phase, given that the fatigue module accounts
for those fluctuations. Individuals may have benefited from
caffeine use during break periods (Halverson, Myers, Gearhart,
Linakis, & Gunzelmann, 2022). Another factor that could have
been driving better than expected performance was a macro-
level end-spurt effect (Morris, Haubert, & Gunzelmann, 2020).
In this study, participants knew when the experiment was go-
ing to end, thus they have been more engaged towards the end
of the study. However, end-spurt effects have typically been
explored within session, not across multiple time points, so
future research may be necessary to determine if an end-spurt
effect could occur across measurement periods.

One of the goals of this comparison was to determine if
modeling the N-Back could provide additional constraints, or
support of, the declarative memory fatigue mechanism in the
fatigue module. Interestingly, that was not the case, given
that the combined variant produced fits worse than the pro-
cedural variant alone. This could simply reflect the N-Back
task’s poor relationship with existing measures of memory
(e.g., Owen, McMillan, Laird, and Bullmore 2005), with some
suggesting that recognition in the N-Back may better reflect
attentional control (Kane, Conway, Miura, & Colflesh, 2007).
Perhaps investigating other paradigms with similar compar-
isons of model variants could be useful. For example, in a
study utilizing change detection, participants were found to
have attentional lapses that directly impacted working mem-
ory performance (DeBettencourt, Keene, Awh, & Vogel, 2019;
Adam, Mance, Fukuda, & Vogel, 2015). In such a task, one
could model if procedural lapses alone could account for the
changes in working memory performance or if the declarative
components of the fatigue module provide better fits to the
data.

Our findings provide additional support for the generaliz-
ability of the fatigue module in providing quantitative pre-
dictions about the effects of fatigue. Despite the complexity
difference in terms of ACT-R productions between the N-Back

(here, 19) and PVT (3), the fatigue module captured both quan-
titative changes of performance as a function of fatigue. Future
research involving the fatigue module should continue testing
the scalability in more complex tasks.
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Abstract
To successfully navigate its social environment, an agent must
construct and maintain representations of the other agents that
it encounters. Such representations are useful for many tasks,
but they are not without cost. As a result, agents must make
decisions regarding how much information they choose to store
about the other agents in their environment. Using choice
prediction as an example task, we illustrate the problem of
finding agent representations that optimally trade off between
downstream utility and information cost, before presenting the
results of two behavioural experiments designed to examine
this tradeoff in human social cognition. We find that people
are sensitive to the balance between representation cost and
downstream value, while still deviating from optimality.
Keywords: social cognition, resource rationality, decision-
making, information theory

Introduction
In order to produce adaptive behaviour, an agent must acquire
and maintain an internal representation of its environment
(Craik, 1943; Tolman, 1948; Wilson et al., 2014). For instance,
a foraging animal should have some representation of which
areas of its environment are most likely to provide food, as
well as which might contain sources of danger to avoid. But
this is true not only for the inanimate features of the world—
unless condemned to an entirely solitary existence, we can
expect that many environments encountered by a hypothetical
agent will contain other agents. Much as an agent should rep-
resent the rest of the environment, we expect that it ought also
to represent these other agents. Humans do this, of course—in
fact, it seems we automatically form mental representations of
the other people we encounter (Dennett, 1987; Malle, 2008;
Baker et al., 2017). We use these representations for a va-
riety of different purposes: understanding the strengths and
weaknesses of a colleague to effectively collaborate with them;
determining whether a stranger should be treated as friend or
foe; or predicting the plays of a chess opponent in order to
defeat them. In general, a detailed representation of the world
is more useful than a coarse one, in the sense of allowing
greater predictive power or insight. But real agents, whether
biological or artificial, inevitably have to contend with limits
on their cognitive or computational resources. We therefore
do not typically expect an agent to hold within their mind a
1:1 lossless model of the world; instead, they will employ a
representational system that involves some degree of approxi-
mation or compression. Indeed, the argument for compression
is perhaps especially clear in the specific case of representing
other agents. As soon as we allow for the fact that this process

goes both ways (i.e. as I represent agent X, agent X in turn
represents me) then we have to contend with some level of
recursion: my representation of agent X must contain within
it some representation of myself. For these representations to
involve no loss of information, my mind would have to contain
within it a number of perfect copies of itself, which cannot
be possible. This line of thinking motivates us to consider
two related questions. First, how much information should an
optimal agent represent about the other agents in its environ-
ment? And second, is the answer to this question reflected in
the choices that people actually do make in response to this
problem?

Over recent years, there has been a growing body of work
in cognitive science that seeks to understand human cognition
through the lens of resource rationality (Lieder & Griffiths,
2019; Bhui et al., 2021; Icard, 2023). As a framework, re-
source rationality extends the classic ideas of decision theory
(Neumann & Morgenstern, 1953; Jeffrey, 1965) and rational
analysis (Anderson, 1990) to account for the notion that agents
do not possess infinite capacity for acquiring, storing or pro-
cessing information. It can also be seen as building on the
concept of bounded rationality popularised by Simon (among
others), while being more explicit in its focus on the idea of
resourcefulness, i.e. of agents making the most effective use
of the cognitive resources available to them. Various formali-
sations of this idea are possible (Icard, 2023); we will adopt
a version of what Icard terms the ‘cost-theoretic approach’,
which considers a continuous tradeoff between the utility of a
given cognitive or behavioural strategy and the cost of carrying
it out. Note that this still leaves considerable flexibility via
the choice of how both sides of this tradeoff are defined. As
far as cost is concerned, our focus in this paper is specifically
on information cost; i.e. the cost of acquiring and storing the
representations (of other agents) that support a particular strat-
egy. This is distinct from the computational cost of converting
those representations into decisions or behaviour. While a
complete analysis should account for both, we leave this for
future work, and will focus in this paper on a task setting in
which the optimal decision strategy is extremely simple given
an appropriate representation.

Task
General objective
In its most general form, the cost-theoretic approach to re-
source rationality is concerned with maximising an objective
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function that looks like this:

R := S�lC (1)

where S is some measure success or performance on our task of
interest, C is some measure of the cost(s) we want to minimise,
and l is a tradeoff parameter that governs the relative weight
assigned to each quantity. For our purposes, we make R a
function of some chosen social representation c:

R(c) := S(c)�lC(c). (2)

For any choice of (S,C,l), the optimal representation is then
given by c⇤ = argmaxc R(c). This optimality criterion is sim-
ilar to the objectives used within work on capacity-limited
Bayesian decision-making and RL, such as Arumugam et al.
(2024). The key difference (beyond our explicit focus on so-
cial representations) is that we are interested not so much in
the cognitive cost of converting representations into behaviour,
but in the cost the representations themselves. In general, we
expect this be a combination of the cost involved in acquiring
a representation (i.e. inferring it from observation), and the
cost involved in storing it—for now we adopt a simplistic
definition of C(c) as the number of bits in c, assuming that
representations which require a greater number of bits to store
or transmit will impose a higher cognitive cost.

Pairwise choice prediction
As for S, we construct a minimal social cognition task where
one agent (Alice) tries to predict the choices made by a second
agent (Bob). First, let S be some choice space. S can in
general contain any sort of thing that an agent could make
choices over; we will say here that it is the space of possible
states of the environment. At trial t, we sample a random
pair of states (s1,s2) uniformly from S , and Alice makes a
prediction cpred about which state Bob will choose. Bob then
makes his choice cactual—if Alice’s prediction was correct
(cpred = cactual), she earns a reward. Alice’s goal is to maximise
her total reward earned over some large number of trials. This
task is attractive in its conceptual simplicity—but it does also
bear a relation to more realistic problems faced by people
navigating social environments, such as predicting the lane
choice of other drivers on the road, or which of two possible
gifts your partner would prefer.

Of course, how well Alice can in principle do on this task
depends on how Bob makes his choices. We will assume that
Bob is a noisily rational agent whose decisions are described
by a Boltzmann choice rule:

Pr[choose s1] =
exp

⇣
u(s1)

b

⌘

exp
⇣

u(s1)
b

⌘
+ exp

⇣
u(s2)

b

⌘ (3)

where u : S ! R is Bob’s utility function, which maps ele-
ments of S to scalar utilities, and b quantifies his ‘decision
noise’ (i.e. the extent to which he deviates from optimal choice
behaviour). Given this, and assuming access to some approxi-
mate representation û of Bob’s true utility function (defined

over the same state space), the optimal strategy is clearly to
make predictions as

cpred| û,(s1,s2) = argmax
s2(s1,s2)

û(s) (4)

Using a 0-1 loss, the objective function for a single trial is
given by

Rtrial(û) := (cpred| û = cactual)�lnbits(û) (5)

To obtain the general objective function, over both trials and
different instances of Bob (with different u), we will treat û
as a random variable resulting from the application of some
‘representation scheme’ to the true utility function u. We can
then take the expectation over both state-pairs and û to write

Rexpected(û) := E
S2
[ (cpred| û = cactual)]�lH[û] (6)

where H denotes the differential entropy.
If we only have to represent a very small number of agents,

or a small state space S , then it may be feasible to represent
utility functions exactly (i.e. use û = u), even for l > 0. But if
the agent population or state space is large, or if l � 0, then
the optimal representation in terms of Equation 6 will likely
be an approximation û that discards some information for the
sake of lower entropy. A nice consequence of the simplicity
of our prediction task is that we can write out an analytical
expression for the expected success (i.e. prediction accuracy)
given an arbitrary û:

E
S2

⇥
(cpred| û = cactual)] =

1
2
+

1
2
E
S2

h
sign(DuDû) tanh

⇣Du
2b

⌘i

(7)
where Du= u(s1)�u(s2) and Dû= û(s1)� û(s2). A derivation
for this expression is given in Appendix B, but the intuition
here is that the prediction accuracy given û, relative to the
prediction accuracy given u, depends on the probability that û
can correctly resolve the ‘polarity’ of a pair of states resolved
by u. The objective function in Equation 6 can then be written
as

Rexpected(û) =
1
2
+

1
2
E
S2

h
sign(DuDû) tanh

⇣Du
2b

⌘i
�lH[û]

(8)

Compression through state aggregation
So far, we have just considered the idea of approximate repre-
sentations in the abstract. But what might these approximate
representations actually look like? One straightforward way
to approximate a utility function is through state aggregation—
i.e. group all states within a given-sized ‘patch’ of S under a
single value (Sutton & Barto, 2018; Abel et al., 2019). It is
important here to note that we do not take this to be an opti-
mal (or even particularly strong) compression strategy for any
given state space S—but its simplicity and generality makes
it an attractive choice for illustrating the tradeoff dynamics
that we are concerned with. To do this, we set up a simulation
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Figure 1: Results of simulating pairwise choice prediction with state-aggregated utility function representations, for noisily
rational target agents with spatially correlated 2D utility functions. (A) theoretical (Equation 7) vs simulated prediction accuracy
as a function of aggregation patch size for different values of utility function lengthscale and target agent b. (B) illustration of
state aggregation levels for example 2D utility function. (C) optimal patch size as a function of increasing tradeoff parameter l.
(D) cost-adjusted return (Equation 8) as a function of patch size, with cost given by continuous entropy.

environment where agents make choices over pairs of tiles in
a 32x32 2D grid. Each agent has a spatially correlated utility
function drawn from a Gaussian Process (with RBF kernel),
and a decision noise parameter b. Over a number of trials,
we simulate a choice prediction strategy using different levels
of state aggregation (where state aggregation is measured by
‘patch size’, i.e. the number of grid tiles grouped under a single
value in the aggregated representation). For this simple setup,
the specific relationship between patch size and prediction
accuracy should be determined by both the lengthscale of the
Gaussian Process (i.e. how smoothly u varies over S ), and
the decision noise b of the agents making the choices—we
therefore repeat the simulation for different values of each
parameter (keeping the other constant).

The results of these simulations are shown in Figure 1. First,
panel (A) shows that Equation 7 successfully captures the
effect on simulated choice prediction accuracy of increasing
patch size, across all simulated values of lengthscale and b. As
we would expect, prediction accuracy decreases monotonically
with increasing patch size. Furthermore, for any given patch
size < 32, prediction accuracy decreases with increasing b (i.e.
as agents become more unpredictable). We also see that the
decrease in prediction accuracy with patch size is less steep at
higher lengthscale (i.e. smoother u), where less information is
lost for a given amount of aggregation. Panel (D) illustrates
the expected cost-adjusted return (Equation 8) as a function of
patch size, for the same set of b and lengthscale values, and
for various values of the tradeoff parameter l. We see that the
optimal aggregation level is shifted to the right as we increase
l (and thus care more about information cost). This same
trend is also seen in panel (C), which shows directly how the
optimal patch size changes as a function of l.

Figure 2: Interface for behavioural experiments

Experiment 1
In the preceding sections, we presented a theoretical and com-
putational analysis of the tradeoff between information cost
and predictive value faced by agents representing others’ util-
ity functions. We now seek to shed light on this tradeoff in
human social cognition—that is, does our optimal analysis
predict people’s actual choices about how much information
to represent about other agents’ utility functions?

Procedure
To answer this question, we developed a behavioural exper-
iment based on the simple pairwise choice prediction task
outlined above. We recruited a total of n = 90 adults through
the online platform Prolific, who were then directed to an on-
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line game consisting of 5 rounds (excluding an initial tutorial
round), and instructed to try and maximise their final score.
To incentivise performance, participants were rewarded with
bonus payments for achieving scores above a certain threshold.
The cover story for the task was that participants (playing
the role of Alice) had to predict the choices made between
different plots of land (tiles) in a field (8x8 2D grid) by a
farmer (playing the role of Bob) trying to grow a particular
crop. While making choice predictions, participants were
given access to a (possibly aggregated) representation of the
farmer’s utility function in the form of a map of the different
plots’ ‘quality’ for growing the crop in question. Crucially,
the tradeoff dynamics were introduced via a game mechanic
were participants spent points to acquire this map, and earned
points for correct predictions. At the start of each round, par-
ticipants selected a level of state aggregation, paying a cost in
points determined by the level of aggregation chosen. They
were then presented with a series of randomly sampled tile
pairs—for each pair they were instructed to select the tile that
they thought agent would choose, while being able to see the
(possibly aggregated) map they had just ‘purchased’. For sim-
plicity, the farmer was set to be perfectly rational, i.e. b ! 0
under the choice rule in Equation 3. Figure 2 shows the main
components of the game interface. We varied two factors be-
tween participants in a 2x3 design (with 15 participants per
condition): the texture of the 2D utility functions (‘rough’,
‘smooth’, corresponding to GP lengthscales of 0.5 and 2 re-
spectively), and the absolute costs of the different maps (‘low’,
‘medium’, ‘high’). All participants faced the same number and
sequencing of rounds, regardless of condition, and the relative
cost of the different maps was always the same. To maximise
their overall score, a given participant would need to choose,
at each round, the level of state aggregation that optimally
balanced cost against expected predictive value (depending on
their assigned condition). We recorded participants’ choices of
aggregation level at each round, as well as all of the pairwise
choice predictions that they made.

Results

From our behavioural data, we compute participants’ average
prediction accuracy as a function of aggregation level (patch
size), split by texture condition. We then compare these in Fig
3 (A) to Equation 7. We can see that participants’ average pre-
diction accuracy is fairly well captured by the model—that is,
participants in general made effective use of the information
contained in their chosen representations. Participants were
also more accurate in the smooth utility function condition, re-
flecting the fact that less information is lost when aggregating
spatially correlated functions with higher lengthscale. So, our
model predicts how participants’ prediction accuracy varies
with aggregation level. But can it predict which aggregation
levels participants will select? For each of the 6 conditions,
we compare the recorded proportions of participants’ patch
size selections against the choice distribution given by three

different variants of a noisily rational model

Pr{select û} µ exp

 
Vm(û)

b

!
(9)

where Vm(û) is set as either the expected accuracy, the nega-
tive cost, or the full cost-adjusted return (from Equation 8).
This comparison is shown in Figure 3 (B), using b = 0.25.
While none of these three models is able to capture partici-
pants’ patch size selections perfectly, it is clear that the full
resource-rational choice rule is a much better fit than either
the accuracy-only or cost-only models—indicating that to at
least some extent, participants are sensitive to the tradeoff
between information cost and predictive value in selecting
representations. For instance, participants’ selection proba-
bility decreased monotonically with increasing patch size in
the low-cost condition, and increased almost monotonically
in the high-cost condition. However, for the medium cost
condition, the resource-rational model predicts a greater differ-
ence in selection probabilities between the rough and smooth
conditions than was reflected in participants’ behaviour. This
suggests that participants in our experiment, while sensitive
in general to the balance of value and cost, were not fully
resource-rational with respect to the specific parameters of
their task environment.

Experiment 2
Procedure
We conduct a second behavioural experiment, as a small varia-
tion on Experiment 1. Rather than varying utility function tex-
ture, we now vary the decision noise of the target agent. Partici-
pants (total n= 30) were divided equally between a ‘low noise’
condition, where they encountered an agent with b= 0.01, and
a ‘high noise’ condition, where b = 1.0. The game structure
and mechanics were otherwise unchanged from Experiment 1.
All utility functions were taken from the ‘smooth’ condition
of Experiment 1 (lengthscale = 2.0), and absolute map costs
were kept constant between all participants.

Results
The results of Experiment 2 are shown in Figure 4. Par-
ticipants’ selection of representations is compared to the
same three models as used for Experiment 1. In this setting,
the resource-rational model captures the idea that the cost-
usefulness tradeoff is affected by target agent b. As an agent’s
decision-making gets noisier, the marginal predictive value of
information about their utility function decreases—therefore
the representation strategy of an agent seeking to optimise
this tradeoff should be shifted towards higher aggregation as
decision noise increases. Looking at Figure 4, we can see
that this trend is indeed reflected in participants’ behaviour,
at least to some degree: for instance, the lowest aggregation
level was chosen more in the ‘low noise’ condition, and the
highest aggregation level was chosen more in the ‘high noise’
condition. As in Experiment 1, the resource-rational model
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Figure 3: Results of Experiment 1. (A) participants’ average choice prediction accuracy as a function of patch size, split
by texture condition and compared to the theoretical accuracy predicted by Equation 7. (B) empirical patch size selection
probabilities for participants from each condition, compared to those given by Boltzmann-rational models (Equation 9) based on
only expected accuracy, only information cost and the full cost-adjusted return objective (Equation 8), with b = 0.25.

Figure 4: Results of Experiment 2: empirical patch size se-
lection probabilities for participants from low and high noise
conditions, compared to those given by Boltzmann-rational
models (Equation 9) based on only expected accuracy, only
information cost and full cost-adjusted return (Equation 8),
with model b = 0.45.

gives a better fit than either of the accuracy-only or cost-only
models, but again we see points of noticeable deviation (at
patch size = 16 in the ‘low noise’ condition and patch size
= 4 in the ‘high noise’ condition).

Discussion
In this paper, we have considered the relatively unexplored
problem of how much information to represent about other
agents in social cognition, through the example task of predict-
ing an agent’s choices over pairs of options. Specifically, we
examined the tradeoff that an observer agent faces between
information cost and predictive value in choosing how much
information to represent about a target agent’s utility function.
We first presented some brief theoretical and computational
analysis of how a simple state aggregation strategy can be used
to navigate this tradeoff. We then conducted two behavioural
experiments to compare people’s choices of representation to a
resource-rational state-aggregation model. Our findings were
mixed: while for both experiments the resource-rational model
fit our recorded data better than simpler decision rules based
only on expected predictive accuracy or representation cost,
participants still showed non-trivial deviations from optimality.
This may be explained by the fact that our experimental setup
is highly simplistic, and uses only a single explicit representa-
tion cost as stand-in for the real cognitive costs of information
acquisition and storage. For instance, participants’ behaviour
may look closer to optimal under an extended model that ac-
counts for additional constraints on e.g. attention and memory.
Future experimental work should attempt to probe these nu-
ances, and bridge the high-level computational view presented
in this paper with more detailed and psychologically grounded
notions of cognitive cost. An additional direction for future
work is exploring strategies for obtaining resource-rational
representations of agent utility functions that go beyond naive
state aggregation—e.g. by representing individuals primarily
in terms of their group affiliations or other social identity cues.
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Appendix
A: Representation entropy
Here we provide some additional details on our use of repre-
sentation entropy as a measure of cognitive cost. For a compre-
hensive introduction to entropy (and other related information-
theoretic quantities) we direct the reader to Cover & Thomas
(2006) or MacKay (2002). For a discrete random variable
X 2 X with probability mass function p(x) := Pr{X = x}, the
entropy of X is given by

Hb(X) =� Â
x2X

p(x) logb(p(x)) (10)

When b = 2 (as it typically is), the entropy has units of bits.
For a continuous random variable Y 2 Y with probability
density function p(y), the differential entropy of Y is given by

Hb(Y ) =�
Z

y2Y
p(y) logb(p(y)) (11)

If Y follows a multivariate Gaussian distribution with covari-
ance S, then H(Y ) is computed as

H2(Y ) =
1
2

log2 |S|+
n
2
�

log2(2pe)
�

(12)

where n is the dimensionality of Y (Rasmussen & Williams,
2006). This allows us to compute the entropy of our agent
utility functions u, since each is a continuous random vari-
able distributed according to a multivariate Gaussian with
known S. To compute the entropy of a state-aggregated utility
function estimate û, we can treat û as a new continuous RV
with a lower-dimensional multivariate Gaussian distribution
whose covariance Sagg is determined entirely by S and the
level of state aggregation. Determining Sagg is then sufficient
to compute H(û).

B: Expected prediction accuracy from approximate
utility functions
Let û be an arbitrary approximation to the utility function u.
We want to find an expression for ES2

⇥
(cpred| û = cactual)

⇤
—

that is, the expected accuracy of an observer predicting the
choices of a noisily rational agent over pairs of different states
sampled independently from S , given that the observer rep-
resents the target agent’s utility function as û. For any given
pair of states (s1,s2) we define Du = u(s1)�u(s2) and Dû =
û(s1)� û(s2). Since the optimal prediction strategy is to pre-
dict the higher-value state, the prediction made for a given state
pair, guided by representation û, depends only on sign(Dû).
For any particular pair (s1,s2), the sign product between u and
û can take one of three values: sign(DuDû) 2 {�1,0,1}. Let
pu be the probability that an observer representing the full u
would predict the choice correctly. We can then express the
equivalent probability for û pû in terms of pu as

pû = Pr
�

sign(DuDû) = 1
 

pu

+Pr
�

sign(DuDû) =�1
 
(1� pu)

+Pr
�

sign(DuDû) = 0
 1

2

Using the fact that ES2
⇥

sign(DuDû)
⇤
= Pr

�
sign(DuDû) =

1
�
�Pr

�
sign(DuDû) =�1

�
, we can then write the expected

prediction accuracy using û as

E
S2

⇥
(cpred| û = cactual)

⇤
=

E
⇥

sign(DuDû)
⇤
+1

2
pu

+
1�ES2

⇥
sign(DuDû)

⇤

2
(1� pu)

(13)

Substituting

pu = E
S2

"
1

exp
⇣
�|Du |

b

⌘
+1

#
(14)

(from the definition of the Boltzmann-rational choice rule),
and using the identity

(z+1)
1

exp(�x)+1

+(1� z)
✓

1� 1
exp(�x)+1

◆

= z tanh
✓

x
2

◆
+1 (15)

we obtain

E
S2

⇥
(cpred| û = cactual)

⇤
=

1
2
+

1
2
E
S2

h
sign(DuDû) tanh

⇣Du
2b

⌘i

(16)
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Abstract

A core cognitive ability of humans is the creation of and rea-
soning with mental models based on given information. When
confronted with indeterminate information, allowing for the
existence of multiple mental models, humans seem to recur-
rently report specific models - so-called preferred mental mod-
els. In this paper, we revisit this within the context of syllogis-
tic reasoning, which involves statements about quantified as-
sertions. We present an experiment designed to investigate the
verification process of preferred mental models. Our analysis
centers on two primary research questions: Is model verifica-
tion generally straightforward for reasoners? And does a pref-
erence effect for specific models exist in syllogistic reasoning?
Furthermore, employing modeling techniques, we analyze the
structural complexity of mental models, based on the types of
instances they consist of. We discuss our findings and their
implications on the differences between reasoning with syllo-
gisms and spatial statements.
Keywords: Mental Model Theory; Preferred Mental Models;
Syllogistic Reasoning; Individual Differences.

Introduction
Consider the following reasoning example:

All blue shapes are circles.
All blue shapes have a diamond mark.

What, if anything, follows?

This problem is a so-called syllogism. The task at hand is
to determine what kind of relation, if any, exists between the
two end-terms, circles and diamond (mark), also called sub-
ject and predicate, respectively. In general, a syllogism is
defined by its quantifiers (mood) and term order (figure). We
take into consideration these four first-order logic quantifiers:
All (A), Some (I), Some...not (O) and None (E). The figure
is determined by the order of the subject, middle term and
predicate of the syllogism, represented by A, B and C, re-
spectively, in the following notation (adopted from Khemlani
& Johnson-Laird, 2012):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

A syllogism can be denoted using the given mood abbrevi-
ations and figure, for example the syllogism above is AA4
Conclusions are denoted in a similar fashion using the quan-
tifier’s abbreviation and the order of the end-terms (ac or

ca), e.g. Eca denotes ‘No C are A’. Finally, ‘No valid con-
clusion’ is abbreviated by NVC. There exist at least twelve
theories that aim to explain and model the processes behind
human syllogistic reasoning (for an overview, see Khemlani
& Johnson-Laird, 2012). One of the most prominent theo-
ries among them is the Mental Model Theory (MMT; e.g.,
Johnson-Laird, 1975, 2010). MMT postulates that given
some observations, individuals create iconic representations
– mental models – of possibilities. They create their own sub-
jective mental representation of the information presented in
a reasoning task. Considering the example above, one possi-
ble representation would be:

circles [blue] [diamond]
circles

The square brackets around an instance denote that the set
of entities described by it is exhaustively represented. An-
other possible mental model representation is:

circles
circles [blue] diamond

¬circles ¬blue diamond
where ¬ denotes negation. Both mental representations sup-
port the conclusion “Some circles have a diamond mark” -
the logically valid conclusion to this syllogism. However, in
order to confirm the validity, an individual should think of all
possible premise interpretations and check if they hold. The
expansion of the interpretation search space can make solving
such problems difficult for humans (Johnson-Laird, 2008).

Preferred Mental Models
An empirical phenomenon has been reported in the literature
concerning problem descriptions allowing for multiple possi-
ble models. Specifically, some models are preferred over oth-
ers – such models are called preferred mental models (PMM).

Spatial Reasoning Spatial relational reasoning problems
which can evoke multiple mental models, are not all created
equally (Knauff, Rauh, & Schlieder, 1995; Ragni & Knauff,
2013). This has been demonstrated through model accep-
tance tasks, where participants were asked to decide whether
a presented spatial arrangement matches a given set of in-
determinate premises. Both the patterns of acceptance re-
sponses and the reaction times clearly show that some mod-
els are preferred over others and these models adhere to some
simple construction principles.
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Table 1: Canonical and non-canonical instances for a syllo-
gistic premise with terms X and Y according to mReasoner
(Khemlani et al., 2015), presented in Todorovikj et al. (2023)

Quantifier Canonical Non-canonical

All X Y ¬X Y
¬X ¬Y

Some X Y ¬X Y
X ¬Y ¬X ¬Y

No ¬X Y ¬X ¬YX ¬Y

Some not
X Y

¬X ¬YX ¬Y
¬X Y

Syllogistic reasoning Todorovikj et al. (2023) investigated
the model building process in syllogistic reasoning by em-
pirically testing what kind of models individuals create when
presented with syllogistic premises. They designed an experi-
mental domain of objects described by their shape, colour and
mark. The experiment they conducted presented participants
with a syllogism describing such objects and prompted them
to provide a visual representation of the premises by selecting
and creating objects with their desired attributes. They found
that 82% of the models were correct representations of the
syllogism. After analyzing the response patterns and identi-
fying the most frequent ones, the authors reported finding pre-
ferred mental models for 46 out of 64 syllogisms. Addition-
ally, they examined whether the observed model building be-
havior is in line with the model building processes of mRea-

soner
1, a LISP-based implementation of the MMT (Khemlani

& Johnson-Laird, 2013). During that analysis they did not
find significant results that would confirm the relevance of the
initially constructed models for the final conclusion, allowing
for the possibility that the built models are not necessarily the
ones used when reasoning.

Canonicality of Mental Models
In mathematical and computer sciences, canonicality refers to
minimal representations that avoid redundancy and ambigu-
ity while capturing the essential properties of an expression.
Within the domain of mental models in syllogistic reason-
ing canonicality describes the necessity of possible instances
(Khemlani et al., 2015). Specifically, which entities are abso-
lutely necessary to represent a syllogism correctly (canonical

set of instances), and which ones do not have to be present,
but do not falsify the premises and therefore could possibly
be included in a model (non-canonical set of instances). The
canonical and non-canonical instances that can be used for
building a model based on the LISP implementation of mRea-

1https://github.com/skhemlani/mReasoner

soner are displayed in Table 1. When building a model in
mReasoner, the e parameter is used to describe the likeli-
hood that an instance is drawn from the full set of possible
instances in contrast to only the canonical one (Khemlani et
al., 2015). When fitting the model to their data, Todorovikj et
al. (2023) used the proportions of non-canonical instances in
the model to approximate the respective e value.

In this article, we reinforce the first definition of canonical-
ity when we describe syllogistic models. We define a canoni-

cal model as the minimal representation of a syllogism and a
non-canonical model as the opposite extreme, i.e., a maximal
representation. For example, consider the syllogism AA1:

All squares are blue.
All blue shapes have a star mark.

Its canonical model would only consist of entities of the fol-
lowing instance:

[square] [blue] [star]

The non-canonical model on the other hand, would consist of
all these instances (examples of negations in red):

[square] blue star
triangle blue star
triangle red star
triangle red cross

Analogously, we define an incorrect canonical model as
the minimal incorrect representation and an incorrect non-

canonical model as the maximal one. In the following exper-
iment and analysis we will use these definitions of canonical
and non-canonical models as lower and upper bounds of a
model’s complexity and heterogeneity.

Ultimately, we pose the following two research questions
that we aim to answer in this paper:

[RQ1] Is the verification of models generally easy for rea-
soners? How fast and accurate is that process?

[RQ2] Do preference effects for accepting models in syl-
logistic reasoning exist? Are certain models more likely to be
accepted or rejected correctly and faster than others?

The remainder of the paper is structured as follows: We
first describe our experimental design, followed by an analy-
sis of the participants’ data. Afterwards, we go in-depth with
respect to the structural properties of the models and outline
a regression model based on them. We conclude with a dis-
cussion of our results.

Experiment
In the experiment we conducted, participants were shown a
set of syllogistic premises, followed by a visual description
of a model corresponding to the syllogism, which they were
asked to accept or reject. Following Todorovikj et al. (2023),
the syllogistic contents were object descriptions in terms of
their shape (circle, triangle, square), color (red, yellow, blue)
and mark (plus, star, diamond). We take into consideration
only the 46 syllogisms for which a preferred mental model
was found. For each one of them we created six tasks by
deriving the preferred mental model (PMM), the canonical
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Figure 1: Illustrative example of the six models for the syllo-
gism AA4 with contents circle, blue and diamond. A task in
the experiment consists of two syllogistic premises describ-
ing properties of shapes and a visual representation of a spe-
cific model, as depicted here. Participants are asked to decide
whether the model contradicts the premises.

model, the non-canonical model and an incorrect counterpart
for each one of them, as control.

The PMMs were directly obtained from the experimental
data of Todorovikj et al. (2023). For the other two models
we obtained the (non-)canonical instances for both quanti-
fiers, following Table 1, merged them based on the middle
term when possible, while ensuring that they do not falsify
the premises. If a merge is not possible when deriving the
canonical model, then a non-canonical instance is introduced.
In the case of multiple potential merges, one that minimizes
negativity is chosen. That is motivated by the principle of

truth (Johnson-Laird, 1983, 2008) which states that mental
models are constructed to represent what is true according to
the reasoner. We illustrate this process taking the syllogism
AI2 and its canonical model as an example:

All B are A. Some C are B.

The canonical instances for each premise are:

A B B C
¬B C

The instance AB can be immediately merged with BC into
ABC, which does not falsify the premises. For ¬BC, we look
into the non-canonical set of the first premise, which contains
A¬B and ¬A¬B, both eligible to merge with ¬BC, making
A¬BC and ¬A¬BC potential instances to be added to the
model. Since neither falsifies the model, we pick the one that
minimizes negativity, in this case, A¬BC. Finally, the canon-
ical model for the syllogism AI2 consists of the instances:

A B C
A ¬B C

Regarding the incorrect canonical and non-canonical mod-
els, we first derive all possible incorrect models for each syl-
logism. We then pick the one with the least amount of unique

instances as the incorrect canonical model, and the one with
the most as the incorrect non-canonical model. Similarly to
above, if there are more than one possible choices, the one
that minimizes negativity is chosen. For completeness, we
also derive incorrect counterparts for the PMMs, by going
through all possible incorrect models for a syllogism and em-
ploy a simple distance metric that measures the amount of
different instances between two models. The most similar in-
correct model is then chosen as an “incorrect PMM”.

Every visual representation of a model consists of eight
instances, since that is the maximum number of instances,
should each one of them be different. If a derived model has
less than eight instances, then some of them are repeated. In
that case, we repeat the instances uniformly, while minimiz-
ing negativity, so that no bias is introduced because one in-
stance appeared more than another. For the PMMs, we ob-
tained the observed proportions by Todorovikj et al. (2023)
and scaled them to our scenario of eight instances.

We found that three syllogisms have equal PMMs and
canonical models (AA3, AI4 and EI3), so they have five cor-
responding tasks instead of six2. In total, we ultimately have
43⇥6+3⇥5 = 278 tasks for 46 syllogisms. The participants
are divided in five groups based on which syllogisms they are
presented with. Following Todorovikj et al. (2023), we main-
tain a similar experience between participants by dividing the
syllogisms in five groups based on their “preferedness”, i.e.
the construction frequency of the PMM. The final sets were
then created by selecting one syllogism from each preference
group, while ensuring that two syllogisms with a same quanti-
fier order do not appear in the same set. That leads to four sets
with nine syllogisms (two with 53 and two with 54 tasks) and
one set with ten syllogisms and 59 tasks. The presented con-
tents of the tasks were randomized per syllogism, per model.
The resulting data and all materials are available on GitHub3.

Table 2: Mean individual relative response time for each
model and correctness. The full set consists of all tasks in
the experiment, the reduced set eliminates the four syllogisms
with less than 6 unique experimental tasks (AA3, AI4, EI3
and AA2).

Model Full Set Reduced Set
Correct Incorrect Correct Incorrect

PMM 1.09 0.99 1.11 1.00
Canonical 1.03 0.80 1.04 0.82
Non-Canonical 1.19 0.89 1.19 0.90

2Due to a coding error in the experiment regarding the syllo-
gisms AA2 and AA3, participants that answered for AA2 were not
presented with its PMM and participants that answered for AA3
were presented with the same model twice (PMM = canonical). We
include AA2’s remaining responses when reporting response times
and modeling, but not in the statistical analysis. For AA3 we only
take into consideration the first appearance of the repeated task, to
avoid potential, though unlikely, learning effects.

3https://github.com/saratdr/iccm-2024-SyllogisticPMMs
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Participants
100 participants took part in our online web-experiment
on the platform Prolific4. For the following analysis we
performed a binomial test to determine an answer correct-
ness percentage threshold (64-65%, depending on participant
group, p = .05). We eliminated three participants whose cor-
rectness percentage was below the threshold, and two more
due to technical issues. Ultimately, we have N = 95 partic-
ipants (age 20-63, M = 36.63, SD = 10.48; 69% male). All
of them were native English speakers. After completing the
experiment, they received compensation of 6.75 GBP.

Procedure
At first participants are given an introductory task, where it’s
explained that they will be given two statements describing
properties of shapes and are instructed to assume they are
true. When they have read the statements, they are shown a
visual representation of a set of shapes and are instructed that
they will have to decide as quickly as possible if the set is in
line with the statements or is contradicting them. Afterwards,
the experiment starts, and participants are always presented
with only the syllogistic premises at first. The experiment is
self-paced, so once they decide to proceed, the visual repre-
sentation of the model is shown as well, which they then have
to accept that it corresponds to the premises or reject it. An
example of a task is shown in Fig. 1.

Analysis
First, we analyzed to which extent the participants’ responses
were correct. Given a noteworthy correctness average of
91.61% with errors spread across all tasks, the verification
task itself seemed to be so easy for all participants that errors
can likely be accounted inattentiveness instead of a system-
atic mistake. Thus, we proceed with analyzing only correct
answers. Note that because of that, throughout the analysis,
the terms correct and incorrect always denote the properties
of the respective model and do not refer to participants’ re-
sponse correctness. For our analysis, we rely on the response
time between presentation of the model visualization and the
participants’ responses.

Table 3: Comparison of response times between correct and
incorrect models in the reduced set using the Mann-Whitney
U test. Significant p-values are marked in bold (corrected
with Bonferroni-Holm method).

Model Med. Corr. Med. Incorr. U p

PMM 0.90 1.02 207562.5 <.001
Can 0.96 0.71 182432.5 <.001
NCan 1.05 0.79 180508.5 <.001

Annotation. Med. - Median; Corr. - Correct; Incorr. - Incor-
rect; Can - Canonical; NCan - Non-canonical.

4https://www.prolific.co/

Table 4: Comparison of response times between types of cor-
rect models in the reduced set using the Mann-Whitney U
test. Significant p-values are marked in bold (corrected with
Bonferroni-Holm method).

Models Med. 1 Med. 2 U p

PMM vs. Can 1.02 0.96 250408.0 .034
PMM vs. NCan 1.02 1.05 250798.5 .034
Can vs. NCan 0.96 1.05 237565.0 <.001

Annotation. Med. - Median; Can - Canonical; NCan - Non-
canonical.

Since inter-individual differences can be substantial for re-
sponse times and not necessarily reflecting the cognitive pro-
cesses (i.e., the time needed to actually click on a response
button), especially in online experiments, where the setup
is non uniform, we standardized the recorded times for our
analysis: For each task, we calculated the ratio between the
respective response time and the overall mean response time
of an individual. In the subsequent analysis we work with
two sets of responses - the full set of all responses and a re-
duced set that does not contain responses for syllogisms with
less than 6 unique tasks – AA3, AI4, EI3 and AA2. The first
three have an equal PMM and canonical model, so a statistical
comparison between those two models is generally impossi-
ble, whereas AA2 was affected by a coding error. Table 2
shows the mean individual relative response times for each
correct and incorrect model, for both sets. Note that the im-
pact of the elimination of the above mentioned syllogisms on
the average times is negligible.

Focusing on the reduced set, we first examine the differ-
ence between correct and incorrect models. We can imme-
diately notice that the incorrect canonical and non-canonical
models were dismissed faster than the respective correct ones
were accepted (0.82 vs. 1.04 for canonical; 0.90 vs. 1.19
for non-canonical). In the case of PMMs, though, there is a
smaller difference (1.00 vs. 1.11), however, the increasing
trend is still present. We tested for statistical significance in
the changes using the Mann-Whitney U test and found that
all differences are significant (p < .001), as shown in Table 3,
along with the respective median values, for reference. This
indicates that individuals are able to identify incorrect models
faster than correct ones. This is plausible given that, for tasks
with a universal quantifier involved (which are 40 out of the
46 tasks), participants can immediately reject the model once
they recognize only one instance that contradicts the premises
without even checking the rest, in contrast to correct models,
where the whole model needs to be checked.

Next, we look into the response time differences between
the three (correct) models. As intended, the canonical mod-
els represent the lower bound with 1.04 and the non-canonical
ones the upper bound, with 1.19. The average response time
for the PMMs lays in the middle with 1.11. Once again,
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Table 5: Spearman correlation analysis between each type of
instance and the mean response time for each model. Signifi-
cant p-values are marked in bold (corrected with Bonferroni-
Holm method). Note that instances that do not appear in a
model or have a constant amount among all syllogisms lack a
correlation value.

Inst. PMM Can NCan IPMM ICan INcan

U
ni

qu
e M 3.25 2.56 5.93 2.90 1 7.72

r .15 .15 -.08 .03 – -.26
p .003 .001 .559 1 – <.001

N
ec

. M 3.73 8 4.17 2.68 2.19 2.58
r -.05 – .06 -.09 .06 .17
p 1 – 1 .328 1 <.001

U
.N

ec
.

M 1.57 2.56 2.56 0.86 0.27 2.37
r .07 .15 .04 -.07 .06 .01
p 1 .001 1 1 1 1

Po
ss

. M 4.27 0 3.83 3.99 0.59 3.32
r .05 – -.06 .18 .11 .18
p 1 – 1 <.001 .075 <.001

U
.P

os
s. M 1.68 0 3.37 1.53 0.07 3.25

r .11 – -.13 .15 .11 .18
p .056 – .013 .004 .075 < .001

In
c.

M 0 0 0 1.34 5.22 2.10
r – – – -.13 -.11 -.31
p – – – .024 .056 <.001

U
.I

nc
. M 0 0 0 0.52 0.65 2.10

r – – – -.10 -.11 -.31
p – – – .192 .056 <.001

Annotation. Inst. - Instance (type); Can - Canonical (model);
NCan - Non-canonical (model); IPMM/Ican/INcan - Incor-
rect versions of the models; U. - Unique; Nec. - Necessary;
Poss. - Possible; Inc. - Incorrect.

we performed a Mann-Whitney U test and determined that
the difference in response times between the models is sta-
tistically significant. Individuals needed more time to ver-
ify PMMs than canonical models (p = .034), but less than
non-canonical ones (p = .034). Clearly, canonical models
were evaluated faster than non-canonical ones (p < .001).
All test results, along with the medians are displayed in Ta-
ble 4. Note that all p-values reported in the two tables are cor-
rected after the Bonferroni-Holm method for multiple com-
parisons. These results indicate that even though the PMMs
are models that were the most frequently constructed ones,
the time needed to verify such a model is not exceptionally
short or long, falling between the two extreme bounds. In
other words, in the domain of syllogistic reasoning, we can-
not conclude that the preference for creating a model is re-
lated to the verification time or even its correctness, given the
accuracy of above 90% across all models reported above.

Modeling
In this section we look into the structure of the given mod-
els, specifically, the type of their instances. We differentiate
between: a) instances that are necessary for a correct model
representation of a syllogism; b) instances that are possible

to be added, i.e. do not contradict the premises, but aren’t
necessary and c) incorrect instances. Moreover we also look
into unique instances, disregarding repetition. We analyzed
the relationship between these descriptors and the mean rel-
ative response times. Table 5 shows the correlation results.
We observe how different types of instances are significantly
correlated with response times of different model, e.g. the
canonical models correlate with the number of unique and
unique necessary instances, whereas the non-canonical ones
with the amount of unique possible instances. That is co-
herent with the definitions of the models relying heavily on
necessary and possible instances, respectively.

As a next step, we investigate whether a model of the types
of instances as descriptive features can successfully represent
response times for each syllogistic model. To that end, we
fit 127 linear regression models with ridge regularization, us-
ing all possible combinations of features of all lengths. We
selected the best one based on the lowest Akaike Informa-
tion Criterion (AIC; Akaike, 1974) and Bayesian Informa-
tion Criterion (BIC; Schwarz, 1978) values. Using these two
metrics on a full set of models, we can determine a thresh-
old after which the addition of parameters does not lead to
a significant fit improvement, while increasing the tendency
of the models to overfit, and therefore select an appropriate
model. Finally, we select the linear regression model con-
sidering the amount of unique necessary (b = 0.06), unique
incorrect (b =�0.11) and possible (b = 0.04) instances, with
AIC =�854.71 and BIC =�843.86, achieving a mean abso-
lute error of MAE = 0.16. For a more detailed comparison,
we reconstructed the mean relative response times based on
the times predicted by the model, as displayed in Table 6.
We observe results nearly matching the true values, while
preserving the increase and decrease trends among different
types of models and correctness. Thus, the model highlights
how the time required by individuals for model verification
is heavily based on its structure. This, again, corroborates
our finding that potential preferences have little effect on par-
ticipants’ ability to verify models. Instead, the determining
factor seems to be structural complexity of the model.

Table 6: Mean predicted relative response time for each
model and correctness in the full set using a linear regression
model with the number of unique necessary, unique incorrect

and possible instances as features.

Model Correct Incorrect

PMM 1.11 1.00
Canonical 1.02 0.83
Non-canonical 1.16 0.91

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

189



Discussion
In this article, we continue the investigation of preferred men-
tal models in the domain of syllogistic reasoning (Todorovikj
et al., 2023) by posing two research questions. Analogous
to PMM evaluation in the spatial domain (Ragni & Knauff,
2013), we first examine how trivial model verification is for
individuals (RQ1). Thereby, we designed and conducted an
experiment in the same world of marked, colourful shapes.
This time, participants were presented with a syllogism and a
corresponding model and asked to verify whether it is in line
with the premises or contradicts them. We created six tasks
per syllogism by deriving their canonical and non-canonical
models as lower and upper bounds, respectively, using the al-
ready determined PMMs by Todorovikj et al. (2023), and de-
riving incorrect versions of all three model types, as control
tasks. We found that individuals accept correct models and
rejected incorrect ones with an average success of 91.61%,
indicating that they do, in fact, verify models with ease, re-
gardless of their structure.

For mReasoner (Khemlani & Johnson-Laird, 2013) and the
Mental Model Theory in syllogistic reasoning, these findings
have two implications: First, since models seem to be eas-
ily built and verified by human reasoners, the assumption that
these processes do not involve errors is confirmed by our find-
ings. Second, however, the fact that participants don’t seem to
need much effort for verification and construction, also raises
the question, if the model manipulation during the search for
counterexamples proposed by mReasoner is plausible: After
all, an alternative solution could be to repeatedly rebuild dif-
ferent models instead.

Furthermore, we investigated whether a preference effect
exists for accepting models in syllogistic reasoning (RQ2)
by examining the response times for each model type and
correctness. We found that the canonical and non-canonical
models significantly represent the lower and upper bounds,
as intended, while the mean response time for PMMs is in
between them. Additionally, individuals needed significantly
less time for rejecting incorrect models, respective to their
counterparts, following the same trend of PMMs being in the
middle of canonical and non-canonical models. This does
not necessarily express any sort of preference, but seems to
largely depend on the structural components of the models.
Therefore, we analyzed the behavior further by describing the
models using the types of instances they contain – necessary,
possible, incorrect and unique – and finding significant cor-
relations between them and the individuals’ response times.
Following that trace, we fit a set of 127 regression models,
capturing all feature combinations, and found that the best
representation uses the amount of unique necessary, unique
incorrect and possible instances in a syllogistic model. Fur-
thermore, the model was able to replicate the patterns in the
data accurately, indicating that the selected structural proper-
ties are in fact sufficient.

In the empirical analysis of PMMs in spatial reasoning,
Ragni and Knauff (2013) identified that the acceptance cor-

rectness of models constructed according to a preferred strat-
egy is typically higher than for (correct) models built follow-
ing a different one (92% vs. 81% and 44%). They report
analog tendencies in the respective required response times
as well (3.8ms vs. 4.36ms and 6.41ms). Similar findings are
made by Rauh et al. (2005), who examined acceptance of con-
clusions following from the respective PMMs in spatial rea-
soning. Ultimately, we can conclude that individuals strug-
gle with identifying and veryfing models that do not coincide
with a preferred model/strategy in the spatial relational do-
main, but a similar conclusion can certainly not be made for
syllogisms. In fact, we showed that the difference in required
verification time depends on how “chaotic” a given model is
and is not related to what was found to be preferred models.
Logically, given a model with at least one instance contra-
dicting the premises, the faster it’s identified, the faster it will
be rejected. The more frequent an instance is repeated in a
model, the less time is necessary to verify all instances. Fi-
nally, a major difference between spatial reasoning tasks and
syllogistic reasoning is in their typical experimental designs:
During the whole duration of syllogistic reasoning tasks, both
premises are usually visible, while they are only shown for a
short duration (and one after the other) in many spatial rea-
soning experiments. It is plausible, that strategies allowing
to quickly integrate new premises and without much load on
working memory cause a preference for certain models to
be built in spatial reasoning tasks, while the necessity is not
present for typical syllogistic reasoning tasks.

So, what does this mean about preferred mental models in
syllogistic reasoning? A few questions for future research
and investigation arise: Why are most of the found PMMs
not equal to the canonical models? It points to a tendency
of individuals adding instances that are not directly observed
in the premises, but also not to the extent that they reach a
full fleshed-out non-canonical representation. There is a po-
tential to interpret this as a way of communicating other pos-
sibilities exist and ensuring that this knowledge is accounted
for. Though, is this a trend only among “simpler” syllogisms
that by default do not require a large amount of necessary in-
stances to represent them? Ultimately, an important point to
consider is whether the reported preferred mental models are
in fact the mental models individuals use to reason about a
syllogism in the first place. Todorovikj et al. (2023) fit mRea-
soner to their data to show a lack of relevance of the mental
models provided by the participants for the conclusions they
provided later on. We can interpret the found preferred mod-
els as “prototypes” for a syllogistic model, however, cannot
conclude that they are preferred models when reasoning, as
it’s done in the spatial domain.
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Abstract

We posit that early attachment to kith and kin has a marked
influence on later life reasoning and especially on generosity
toward  others.  We  present  a  series  of  computational
experiments showing that the final (adult) levels of generosity
differ  depending  on  such  early  life  exposure,  and  this
independently  of  the  otherwise  homogeneous  reasoning
behavior. The benchmark experiment defines a developmental
progression  of  three  stages,  from  attachment  only  to
perception of cooperative or non-cooperative actions of others
in  a  controlled  social  environment  to  finally  complex
environments of arbitrary participants. We use as a behavioral
basis the well-known Iterated Prisoner’s Dilemma game and
its  classic  strategy  Tit-For-Tat  in  a  simulated  society  of
individuals.  We show that in the final stage of an arbitrary
complex society the social scores obtained by the developing
individuals  are  consistently  higher  than  the  reference,
undeveloped (adult)  individuals,  and that this is due to the
developed degree of nonzero generosity. We also show that
individuals  with  a  disturbed  understanding  of  others’
emotional  behavior  (thus  of  attachment)  but  with  intact
reasoning tend to be more reciprocal and less generous in the
end.  On  the  other  hand,  individuals  with  the  opposite
disturbance of the understanding of reasoning but with intact
understanding of  others’ emotional  behavior  tend  to  be  far
more impulsive and behave as driven by attachment only. The
effect  of  various  cognitive  and  social  parameters  on  the
developed behaviors is also studied. Further implications of
this developmental model are finally given.

Keywords: Attachment;  Attraction;  Development;
Reciprocity; Cooperation;  Iterated Prisoner’s  Dilemma; Tit-
For-Tat; Generosity

Introduction
From our everyday experience, we know that interpersonal

relations  influence  our  behavior  as  well  as  our
understanding of the world around us. Neonatal or toddler

attachment are well studied by psychology (Bowlby, 1975;
Mooney, 2009) and are shown to influence an individual’s

behavior later in life. Psychology has also been traditionally
interested  in  the  subject  of  ‘attraction’,  where  (dyadic)

attraction indicates affect, as well as its opposite ‘repulsion’
and their effect on attitude, for example whether behavioral

or personality similarity is a cause or an effect of attraction
(starting from the pioneering work of Byrne, for example

Byrne, 1969 ; Montoya & Horton, 2020 ; Wetzel & Insko,
1982). Psychology is also interested in the personality roots

of attraction (for example, Montoya & Horton, 2004), in the
relation  of  attraction  with  social  identity  (for  example,

Turner et al. 1983) and in other assorted issues. We believe
that all these are instances of a general attachment/attraction

mechanism that  may also include friendship (Hruschka &
Henrich,  2016),  habituation  (Davies  et  al.,  2011),

interpersonal commitment (Back & Flache, 2008) and other
such phenomena. All these phenomena have in common that

the effect of attachment/attraction is beneficial to the social

interaction and to the participating agents. Any mechanism

of attachment/attraction (from here on simply ‘attachment’),
whether  in  the  narrow  or  in  the  broad  sense,  will  by

definition be outside the realm of rational decision making,
and it will instead constitute a reactive component capable

of responding fast and at low cognitive cost to conditions of
the social environment. This can be a very handy tool for

human  behavior,  especially  in  hostile,  harsh  or  stressful
natural environments.

Moreover,  we believe that  attachment,  as  well  as  other
such  reactive  mechanisms,  is  related  to  reasoning  and

rationality.  One idea is that  everyday reciprocal reasoning
could emerge from the interaction of attachment and social

imitation. We  explore  this  idea  in  a  computational
experimental  setting  based  on  the  classic  cooperation

problem that is modeled as an iterated prisoner’s dilemma
(IPD, see next). We start from the observation that newborn

and very young individuals do not seem to possess or  to
demonstrate  intricate  reasoning  abilities  and  especially

reciprocation  behavior,  but  these  appear  to  be  learned
gradually. On the other hand toddlers seem to differentiate

other  people  as  “in-group”  to  whom  they  are  attached
(typically kin) and “out-group” toward whom they behave

differently (typically strangers whom they tend to avoid).
We therefore hypothesize that young individuals imitate

the behavior of the adults in their environment, and more
specifically  they  imitate  how  often  the  latter  tend  to

cooperate with in-group or out-group (i.e., attached or not).
A subsequent  stage  of  their  development  (at  around  4-5

years)  allows  them  to  mind-read  others  and  therefore
differentiate  between  cooperative  and  non-cooperative

actions of third parties. At that point they start imitating how
often  others  cooperate  when  their  in-group  cooperates  or

defects,  and  accordingly  when  out-group  cooperates  or
defects. We want to show that this developmental process

allows  reciprocity  to  emerge  (cooperate  when  the  other
cooperates, and defect when the other defects) with added

generosity – which is beneficial for social behavior and little
understood. When individuals later enter a general, complex

environment  of  others  with  very  diversified  and  possibly
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opposing interests and even at times malicious, their earlier
developed reciprocity with generosity comes at play.

We are modeling this developmental process as a 3-stage
process: during the  first stage individuals respond only to

in-group  and  out-group,  during  the  second  stage they
perceive third parties’ cooperative/non-cooperative behavior

toward in-group or out-group and during the third stage the
social environment in not controlled anymore (like a family

or  a  school  environment)  but  may  encompass  arbitrary
individuals  and  behaviors.  It  is  important  that  the

learning/imitation rate decreases from stage to stage, but this
will be discussed later. This staged process parallels and is

loosely  derived  from  Piaget’s  (1947)  theory  of  child
development, although our focus is  on attachment and on

emotional development and not on ‘cognitive’ development.
Our  stages  correspond  broadly  to  preschool  age,  primary

school  age  and  adolescence.  Our  methods  purport  to
indicate  abstract  and general  tendencies  and  directions of

development,  rather  than  to  accurately  model  children’s
behavior.

Basic experimental setup
We experiment using agent-based simulation (Namatame &

Chen  2016)  of  a  population  of  agents  that  represent
individuals of 2 types: adults (that have fixed behavior) and

minors or developing individuals that imitate adults and use
these  learned  values  in  their  own  behavior.  General

parameters are 100 adults with 110 minors, all connected in
an attachment network with connectivity factor from 10 to

20 (i.e. each agent is attached to 10 to 20 others). In each
round each adult interacts with a random other adult, minors

imitate a  number of  adults (usually 2,  selected with 75%
probability  from  their  in-group  and  25% from  their  out-

group) and finally each minor interacts with a random other
minor.  Each  pairwise  interaction  is  a  cooperation  game,

traditionally  modeled  as  a  special  two-party  game,  the
Iterated Prisoner’s Dilemma (IPD). In this game, two agents

interact for a number of cycles (here 50) and in every cycle
each agent may either cooperate (C) or defect (D). It is then

assigned a score defined as follows.

Individual Opponent Score

C C 3 (= Reward)

C D 0 (= Sucker)

D C 5 (= Temptation)

D D 1 (= Punishment)

The  first  notable  behavior  for  the  IPD  designed  and
studied by Axelrod (Axelrod & Hamilton, 1981; Axelrod,

1984) is the Tit For Tat behavior (TFT, in short) :  Start by
cooperating, then return the opponent’s previous move. This

behavior  has  achieved  the  highest  scores  in  early
tournaments  and  has  been  found  to  be  fairly  stable  in

ecological  settings.  TFT  demonstrates  three  important
properties,  shared by most high scoring behaviors  in IPD

experiments: (i) it is good (it starts by cooperating), (ii) it is
retaliating (it returns the opponent’s defection), and (iii) it is

generous  (it  forgets  the  immediate  past  if  the  defecting
opponent  cooperates  again).  In  our  experiments,  unless

otherwise  stated,  all  adults  are  TFT during  the  ‘training’
stages (first and second) and can be any behavior during the

realistic third stage (we are mainly using a mix of TFT with
ALLC and ALLD, that always cooperate or always defect,

respectively). Note that we adopt the noisy version of IPD
in which there is a nonzero probability that an agent’s action

will be switched to the opposite, i.e. from COOPERATE to
DEFECT or vice versa. It has been shown that retaliating

strategies such as TFT can score quite badly in the presence
of noise, despite their superiority in the non-noisy domain

(Kraines  &  Kraines,  1995).  This  happens  because  even
accidental  defections  may  lead  to  a  persistent  series  of

mutual  defections  by  both  players,  thus  breaking
cooperation.  This  is  what  makes  some degree  of  explicit

generosity  necessary  to  account  for  opponent’s
misbehaviors.

Attachment model
Our  attachment  mechanism  relies  on  our  everyday

experience that people tend to be good and cooperative with
the ones they are attached to and tend to be “regular” with

the rest. This translates in our model as:

If (attached to the opponent) then play ALLC (always cooperate)

with a probability P (here set arbitrarily to 75%).

In all other cases play as usually (for example, TFT)

During the first stage, all adults are TFT and minors or

developing agents use two probabilities for cooperation with
in-group (attached) and out-group (others), P(A) and P(N),

respectively.  These  are  initialized  randomly  (usually
uniformly in the interval [0,1], but other options have also

been studied without significance differences in results) and
are updated during imitation as follows:

P(A)new = P(A)old + rate * (P(A)model - P(A)old),
where P(A)model is the  perceived probability of cooperation

of the adult role model within in-group, and accordingly for
P(N)new. This probability is computed by the minor agent as

the  proportion  of  times  where  its  adult  model  has
cooperated. The imitation rate is high in the first stage (here

50%) and drops in the next two stages to 20% and 10%.
During the second stage, minor or developing agents use

four probabilities for cooperation with in-group cooperators
and defectors and out-group cooperators and defectors, P(C|

A),  P(D|A),  P(C|N)  and  P(D|N),  respectively.  These  are
again initialized randomly as before and are updated during

imitation  in  a  similar  manner  as  the  P(A)  and  P(N)
probabilities of the previous case.

Benchmark experiment
According to the above, we define our 3-stage experiment

as follows. During the first stage we have adult TFTs and
developing agents that can only identify and respond to in-

group  and  out-group,  while  during  the  second  stage  the
developing  agents  can  also  identify  and  respond  to

cooperative and non-cooperative moves of third parties and
thus of  their  role models of  imitation.  Finally,  during the
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third stage,  adults  become a  mix of  IPD strategies  (TFT,
ALLC,  ALLD)  and  minor  or  developing  agents  do  not

change, except for the decreasing learning rate.
Table 1 summarizes the results in presence of noise. All

results  are  averages  per  agent  over  50  experiments.  The
theoretical maximum score for cooperative agents is 150 (50

rounds by reward 3 per round). Minors develop from initial
random  cooperative  behavior  to  almost  full  in-group

cooperation and over 50% out-group cooperation (95% and
57%, respectively,  after stage 1),  to about 90% reciprocal

cooperation independently of attachment but with very high
generosity for in-group compared to that for out-group (75%

compared to 10%) or equivalently close to TFT behavior for
out-group  (stage  2),  to  finally  a  little  higher  in-group

cooperation (90% and 79%, respectively) with prudent and
generous  out-group  reciprocity  (64%  and  33%,  as  C

response to C and D), which is beneficial since ‘behavioral
noise’ is present in an arbitrary population mix of ALLC,

ALLD and TFT (stage 3). It is also noteworthy that in stage
1 the minors converge to a behavior whose score matches

that of the adult TFT agents that they imitate but they are
clearly superior in subsequent stages. This is apparently due

to the high degrees of generosity that they demonstrate.

Table  1: Basic  results  in  presence  of  noise.  Rows

correspond to the developmental  stages  thus each column
shows the progression from stage 1 to stage 3. The two first

columns  show  average  scores  for  adults  and  developing
individuals. The next four columns show the probabilities of

cooperation,  where  A =  attached,  N = not  attached,  C =
opponent cooperated, D = opponent defected. All numbers

are averages of 50 experiments.
Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

118.912 117.752 0.952 0.566

120.838 138.23 0.89 0.747 0.895 0.11

109.477 126.455 0.898 0.79 0.637 0.325

Note that  the effect  of attrachment is underestimated in

the  previous  results  because  an agent’s  in-group is  much
smaller than its out-group, therefore the contribution of in-

group to final score is smaller than that of out-group.
These results also depend crucially on the ability to learn

at all stages. In principle, this setup corresponds to enough
time being available at any stage. But this is not the only

imaginable setup. We discuss several variations next.

Developing socially
In  practice  we  know  of  many  occasions  when  the
development  environment  at  young  age  or  the  family  is

disturbed, arbitrary or not  protective. Some argue that the
sociocultural environment has a bigger effect on emotional

development  than  the  biological  cognitive  development
process (for example, Vygotsky 1978 and followers).

Table 2 gives the same results as table 1 in the case of
ALLD adult agents in the first two stages of development.

In the third stage, a behavioral mix of agents is presented as

before. When there is a small degree of learning in the third
stage, even if much lower than the previous stages, the final

behavior  and  attachment  profile  stabilizes  to  the  same as
with normal development (with TFT agents in the first two

stages). But if exposure to the general, behaviorally mixed,
environment  starts  at  a  late  stage,  when  learning  has

stopped, the results are dramatic. The agents have learned to
be  unresponsive  to  their  partners’  behavior,  and  highly

cooperative  (75%)  when  attached  to  a  partner  but  fully
defecting when not attached –this appears  like a childish,

not rational, behavior. Naturally, the scores in this case are
very low.

The results obtained also differ from those of table 1 if the
development environment in the first two stages consists of

otherwise “rational” (TFT) agents but that are not attached
to  others,  as  table  3  shows.  The  minors  develop  as

significantly  less  generous  for  attached  partners,  almost
without  discrimination  between  cooperators  and  defectors

(70% and 66%, respectively, instead of 90% and 79% in the
regular case).

Table 2: Same as  table 1,  but will  ALLD adult  agents
during the first two stages, and a behavioral mix in the third

stage.  Rows correspond to  the developmental  stages  thus
each column shows the progression from stage 1 to stage 3.

(a) Learning  rates  for  the  three  stages:  0.5,  0.2  and  0.1,
respectively.

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

72.274 73.447 0.749 0.0

71.893 72.755 0.749 0.75 0.0 0.0

114.039 124.74 0.83 0.797 0.65 0.332

(b) Learning  rates  for  the  three  stages:  0.5,  0.2  and  0,

respectively.
Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

72.161 72.068 0.503 0.505 0.75 0

72.34 72.234 0.75 0.751 0 0

114.146 71.955 0.75 0.751 0 0

Table 3: Same as table 1, but without adult attachment
during  the  first  two  stages.  Rows  correspond  to  the

developmental  stages  thus  each  column  shows  the
progression from stage 1 to stage 3.

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

116.205 115.381 0.5 0.542

115.802 136.363 0.5 0.5 0.891 0.109

113.645 124.189 0.7 0.662 0.655 0.339

The  attachment  profile  that  develops  does  not  differ,
however, if the development environment contains a mix of

agents and not only TFTs,  provided that there is “enough”
attachment at all stages. If the attachment factor drops from

stage to stage, that is if developing agents are less and less
attached to others as their social circle changes, the minors

develop as less generous with their attached partners. These
are shown in table 4. Note that minors’ behavior develops

normally and is not disturbed by lower attachment factor in
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later stages if the adult agents of reference at the stages 1
and 2 are TFT, thus rational.

Interestingly, if noise is absent during at least one of the
initial  developmental  stages,  the  minors  develop as  much

more generous with their attached partners. These are shown
in table 5.

Table 4: Same as table 1, but with a behavioral mix of
adult agents during all three stages. Rows correspond to the

developmental  stages  thus  each  column  shows  the
progression from stage 1 to stage 3.

(a) Regular attachment  factor  during all  stages  (up  to  20
attached partners).

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

112.152 117.611 0.889 0.516

113.398 125.284 0.804 0.742 0.652 0.336

113.029 126.283 0.858 0.792 0.652 0.335

(b) Regular  attachment  factor  during  1st stage,  lower

attachment factor during stages 2 and 3 (up to 10 attached
partners).

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

113.759 116.909 0.893 0.52

111.461 125.045 0.698 0.657 0.65 0.333

109.966 124.441 0.761 0.712 0.653 0.341

Table 5: Same as table 1, but will no noise during stage 1

or stages 1 and 2. Rows correspond to the developmental
stages thus each column shows the progression from stage 1

to stage 3.
(a) Noise absent during stage 1, but present during stages 2

and 3.
Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

150.0 150.001 1.0 1.0

118.374 139.221 0.986 0.884 0.893 0.111

110.75 125.098 0.966 0.875 0.651 0.334

(b) Noise absent during stages 1 and 2, but present during
stage 3.

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

150.0 150.002 1.0 1.0

150.0 149.999 1.0 1.0 1.0 1.0

110.827 125.318 0.977 0.961 0.653 0.337

These results show that  attachment is a very important,
even defining component of the emotional development of

minors and of the degree of demonstrated interplay between
reciprocity and generosity, as modulated by attachment, in

later stages at life. The presence of adult role models that
show  attachment  to  others,  even  if  they  are  not  fully

“rational” and reciprocating, is of utmost importance. How
attachment  structures  change  through  the  developmental

stages and the degree of openness that allows learning are
also factors that influence later development, It may be also

thought  that  the  influence  of  some of  those  factors  feeds
back  into  development,  for  example  high  learning  in  an

unfriendly environment may hinder and slow down learning

next, and attachment to adults that are not attached to others
may lead to fewer attachment relations in future. All these

are supported by our results so far.

Behavioral extremes
We are  also  interested  in  the  boundaries  of  development
itself and in the behavioral disorders that may result from

flaws of social perception. More specifically, we study the
case  where  third  party  in-group  and  attachment  is  not

correctly perceived due to lack of emotional understanding
of others,  as in disorders in the autistic spectrum (Baron-

Cohen  et  al.  2009).  We  also  study  the  case  where
cooperation/defection  and  thus  reason  is  not  correctly

perceived due to social cues misunderstanding, as in some
retardation disorders  (Zigler  & Hodapp,  1986).  The latter

case resembles the initial attachment-only stage, where there
is no biological defect, but where the social environment is

too complex for the developing agent to grasp what a third
party regards as cooperative and what not or because this

mind-reading ability has not developed yet. Tables 6 and 7
give the results in these two cases.

The agents with lack of in-group understanding cannot
perceive whether third parties are attached to one another

but  can  understand  when  these  third  parties  respond  to
cooperation or defection at stage 2. These agents reciprocate

highly and independently of in-group, while achieving the
same  score  levels  as  the  typical  ones.  They  actually

reciprocate  as  typical  agents  against  out-group  (compare
row 3 of tables 1 and 6). On the other hand, the agents with

lack of perception of reason cannot perceive whether third
agents have responded to cooperation or defection but they

can understand whether these third parties are attached to
others or not. These agents are almost full cooperators for

in-group and over 50% cooperators for out-group, and these
independently of opponents’ behavior. Because cooperation

perception  is  crucial  for  systems  like  our  own,  with  this
defect the agents achieve lower scores than in the previous

cases,  but  still  a  little  higher  than  the  reference  adult
population of the third stage.

Table 6: The same experiment of table 1, but for agents
that cannot perceive attachment and in-group (see text).

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

120.31 111.225 0.509 0.492

119.475 139.761 0.9 0.186 0.9 0.186

115.468 124.716 0.682 0.367 0.682 0.367

Table 7: The same experiment of table 1, but for agents

that cannot perceive third-party cooperation (see text).
Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

120.665 119.939 0.947 0.566

121.11 120.782 0.877 0.879 0.573 0.573

111.68 118.248 0.893 0.892 0.548 0.548

In extreme behavioral cases as the above, not all abnormal
social settings have a direct effect. When the minors do not
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perceive reason, they do not develop “normally” and they
end up less or more generous respectively toward in-group

when attachment or noise is not present in the initial stages
of development, as tables 8 and 9 show. Interestingly, and as

expected,  minors  that  do not  perceive attachment  are not
affected by any of these social abnormalities.

Table 8: Same as table 7, but without adult  attachment
during  the  first  two  stages.  Rows  correspond  to  the

developmental  stages  thus  each  column  shows  the
progression from stage 1 to stage 3.

Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

115.649 115.292 0.489 0.539

116.368 115.158 0.489 0.489 0.542 0.542

112.844 115.937 0.734 0.734 0.513 0.513

Table 9: Same as table 7, but without noise during the

first  two  stages.  Rows  correspond  to  the  developmental
stages thus each column shows the progression from stage 1

to stage 3.
Adults Minors In-group (A) Out-group (N)

P(C) P(D) P(C) P(D)

150.0 149.988 0.999 1.0

150.0 150.0 1.0 1.0 1.0 1.0

111.965 115.602 0.937 0.937 0.508 0.508

Conclusion
We  have  shown  that  a  simple  attachment  mechanism
coupled with social imitation may give rise developmentally

to  reciprocal  behavior  with  generosity  in  complex
environments.  The  resulting  behavior  and  especially  the

degree of generosity depends crucially on the early stages of
development where the individuals have limited reasoning

and  mind-reading  capabilities.  It  can  be  shown  that  a
succession  of  generations  of  typical,  developing  agents

stabilizes  the  levels of  generosity  in  the  society.  For
individuals  with  defects  of  perception  of  in-group

attachment  or  of  third  party  cooperative  behavior,
undifferentiated “cold” reciprocity or impulsive attachment-

like  behavior  emerges  respectively.  The  reciprocating
cooperative  (reasoned)  behavior  appears  more  important

than attachment,  as can be deduced when one of the two
components are missing, but attachment allows stable long-

term  relationships  to  build  and  cooperation  to  become
spontaneous  and  impulsive,  leaving  all  the  cognitive

reasoning potential to be used more productively. This way,
agents may opt for interacting preferentially with partners

they are attracted to rather than interacting randomly within
society, and thus create their preferred social circle. These

results  have  implications  for  typical  and  atypical
development,  but also for  build-up of  bonds,  partnerships

and  associations  later  in  life,  for  development  of  social
identity and norms and for other similar matters.
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Abstract

Event-related potentials (ERPs) are used to study how lan-
guage is processed in the brain, including differences between
native (L1) and second-language (L2) processing. A P600
ERP effect can be measured in proficient L2 learners in re-
sponse to an L2 syntactic violation, indicating native-like pro-
cessing. Cross-language similarity seems to be a factor that
modulates P600 effect size. This manifests in a reduced P600
effect in response to a syntactic violation in the L2 when the
syntactic feature involved is expressed differently in two lan-
guages. We investigate if this reduced P600 effect can be ex-
plained by assuming that ERPs reflect learning signals that
arise from mismatches in predictive processing; and in par-
ticular that the P600 reflects the error that is back-propagated
through the language system (Fitz & Chang, 2019). We use a
recurrent neural network model of bilingual sentence process-
ing to simulate the P600 (as back-propagated prediction error)
and have it process three types of syntactic constructions dif-
fering in cross-language similarity. Simulated English-Spanish
participants displayed a P600 when encountering constructions
that are similar between the two languages, but a reduced P600
for constructions that differ between languages. This differ-
ence between the two P600 responses mirrors what has been
observed in human ERP studies. Unlike human participants,
simulated participants showed a small P600 response to con-
structions unique to the L2 (i.e., grammatical gender), presum-
ably because of how this grammatical feature is encoded in the
model. Our modelling results shed further light on the viability
of error propagation as an account of ERPs, and on the effects
of syntactic transfer from L1 to L2.
Keywords: Event-related potential; P600; bilingualism;
cross-language similarity; syntactic transfer; recurrent neural
network; sentence processing

Introduction

Event-related potentials in bilingualism

Electroencephalography is a technique for recording electri-
cal voltage potentials produced by neural activity. Recorded
potentials can be analyzed in relation to cognitive events,
yielding interpretable patterns called event-related potentials
(ERPs; Morgan-Short, 2014). ERP effects have for instance
been observed in response to reading words in sentence-
comprehension studies. More specifically, syntactic viola-
tions result in an increased positivity in the ERP waveform

that starts at around 600 ms after observing an anomalous
word, as compared to its correct counterpart (Osterhout &
Mobley, 1995). This ERP effect is called a P600.

The P600 effect has been used to investigate if second-
language (L2) learners show similar ERP effects as native
(L1) speakers for morpho-syntactic processing. L2 profi-
ciency is the most important factor determining P600 size
(Antonicelli & Rastelli, 2022; Caffarra, Molinaro, David-
son, & Carreiras, 2015; McLaughlin et al., 2010; Morgan-
Short, 2014) but similarities and differences between the
L1 and L2 often modulate the effect of proficiency. Some
ERP studies showed reduced P600 effects, or no P600 ef-
fect, for syntactic features that are instantiated differently be-
tween languages (Antonicelli & Rastelli, 2022; Liu, Dun-
lap, Tang, Lu, & Chen, 2017; Morgan-Short, 2014), while
others found P600 effects for syntactic L2 features regard-
less of the (dis)similarity between L1 and L2 (Caffarra et
al., 2015; McLaughlin et al., 2010; Morgan-Short, 2014).
There appears to be a complex influence of L1-L2 similarity.
Native-like L2 processing (i.e., showing a native-like P600
response) of syntactic features that are unique to the L2 is
possible (Foucart & Frenck-Mestre, 2012; McLaughlin et al.,
2010; Morgan-Short, 2014), as is native-like L2 processing
of syntactic features that are expressed similarly in the L1
and L2 (Foucart & Frenck-Mestre, 2011; McLaughlin et al.,
2010; Morgan-Short, 2014). But when a syntactic feature
is present but expressed differently in the two languages, the
P600 seems to be less sensitive to syntactic violation in the L2
(Sabourin & Stowe, 2008; Tokowicz & MacWhinney, 2005).

Tokowicz and MacWhinney (2005) presented native En-
glish speaking learners of L2 Spanish with Spanish sentences
containing syntactic violations. There were three types of
syntactic violations: verb-tense violation, determiner gender
violation, and determiner number violation (see Table 1). A
sentence with a tense violation contained a verb in the pro-
gressive tense without an auxiliary verb. The syntactic con-

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

197



Table 1: Constructions containing syntactic violations with Spanish example sentences and their English translation. Words
indicated with an asterisk are experimentally manipulated (here shown in the violation condition). Critical words are underlined.
Table adapted from Tokowicz and MacWhinney (2005).

Violated feature Similarity Example sentence Spanish English translation
Tense Similar Su abuela *cocinando muy bien His grandmother *cooking very well
Determiner gender Unique Ellos fueron a *un fiesta They went to *a-MASC party
Determiner number Different *El niños están jugando *The-SING boys are playing

struction for the progressive tense is similar between Spanish
and English. In a sentence with a determiner gender viola-
tion, the gender of a noun phrase was switched to the incor-
rect gender, resulting in a violation at the following noun.
This syntactic construction is unique to Spanish compared to
English, since the English language does not express gram-
matical gender. In a sentence with a determiner number vio-
lation, the number of the determiner was switched to the in-
correct number, resulting in a violation at the following noun.
In both languages, plurality of a noun is expressed by an in-
flectional morpheme suffix on the noun. However, unlike En-
glish, Spanish also expresses plurality in the determiner pre-
ceding a noun, which makes the syntactic construction differ-

ent from English. Tokowicz and MacWhinney (2005) found
that the P600 effect was reduced (in fact, it was not statisti-
cally significant) for determiner number violations compared
to the other two types, which suggests that aspects of L1 syn-
tax affect L2 processing; a phenomenon known as syntactic
transfer. Specifically, the fact that number is not expressed on
the determiner in English would make native English speak-
ers less sensitive to determiner number in L2 Spanish. The
same does not apply to determiner gender because there is no
English grammatical gender to transfer to L2 Spanish.

Computational models of P600 effects

Although ERPs are a useful in psycholinguistic research, their
precise functional interpretation is still unclear (Beres, 2017;
Kaan, 2007). Several computational cognitive models have
been proposed to account for ERPs (Eddine, Brothers, & Ku-
perberg, 2022) although only few provide an interpretation of
the P600 (Brouwer, Crocker, Venhuizen, & Hoeks, 2017; Fitz
& Chang, 2019; Li & Futrell, 2023).

Fitz and Chang (2019) propose that P600 size corresponds
to the amount of backpropagated word-prediction error in a
recurrent neural network model of word-by-word sentence
processing. They used Chang’s (2002) Dual-path model to
compute backpropagated error on sentences based on stimuli
from ERP studies. The simulated P600 effects corresponded
to the effect in humans across a wide range of studies, provid-
ing support for the hypothesis that ERPs reflect learning sig-
nals in the language system. This account of ERPs is known
as the Error Propagation account.

The Dual-path model is a connectionist model of sentence
production and syntactic development. The model has two
pathways. The first pathway is the sequencing system that

learns how words are ordered in a sentence and is based on
the Simple Recurrent Network (Elman, 1990). The second
pathway is a meaning system that learns how to map message
content onto words in a target language. The model has also
been extended to the bilingual case (Janciauskas & Chang,
2018; Tsoukala, Broersma, Van den Bosch, & Frank, 2021).
Verwijmeren, Frank, Fitz, and Khoe (2023) used the Bilin-
gual Dual-path model to simulate ERP responses to syntactic
violations in L2 learning. These simulated ERPs depended on
L2 proficiency in a manner that resembled human subjects,
adding further support to the Error Propagation account.

The present study

We use the Bilingual Dual-Path model to investigate whether
the Error Propagation account can explain the P600 results
from Tokowicz and MacWhinney (2005). The model simu-
lates native speakers of English (L1) who start learning Span-
ish (L2) from a later age. At every point in L2 learning, we
run an experiment similar to that of Tokowicz and MacWhin-
ney, presenting simulated participants with sentences contain-
ing a verb-tense violation, a determiner gender violation, or a
determiner number violation, or with a control sentence with-
out any violation.

Based on findings from human ERP studies (Foucart
& Frenck-Mestre, 2011, 2012; McLaughlin et al., 2010;
Morgan-Short, 2014), we expect a clear P600 effect of vio-
lations expressed similarly in L1 and L2 (i.e, verb-tense vio-
lations) and a clear P600 effect to grammaticality violations
expressed uniquely in L2 (i.e., determiner gender violations).
We expect a reduced P600 effect (in line with Sabourin &
Stowe, 2008) or even an absent P600 effect (in line with
Tokowicz & MacWhinney, 2005) to the determiner number
violations compared to the other two violation types. The
results from our simulations were largely in line with these
expectations, although they did not clearly confirm our ex-
pectations for the determiner gender violations. We therefore
conduct a second simulated experiment with simulated mono-
linguals to further explore this discrepancy. Differences be-
tween the monolingual and bilingual model predictions sug-
gest the bilingual model does display syntactic transfer from
L1 to L2.

Methods

In Experiment 1, we simulate native speakers of English who
are learning L2 Spanish. We train instances of the Bilingual
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Table 2: Example of an experimental sentence in all for con-
ditions. The bold morphemes indicate the sentence position
where the violation occurs.

Example sentence Violation condition
el padre hacer -a-e una bañera none (control)
el padre hacer -ger una bañera Tense
los padre hacer -a-e una bañera Number
la padre hacer -a-e una bañera Gender

Dual-path model1, using a similar model configuration as in
Verwijmeren et al. (2023), to learn English from “infancy”
and Spanish as L2 at a later stage. The model configuration
in this paper differs from the configuration in Verwijmeren et
al. (2023) in how to model’s next-word prediction is fed back
into the model, forming its input signal at the next time step.
Following Fitz and Chang (2019) closely, the input of the cur-
rent model is set to the single highest activation value of the
sum of the output vector (i.e., the distribution over possible
next words) and the target vector (representing the single tar-
get word) . This method emphasizes correct word prediction
over actual word prediction.

The model’s training input consisted of sentences in arti-
ficial versions of Spanish and English that were paired with
messages that expressed their meaning. The model learned to
express messages as sentences in the target language (Span-
ish or English) by repeatedly predicting the next word. When
presented with a message, corresponding nodes in the model
are activated. One of the two target-language nodes is acti-
vated, and tense and aspect nodes are activated in the Event-
semantics layer. Nodes in the Concept layer are activated for
content-words, and a plural node is activated for plurality of a
content-word. Corresponding thematic role nodes in the Role
layer are activated and fixed connections are formed with the
nodes in the Concept layer depending on their thematic role.

After each training epoch, the model is evaluated to mea-
sure proficiency, and tested in experimental trials to measure
simulated ERPs. For Experiment 2, we trained a monolingual
Spanish model. The simulated monolingual participants are
trained, evaluated, and tested in the same way as the simu-
lated L2 learners, except that they received only Spanish.

Artificial languages and model training

The artificial languages had the same constructions as the
lagnagues created by Verwijmeren et al. (2023). The two
artificial languages together consisted of 259 lexical items:
121 nouns, 11 adjectives, 6 pronouns, 6 determiners, 12
prepositions, 87 verbs, 8 auxiliary verbs, 6 verb inflectional
morphemes, 1 plural noun marker, and the period. Us-
ing the inflectional morphemes, verbs were generated in
present or past tense, with simple, progressive or perfect as-
pect. Plural nouns were generated using the plural noun

1The model code and script for the GAMMs be accessed here:
https://osf.io/nbxu6/

marker. Plural determiners in Spanish were individual words,
namely “los” and “las”. For example, the semantic mes-
sage: AGENT: LADY; ACTION-LINKING: CARVE; PATIENT:
CAKE; AGENT-MODIFIER: OLD; TARGET-LANGUAGE: EN
would be expressed in English by the sentence: “the old lady
carves a cake”. The semantic message AGENT: ORANGE, PL;
ACTION-LINKING: DISAPPEAR; TARGET-LANGUAGE: ES
would be expressed in Spanish by the sentence: “las naranja
-s desaparecer -an-en”.

We generated 10,000 unique message-sentence pairs for
training and a different set of 200 message-sentence pairs for
testing, for English and Spanish combined, for each of the
60 simulated L2 learners. The message-sentence pairs are
approximately equally divided over the two languages, with
the percentage of English sentences being sampled from a
uniform distribution between 48% and 52% and the rest in
Spanish. Sentence constructions were distributed uniformly
in the training input. Following Fitz and Chang (2019), we
excluded the message from 70% of the training items. Each
model instance iterated five times over its monolingual En-
glish training set first, before iterating for 45 epochs over its
bilingual training set. The training set’s order was random-
ized at the start of each epoch. The model learned by steep-
est descent backpropagation, with momentum set to 0.9. The
learning rate was first set to 0.1, it then decreased linearly to
0.02 over the 5 epochs of monolingual training, and it stayed
at that value during bilingual training. The simulated mono-
linguals were trained in the same way as the simulated L2
learners, except that that all the message-sentence pairs were
in Spanish.

Model evaluation

Linguistic proficiency of the model was tested using the 200-
message-sentence-pairs test set after each epoch. Sentences
produced by the model were compared to the target sentence.
The model’s L1 and L2 proficiency was evaluated with two
accuracy measures. Following Tsoukala et al. (2021), syn-
tactic accuracy was measured as the percentage of sentences
for which all words had the correct part of speech. Meaning
accuracy was measured as the percentage of sentences that
are syntactically accurate and also correctly conveyed the tar-
get message without additions. As pre-registered2, we only
included the 40 simulated participants with the highest mean-
ing accuracy in our analysis.

Differences between simulated participants

Weights are initialized randomly, and differed between sim-
ulated participants. The percentage of English versus Span-
ish (training and testing) sentences varied between simulated
participants, ranging from 48/52 to 52/48. The distribution of
constructions is the same for all simulated participants. Train-
ing, testing and experimental trial sentences in the same lan-
guage with the same constructions can differ between simu-
lated participants in two ways: singular nouns that are direct

2The pre-registration can be found here: https://aspredicted
.org/HSR NKN
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objects can differ in definiteness of the article, and sentences
can differ in content-words resulting in different meaning of
sentences. Consequently, a different content-word can result
in a different grammatical gender of a noun phrase.

Experimental trials

We generated 30 Spanish control sentences to obtain simu-
lated ERPs on. For each of the control sentences we con-
structed a version for every violation type (see Table 2). The
control sentence was a syntactically correct, active transitive
sentence. There were three violation types: (1) Tense viola-
tions, where the inflectional marker for singular verbs (-a-e)
was changed to progressive verbs (-ger). (2) Determiner num-
ber violation, where the singular determiner was changed to a
plural determiner. (3) Determiner gender violation, where the
determiner’s grammatical gender was changed. These three
violations involve features that are similar to English, differ-
ent from English, or unique to Spanish, respectively.

Measuring simulated ERPs

The simulated participants were tested on the experimental
sentences after every training epoch. Following Fitz and
Chang (2019), learning was turned on in the model while
processing the experimental and control sentences, but con-
nection weights were reset to the weights of the respective
training epoch after each of those sentences to prevent learn-
ing effects during the experiment. Therefore, the simulated
participants encountered each trial in the same state for all of
the sentences.

We measured prediction error at the hidden layer (see Fitz
& Chang, 2019, for details). The prediction error of output
unit j is the difference between its activation y j and the target
activation t j, or: d j = y j � t j, with y j 2 [0,1] and t j 2 {0,1}.
In the same way as during training, error backpropagated
through the network to generate error at deeper layers. Er-
ror for units connected to the output layer was calculated as
shown in Eq. 1, where k indexes the units connected to the
output layer with weight wk j, and j references the units that
are backpropagating error.

dk = yk(1� yk)
n

Â
j=1

d jwk j yk 2 [0,1] (1)

Error was also calculated this way for other layers back-
propagating error through the network. The simulated P600
sizes are the sums over |d| of the recurrent-layer units. The
error resulting from a violation was collected at the first po-
sition where the sentence becomes ungrammatical (see Ta-
ble 2). These errors were compared to errors at the same po-
sition of control sentences.

Results

Experiment 1: simulated L2 learners

Figure 1 displays the proficiency of the model at the start
and the end of bilingual training. The model learns both lan-

Figure 1: Mean proficiency of the bilingual model. The syn-
tactic and meaning accuracy are displayed for the first and
last epoch of bilingual training. The error bars show the 95%
confidence interval.

guages to a high degree, although (unsurprisingly) it remains
more proficient in L1 English than L2 Spanish.

The mean backpropagated error over L2 learning stages at
the hidden layer are displayed in Figure 2. As pre-registered,
we analyzed the data from our experiment with two general-
ized additive mixed-effects models (GAMMs; Hastie, 2017),
using the bam function from the package mgcv (Wood &
Wood, 2015) in R (R Core Team, 2018). Both GAMMs fit
the simulated P600 effect, that is, the difference between vi-
olation and control sentences in the backpropagated error in
the Bilingual Dual-path model. We fit a GAMM to determine
if P600 effects differs between violation conditions Similar
and Different (i.e., tense and number violations), and we fit
a second GAMM to determine if P600 effects differ between
conditions Unique and Different (i.e., gender and number vi-
olations).

The first GAMM1 included the predictors of interest: DIF-
FERENT, LEARNING STAGE, and their interaction. DIFFER-
ENT indicated violation type and was dummy-coded with
levels Similar and Different, coded as 0 and 1 respec-
tively. LEARNING STAGE is the number of L2 training epochs
(standardized). We included by-participant random slopes
for NOT SIMILAR and by-participant random smooths for
LEARNING STAGE. See Table 3 (left-hand side) for a sum-
mary of the fitted GAMM. We clearly see predicted P600
effects in the Similar and Different conditions, but it is re-
duced in the Different compared to the Similar condition, in
line with our expectations. The simulated P600 effect grows
significantly over LEARNING STAGE (F = 33.60, edf = 8.61,
p < .001) and this growth differs between the violation types
(F = 2202.45, edf = 8.39, p < .001).

The second GAMM1 is the same as the first model, except
for one predictor of interest, namely DIFFERENT which in this
case had the levels Unique and Different, coded as 0 and 1,
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Figure 2: Mean backpropagated error (averaged over all bilingual trained model subjects) as a function of learning stage in the
hidden layer, split between the three violation types. Learning stage is log-scaled. Shaded areas represent the 95% CI.

Table 3: Summary of the components in the generalized additive mixed-effects models fit on data from bilingual participants,
comparing violation conditions Similar and Different (left; predictor DIFFERENT: Similar = 0, Different = 1) and the conditions
Unique and Different (right; predictor DIFFERENT: Unique = 0 and Different = 1).

Similar vs. Different Unique vs. Different
Predictor (coefficient) Est. SE t-value Pr(> |t|) Est. SE t-value Pr(> |t|)
(Intercept) 9.12 0.27 33.30 <0.001 5.26 0.267 20.83 <0.001
DIFFERENT 0.70 0.39 1.81 0.07 4.76 0.31 15.27 <0.001
Predictor (smooth) edf Ref.df F-value Pr(> |t|) edf Ref.df F-value Pr(> |t|)
s(LEARNING STAGE) 8.61 8.72 33.60 <0.001 7.44 7.78 8.94 <0.001
s(LEARNING STAGE:DIFFERENT) 8.39 8.89 2202.45 <0.001 8.79 8.98 334.19 <0.001
s(LEARNING STAGE, participant) 295.03 359.00 48.34 <0.001 307.02 359.00 2748.53 0.05
s(DIFFERENT, participant) 77.83 78.00 447.96 <0.001 68.57 78.00 283.45 <0.001

to determine if models respond differently between violation
conditions Unique (i.e., gender violation) and Different (i.e.,
number violation). See Table 3 (right-hand side) for a sum-
mary of the fitted GAMM. We see a weak simulated P600 ef-
fect in the Unique condition, which is smaller than the P600
effect in the Different condition. This is not in line with our
expectations. The simulated P600 grows significantly over
LEARNING STAGE (F = 8.94, edf = 7.44, p < .001) and this
growth differs between the violation types (F = 334.19, edf
= 8.79, p < .001).

Experiment 2: simulated monolinguals

Mean Spanish meaning accuracy and mean Spanish syntactic
accuracy were 99.98% and 99.99%, respectively, at the end
of training.

The mean backpropagated error over learning stages at the
hidden layer are displayed in Figure 3.

Similar to our pre-registered analysis, we analyzed the
data from our experiment with two GAMMs, to determine
if participants respond differently between conditions Simi-
lar and Different, and between Unique and Different. Both

GAMMs fit the simulated P600 effect from the Bilingual
Dual-path model, here trained only on Spanish input. For
the GAMM comparing Similar and Different violations, there
is a larger simulated P600 effect for the Different condition
compared to the Similar condition. This P600 effect signif-
icantly grows over LEARNING STAGE (F = 1141.37,edf =
8.61, p < .001) and this growth differs between the violation
types (F = 488.73,edf = 8.39, p < .001). For the GAMM
comparing Unique and Different violations, there is a larger
simulated P600 effect in the Different condition compared to
the Unique condition. In fact, the simulated P600 effect in the
Unique condition is very small. The simulated P600 effect
over LEARNING STAGE (F = 301.10,edf = 7.44, p < .001)
and this growth differs between the violation types (F =
1864.80,edf = 8.79, p < .001).

Discussion

In the present work, we investigated whether syntactic
(dis)similarities between L1 and L2 affect simulated L2 learn-
ers in the same way as human L2 learners. We simulated
English-Spanish bilinguals and, throughout L2 learning, ex-
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Figure 3: Mean backpropagated error (averaged over all monolingual trained model subjects) as a function of learning stage
in the hidden layer, split between the three violation types. Learning stage is log-scaled. Shaded areas represent the 95% CI
computed over items.

posed them to three types of syntactic L2 violations that differ
in their relation to the L1. We recorded simulated P600s in
response to these syntactically anomalous sentences by calcu-
lating propagated prediction error at the hidden layer, follow-
ing the Error Propagation account in Fitz and Chang (2019).
On this account, ERPs are summary signals of brain activity
that index the propagation of prediction error during compre-
hension whose functional role is to support learning.

The results of our bilingual simulations are only partially in
alignment with our expectations. As expected, our results re-
veal stronger P600 effects when syntactically anomalous sen-
tences in the L2 contain a tense violation (similar between
English and Spanish) compared to a number violation (differ-
ent between English and Spanish). However, the simulated
P600 effect when the L2 sentences contain a gender viola-
tion (unique to Spanish) was very weak, especially compared
other two types of syntactic violations, in contrast with our
expectations.

We did run our model on a simulated L1 control group and
found that it predicts a larger P600 effect in the number vi-
olation condition compared to the tense violation condition.
This is the opposite from what was found for the bilingual
model’s L2 and therefore support the idea that properties from
the L1 affect processing in the L2 (i.e., syntactic transfer) in
our model, as also appears to happen in humans (De Gar-
avito & White, 2002; Ionin, Zubizarreta, & Philippov, 2009;
Montrul, 2010; White, Valenzuela, Kozlowska-Macgregor, &
Leung, 2004).

Moreover, the monolingual model showed an even smaller
P600 effect in the gender violation compared to the bilingual
model; an effect that reduced over L1 training whereas it in-
creased over L2 training. Thus, it appears there is also syn-
tactic transfer from L1 to L2 going on in the processing of
gender violations.

It is not entirely clear why backpropagated error is low in

response to a gender violation but not in response to a num-
ber violation. A possible explanation is the implementation
of syntactic features in the model. The messages that ac-
company sentences during training encode tense as well as
plurality of nouns, but not gender. Grammatical gender is
present and expressed in our artificial language of Spanish,
but there is no representation of gender in the concept layer
of the model. Specifically, there is no gender node in the con-
cept layer preceding the hidden layer, to backpropagate error
to. Furthermore, verb conjugation indicating tense, as well as
plurality of nouns, are expressed by morphemes that follow
verbs or nouns, respectively. The model treats these mor-
phemes as words. We have no such morphemes for gender,
only separate gendered determiners for Spanish.

Conclusion

The error propagation account explained key findings from
a considerable number of monolingual ERP studies (Fitz &
Chang, 2019). Previous work on simulating bilingual ERPs
and how they change over development (Verwijmeren et al.,
2023) added further support to his account. In our present
work, the reduced P600 for the number compared to tense
violation supports a theory of syntactic transfer affecting
ERP effects in L2 learners. The model in its present state,
however, was unable to produce a strong P600 in response
to a grammatical gender violation, in contrast with human
participants (Antonicelli & Rastelli, 2022; Caffarra et al.,
2015; McLaughlin et al., 2010; Foucart & Frenck-Mestre,
2011; Frenck-Mestre, Foucart, Carrasco-Ortiz, & Herschen-
sohn, 2009; Morgan-Short, 2014; Tokowicz & MacWhinney,
2005). Further work is needed to determine if the Error Prop-
agation account, as implemented in the Bilingual Dual-path
model, simulates a strong P600 effect in response to a gram-
matical gender violation when gender is implemented in the
message in the same way as plurality and tense.
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Abstract
Algebraic reasoning, particularly concerning literal symbols, poses 
significant challenges for learners and educators alike. This study 
investigates the potential of eye-tracking technology to enhance 
understanding and instructional approaches in algebraic reasoning 
research. Through two experimental sessions involving students 
aged 9-11, eye movements, and fixations were analyzed while 
engaging with algebraic tasks. Results reveal distinct patterns in 
cognitive processing, highlighting the utility of heatmaps, and eye 
movement videos in elucidating cognitive load and areas of 
difficulty. These insights inform the development of targeted 
instructional interventions to support learners in navigating 
algebraic concepts. While promising, the study acknowledges 
limitations in sample size and environmental control, emphasizing 
the need for further research. Overall, eye-tracking technology 
shows promise as a transformative tool in algebraic reasoning 
research, offering valuable insights into students' cognitive 
processes and informing effective pedagogical strategies tailored to 
the challenges posed by literal symbols.
Keywords: algebraic reasoning; literal symbols, eye-tracking 
technology; mathematical cognition; mathematic education.  

Introduction
McNeil (2010) stated that “algebra is the foundation of 
higher order Mathematics and Science”. Consequently, it’s 
possible to affirm that the success or failure of algebraic 
reasoning may be related to the learning of an individual 
throughout his/her life. However, children, adolescents, and 
adults have faced several learning difficulties from their first 
contact with algebraic fundamentals. Kaput (1998) argued 
that algebra would be the key to Mathematics education 
reform. Driven by this concern, numerous studies over the 
years have dedicated their efforts to understanding the 
underlying causes of these challenges and exploring avenues 
for improvement. Nevertheless, few have focused on 
discerning the cognitive processing disparities between 
numerical and literal expressions.
In turn, literal symbols form the basis for understanding 
algebra. Pollack (2019), claims that “to learn algebra, 
students must develop fluency and flexibility with literal 
symbols”. Thus, we may assume that to understand how 
students learn algebra we also need to understand how they 
process literal symbols in an algebraic context. As 
previously mentioned, numerous studies regarding algebra 
learning have been conducted and continue to be carried 
out, but few of them focus on understanding the differences 
between the comprehension of numerical symbols and 
literal symbols.
In Mathematics, literal symbols find application across a 
spectrum of contexts, serving to generalize arithmetic 
properties, denote unknown values in algebraic equations, 

represent variables in functions, and feature prominently in 
mathematical formulas utilized across scientific disciplines, 
among other uses. Given their multifaceted utility, it is 
unsurprising that they often engender confusion (Mcneil, 
2010). This confusion can manifest in various forms, with 
one notably prevalent in the interpretation of algebraic 
expressions (Stephens, 2003).
Understanding the usage of literal symbols in mathematics 
can present significant challenges initially, as noted by 
Pollack (2019). These challenges stem from factors such as 
the inconsistency in the numerical magnitude of literal 
symbols (e.g., x could represent 6, -1, or ⅜) and the absence 
of a singular magnitude for them (e.g., x might denote two 
or four numbers or even an entire numerical set). Moreover, 
students' familiarity with literal symbols in literacy contexts 
can lead to substantial confusion when these symbols are 
suddenly introduced in mathematical contexts, where they 
are accustomed to dealing primarily with numerical 
representations. Thus, as Pollack (2019) observes, the 
cognitive processing demands associated with literal 
symbols are notably more intricate compared to those for 
Arabic numerals,
Nevertheless, while literal symbols are indispensable for 
comprehending algebra, the development of algebraic 
thinking can occur independently of their usage. As Kieran 
(2004) argues, although early-grade algebraic thinking may 
incorporate literal symbols as tools, it can also be cultivated 
effectively without them. This is evidenced by the ability to 
engage in activities such as analyzing relationships between 
quantities, understanding structural concepts, investigating 
changes, making generalizations, solving problems, 
modeling real-world scenarios, providing justifications, 
offering proofs, and making predictions.
The eye-tracking research represents a valuable tool for 
comprehending the diverse challenges inherent in this 
context. Research conducted by Bolden et al. (2015) 
underscores its efficacy, highlighting how "eye-tracking 
technology can be a useful tool in helping investigate young 
children’s focus of attention whilst undertaking a 
mathematics assessment task". This methodology enables 
the measurement of various parameters, including the 
number and duration of fixations, saccades (i.e., eye 
movements between fixations), and pupil dilation, providing 
insights into cognitive processes during mathematical 
activities.
Andrá et al. (2015) assert that the number of fixations can 
serve as an indicator of how particular content is being 
processed. According to the author, "If an area receives a 
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high number of fixations, it can mean that the information is 
dense or complex and therefore needs to be re-examined 
multiple times". Consequently, differences in the number of 
fixations between distinct points can elucidate disparities in 
their processing, alongside the duration of these fixations. It 
is posited that stimuli of greater difficulty necessitate 
prolonged fixation periods. 
In sum, comprehending how children reason about literal 
symbols in a mathematics context is essential to 
understanding the development of algebraic reasoning. 
Besides, eye-tracking technology may be a useful tool for 
comprehending the cognitive processing involved in 
children’s understanding of mathematics representations. In 
this article, we explore the possibilities offered by this 
technology for studying children’s cognitive processing of 
literal symbols and algebraic representations. 

Method

Participants
In this study, we conducted two separate investigations, 
each involving different participants, stimuli, and days. All 
sessions were held in a private school in the city of São 
Paulo, Brazil. In the initial session, we engaged with a 
cohort of 9 children aged between 10 and 11 years, all in the 
5th grade. Subsequently, the second session involved 9 
children aged between 9 and 11 years, spanning both the 4th 
and 5th grades. This study was approved by the Ethics 
Committee of Universidade Federal do ABC and all 
participants and their parents signed a written consent form 
to participate in this study.

First Session
The primary objective of the data collected during the first 
session was to analyze the eye movements and quantify the 
number and location of fixations made by students while 
attempting to mentally solve four examples of five different 
types of tasks, as depicted in Figure 1. During the 
experiment, students were positioned in front of a monitor 
and instructed to maintain a stationary posture without 
moving their heads. Two calibration procedures were 
conducted: one before the commencement of the experiment 
and another at the midpoint. 
Students were asked to say out loud the answer to the 
problem or say “I don’t know” if they didn’t know the 
answer. Their voices were recorded during the experiment to 
collect data on both correct and incorrect answers, allowing 
for a comprehensive analysis of their responses. 

Figure 1: Types of tasks in Session 1

Second Session
In the second session, the focus of the data collecting was to 
analyze the number of fixations and eye movements of 
students while attempting to mentally solve twenty activities 
of each of two different types of tasks, as in Figure 2. 
During the experiment, students were positioned in front of 
a monitor and instructed to maintain a stationary posture 
without moving their heads. One calibration procedure was 
executed before commencing the experiment. 
As in the first session, students were instructed to say out 
loud the answers for the tasks or say “I don’t know” if they 
didn’t know the answer. Their voices were recorded during 
the experiment to collect data on both correct and incorrect 
answers, allowing for a comprehensive analysis of their 
responses.

Figure 2: Types of tasks in Session 2

Results and Discussion

First Session
As an exploratory study, we aimed to investigate the 
potential applications of eye-tracking technology in 
algebraic reasoning research. During the first session, we 
observed intriguing insights using this technique. The 
technology provided data on the elements most fixated upon 
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by students, along with generating heat maps, as in Figure 5. 
These heat maps offer valuable insights into the areas where 
children direct their visual attention most time, potentially 
indicating areas of cognitive overload. Such insights could 
benefit researchers in understanding the underlying 
cognitive processes in children's reasoning and 
conceptualization, while also assisting teachers in 
identifying areas to prioritize during instruction.

Figure 5: Heatmap indicating areas of bigger duration of 
fixations   

Furthermore, it provides videos of the path taken by 
children’s eyes while reasoning about the task. With these 
videos, we could get some insights into how this path 
changes depending on the type of task, as in Figure 6. To 
analyze these videos and comprehend the path, we 
established the following categories:

(1) From left to right, passing through all elements: Start
from the left-hand side and move to the right, considering
each element in the sequence.
(2)From right to left, passing through all elements: Begin
from the right-hand side and move to the left, examining
each element in order.
(3)Fixated on one point: Focus on a specific point or
segment of the equation without considering the sequence.
(4)From the right-hand side to the left-hand side: Analyze
the equation by moving from the right-hand side toward the
left-hand side.
(5) Variable term to right-hand side to left-hand side: This
sequence indicates the observation starting from the variable
term, then moving right-hand side, and then to the left-hand
side.
(6) Right-hand side to variable term to left-hand side: This
sequence indicates the observation starting from the
right-hand side, then moving to the variable term, and then
to the left-hand side.
(7) Variable term to the right-hand side to variable term:
This sequence indicates the observation starting from the
variable term, then moving to the right-hand side and then
returning to the same variable term.

Figure 6: Changes in the direction of eye movements 
according to the type of task 

The change is evident in the path made by students' eyes 
when examining expressions versus equations. We observe a 
distinct shift in eye movement patterns, reflecting the 
transition from simpler arithmetic expressions to more 
complex equations. This shift aligns with the previously 
mentioned categories, where in expressions, students 
predominantly follow a left-to-right path, considering each 
element sequentially (Category 1). In contrast, in equations, 
there is a noticeable tendency to analyze the equation by 
moving from the right-hand side toward the left-hand side 
(Category 4). This shift in eye movement patterns 
underscores the evolving cognitive processes involved in 
mathematical reasoning as students engage with 
increasingly complex mathematical concepts.
The underlying reasons for the differences in eye movement 
direction, as depicted in Figure 6, may stem from the 
cognitive strategies required for each type of task. 
Arithmetic expressions often necessitate a straightforward, 
left-to-right approach due to their simpler structure. 
Conversely, equations require a more integrated strategy, 
prompting students to scan from right to left to balance both 
sides and understand the relationships involved. This shift in 
eye movement suggests that as tasks increase in complexity, 
students adapt their approach, reflecting deeper cognitive 
processing and a more comprehensive understanding of 
mathematical principles.
These findings offer valuable insights into assessing 
children's approach to reading expressions or equations, 
providing a window into the cognitive processes underlying 
their problem-solving strategies. By analyzing eye 
movement patterns, researchers and educators can gain a 
nuanced understanding of how students engage with 
mathematical content. This knowledge can inform the 
development of targeted instructional interventions and 
assessment tools, ultimately enhancing mathematics 
education.

Second Session
During the second session, building upon the findings from 
the first session, our objective was to analyze videos 
capturing the eye movements of children as they solved 
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equations, along with measuring pupil diameter across two 
distinct types of tasks. However, technical issues arose 
during data collection, with some children experiencing 
calibration errors resulting in incomplete video data of some 
children. 
Despite encountering technical issues, our analysis yielded 
intriguing heat maps. Our observations revealed a notable 
difference in fixation duration between blank spaces and 
areas with literal symbols in equations. Interestingly, while 
both  represent the same concept, the area with the literal 
symbol received significantly more fixation duration 
compared to the area with the blank space, whereas there 
were almost no fixations, as in Figure 7

Figure 7: Heatmaps of equations

The heatmaps generated from our observations could serve 
as valuable tools in understanding children's cognitive 
processes when dealing with literal symbols in algebraic 
reasoning. This insight could be particularly beneficial for 
researchers aiming to comprehend cognitive overload 
during the development of algebraic reasoning, especially 
concerning the presence or absence of literal symbols. 
Additionally, educators could leverage these heatmaps to 
introduce algebraic concepts in a manner that minimizes 
cognitive shock for young learners. By utilizing the insights 
provided by it, teachers can better focus their instructional 
efforts and support students in achieving a deeper 
understanding of algebraic concepts.

Conclusion
Our primary goal in this article was to explore the potential 
of using eye-tracking technology in the research about the 
development of algebraic reasoning, with a focus on 
children's understanding of literal symbols. By providing 
heat maps, and videos of eye movements,  this technology 
could serve as a valuable tool for researchers and educators 
seeking to improve mathematics education. Ultimately, our 
goal was to contribute to the advancement of teaching 
strategies and student learning outcomes in mathematics.
Heat maps offer a valuable means to identify elements 
within expressions or equations that may elicit heightened 
cognitive load. This insight equips researchers with a deeper 
understanding of children's challenges in algebraic 
reasoning, while also empowering teachers to target areas of 
difficulty more effectively. By discerning where cognitive 
strain occurs most frequently, educators can tailor their 
instructional approaches to support students' development of 
algebraic reasoning skills more adeptly. 

Videos capturing eye movements offer a promising avenue 
for gaining insights into children's problem-solving 
approaches across various mathematical tasks, including 
expressions, equations, and word problems. By analyzing 
these videos, researchers can glean valuable insights into the 
strategies employed by children and the paths they traverse 
when tackling such tasks. Furthermore, teachers can utilize 
these insights to adapt their instructional strategies, 
providing tailored support to individual students based on 
their observed problem-solving approaches. By aligning 
teaching methods with students' cognitive processes, 
educators can foster a more effective learning environment 
conducive to improved mathematical proficiency.
In conclusion, eye-tracking technology holds immense 
potential as a valuable tool in mathematics education 
research and practice. By providing detailed perceptions of 
students' cognitive processes, such as problem-solving 
approaches and cognitive load, eye-tracking offers 
researchers and educators a deeper understanding of how 
students engage with mathematical tasks. This technology 
opens up a range of possibilities, from identifying areas of 
difficulty and cognitive overload to informing the 
development of targeted instructional interventions. 
Ultimately, the integration of eye-tracking technology into 
mathematics education research and teaching practices has 
the potential to enhance student learning outcomes and 
contribute to the advancement of effective pedagogical 
strategies in mathematics education

Limitations 
We acknowledge the limitations imposed by the small 
sample size of our study, which precludes generalization of 
our findings. Further research is warranted to validate the 
results observed in this investigation. Additionally, the 
absence of environmental control during the study may have 
influenced certain outcomes. Conducting future studies in 
controlled environments, such as laboratory settings, where 
students can be isolated from potential distractions such as 
noise and other individuals, could enhance the validity of 
our findings and address even more valuable findings 
regarding this topic. 
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Abstract
Animals and humans in reinforcement learning tasks are able
to learn the timing of reward delivery, even when that tim-
ing is delayed and variable, suggesting a sophisticated ability
to learn the distribution of reward timings. In this work, we
present two algorithms simulating the switching interval vari-
ance (SIV) task as described in Li et al. that showed mice were
able to adapt their behaviour to the change of standard devia-
tion of the reward time delays. Both algorithms implement-
the wait vs stay decision by thresholding the log evidence that
a forthcoming reward is likely, without assuming the specific
form of the reward timing distribution. One algorithm is im-
plemented algebraically, and the other using Spatial Semantic
Pointers, a tool from Vector Symbolic Algebras for represent-
ing continuous values that have ties to hippocampal grid cells.
We show that our models capture characteristic behaviour of
mice on the SIV task.
Keywords: reward timing; reward learning; vector symbolic
algebra; neurosymbolic programming

Introduction
Timing – adjusting behavior depending on temporal regulari-
ties of the environment – is critical for a wide range of natural
behaviors, like reward timing occurrences in foraging. Pre-
vious research in conditioning and operant paradigms have
demonstrated that animals learn the time delay until a reward.
When reproducing specific time intervals, rodents exhibit a
variance that scales with the mean time targeted (Lejeune &
Wearden, 2006). This phenomenon is known as scalar timing
or time scale invariance, and has driven the majority of mod-
els to explain the underlying processes for timing (Machado
et al., 2009). However, in contrast to the reliable timing typi-
cal of most operant conditioning paradigms, timing of natural
events can be vastly unpredictable. In general, reward tim-
ings, considered as random variables, may follow very dif-
ferent distributions in which the mean may not be enough to
capture the variability to behave successfully. In this regard,
there is mounting evidence that animals and humans are able
to track measures of uncertainty to generate optimal decisions
(Preuschoff et al., 2008; MacLean et al., 2012). Specifically,
Li and Dudman (2013), showed mice were able to adapt their
behaviour to the change of standard deviation of the reward
time delays. In that paper, Li et al. proposed a model to
reproduce this effect in which the reward timing distribution
was represented by a Gaussian distribution, with recurrent es-
timation of parameters from empirical estimates on previous
trials. However, they did not explicate a mechanism by which
this could be neurally implemented.

In this paper we propose an alternative model of the wait-
ing time in simulated mice on the same task. We formu-
late the choice to stay and wait for a reward as a go/no-go
decision, without explicit knowledge of a distribution func-
tion. We provide two implementations: an algebraic model
and an model using Spatial Semantic Pointers (SSPs) – high-
dimensional representations of real-valued data that belongs
to the Vector Symbolic Algebras (VSAs)1 family of cognitive
modelling tools. Building on prior work interpreting VSA
statements as probabilistic statements (Furlong & Eliasmith,
2022, 2023), we translate the probabilistic algorithm imple-
mented in our purely algebraic model to a VSA framework.

The rest of the document is laid out as follows: First, we
cover the background on experimental data on timing, mod-
elling reward timing inference and VSAs, specifically the en-
coding of real-valued data in VSAs (section Background);
second, we describe the experimental set up and the algo-
rithms used in this paper (section Method); third, present the
results of the experiment (section Results); and finally we
discuss the results comparing with existing models and, con-
clude (section Discussion).

Background
Models of Timing in Biological Agents
Different theories of how reward timing occurs in animals and
humans have been constructed, for review see Machado et al.
(2009). They share in common three components: a repre-
sentation of physical time, a memory that stores information
about when rewards arrive, and a mechanism to generate pre-
dictions (Yi, 2007). The focus of the majority of these mod-
els has been to explain the effect of time scale invariance,
which applies to paradigms in where timing relevance can be
described through the mean. In this case, the resulting vari-
ance is more related to internal noise of the animal’s predic-
tion than to external variability on the timings. Most widely
known models in this regard, are scalar expectancy theory
(SET) (Gibbon, 1977), Learning-to-time (LeT) (Machado,
1997) or more recently, Interval timing through neural inte-
gration (Simen, Balci, deSouza, Cohen, & Holmes, 2011).

In this work, we present a modeling approach to explain
adaptive behaviour in response to changes in the variance of
reward timings, and not only to the mean, which in the SIV

1Also known as Vector Symbolic Architectures
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task is kept fixed (Li & Dudman, 2013). In this paradigm, the
behavioural variance becomes a key variable in the optimal
performance of the animal and then, it must be part of the
representation itself, to predict reward timings. This variabil-
ity might be represented in existing models of timing, but it
has not been acted upon to the best of our knowledge.

Vector Symbolic Algebras and Probability
Vector Symbolic Algebras (VSAs) are a family of alge-
bras over high dimensional vectors, developed in cogni-
tive science to unify symbolic reasoning and neural net-
works. One VSA, the Holographic Reduced Representations
VSA (Plate, 2003), have recently been reinterpreted proba-
bilistically (Furlong & Eliasmith, 2023). The upshot of that
work is that probabilistic statements can be translated directly
into VSA statements, and through the Neural Engineering
Framework (Eliasmith & Anderson, 2003), into populations
of spiking neurons. At the heart of probabilistic VSA mod-
elling is the recognition that dot product similarity between
the high dimensional vectors can be converted into proba-
bility values. Following from that, probability distributions,
p(X = x),x 2 X , can be embedded in this vector space:

µp =
Z

X
p(X = x)f(x)dx. (1)

Probabilities can then be evaluated by taking the dot prod-
uct between an encoded data point, f(x), and the mean vec-
tor, µp, P(X = x) ⇡ f(x) · µp. Continuous values, like time,
t, are represented using fractional binding (Plate, 1992), a
method from VSAs for encoding d-dimensional representa-
tions of real-valued data. We refer to fractionally bound ob-
jects as Spatial Semantic Pointers (SSPs) (Komer, Stewart,
Voelker, & Eliasmith, 2019; Dumont & Eliasmith, 2020). We
construct SSPs as follows:

f(t/l) = F �1
n

eiAt/l
o

(2)

where F �1 is the inverse Fourier transform, and A2Rd⇥12 is
the phase matrix, and l is a length scale hyperparameter. A is
enforced to have conjugate symmetry, and the free elements
of A are uniformly sampled from the range [�p/2,p/2].
However, because the dot product between SSPs can be neg-
ative, we have to map the similarity into the space of proba-
bilities using a method from Glad et al. (2003):

P(X = x) = max{0,f(x) ·µp�b} , (3)

where the bias, b, ensures Eq. 3 integrates to 1.

Method
We model the behaviour of a mouse when performing a
switching interval variance (SIV) operant conditioning task
as described by Li and Dudman (2013). For each trial, the
mouse subject can choose to press one of two levers, and

2For m-dimensional data, A 2 Rd⇥m, hence referring to A as a
phase matrix.

then approach a vestibule to wait for a water reward that will
be delivered after a time delay (tdelay). Only one of the two
levers is baited and would give reward in 85% of trials. The
side of the baited lever is randomly selected for each block
of trials (180–200 trials/block) with block switches being un-
cued. The resulting design and behaviour gives rise to four
trial types: a correct choice of the baited lever followed by
water delivery (“correct”), a correct choice of baited lever
with no water delivered (“probe”), a correct choice of baited
lever with no water delivered because the mouse left earlier
than the time delay for that trial (”early”) and, an incorrect
choice of the unbaited lever (“error”). The time elapsed from
the press lever until the mouse leaves the vestibule, corre-
sponds to the waiting time twait . If the mouse chooses to
stop waiting, leaving the vestibule returning to press a lever,
a new trial will be initiated. For each block, the time elapsed
from the lever press to the delivery of reward, i.e., tdelay fol-
lows a Gaussian distribution with mean µ = 3000msec and
one of three possible standard deviations selected at random:
50msec, 750msec, or 2000msec.

The following assumptions hold for the algebraic and SSP
model implementations we present:

• The task (block and trial structure) has been already
learned, assuming a state-machine structure in the elicited
behaviour of the mouse subject. This includes the notion
of the baited lever per block, its probability of reward, and
the notion of the reinforced status of the trial. Hence, the
baited status of the pressed lever is known and at each given
block the learning affects only to the reward statistics.

• An e-greedy reinforcement learning algorithm (Sutton &
Barto, 2018, Ch 2) models the trade-off between explo-
ration and exploitation. Therefore, a e small fraction of
trials corresponds to exploration of the non-baited lever.

• The distribution of tdelay is learned across trials adapting
to the switch in distribution after an uncued transition to a
new block.

We model waiting time as an evidence integration task with
only one action: stop waiting for a reward at the vestibule.
Our simulated subject will stop waiting when one of two con-
ditions are met: either the reward is delivered, or the inte-
grated evidence for no forthcoming reward meets a predeter-
mined threshold. We integrate the probability of a waiting
time, p(tdelay = twaiting), into a cumulative distribution func-
tion (CDF), which we use to compute a decision function,

D(twait) = log
✓

P(Tdelay  twait)

1�P(Tdelay  twait)

◆
, (4)

that computes the log ratio between the probability that a re-
ward should have been delivered (P(tdelay  twait), and the
probability that the reward will be delivered in the future,
P(tdelay > twait) = 1�P(tdelay  twait), i.e. the survival func-
tion. When D(twait) is larger than the decision threshold, n,
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the mouse has reached enough certainty to consider that the
current trial is actually a probe trial and not a rewarded one.

This model depends on a CDF for the reward delay time. In
the algebraic model we base this off of a normal distribution,
parameterized by µdelay and sdelay. In the case of the SSP
model, we approximate a running average of the distribution
µP, through a low-pass filter (LPF) on observed waiting times,
as described in Section VSA Implementation, below. Like Li
and Dudman (2013) we estimate these parameters from the
last n = 10 trials. For probe trials we use the time the agent
spent waiting, twait, as a proxy for the observed reward time.

Algebraic implementation
In the algebraic algorithm, during the waiting time and at each
time step, the CDF for current waiting time is computed. The
CDF value represents the probability that the reward should
have been delivered up to the current time, under the current
representation for the reward delay distribution. This waiting
loop breaks, as explained previously, when D(twait) � n or
when reward is delivered.

The reward delay is modelled with a normal distribution,
hence, only the sufficient statistical parameters are updated
and maintained. The mean, µ, and the standard deviation, s
are estimated using the empirical mean and standard devia-
tion of the stored waiting time samples. The update on each
follows a smoothed correction weighing a delta error.

Dµ̂ = µ̄� µ̂
µ̂ = µ̂+w⇤Dµ̂,

(5)

Dŝ = s̄� ŝ
ŝ = ŝ+w⇤Dŝ,

(6)

The weight depends on the reinforced status of current trial
and it represents a notion of the certainty that the waiting time
twait observed, could be used as a proxy for the reward delay
distribution tdelay. If the waiting time corresponds to a trial in
which reward was delivered, certainty that it is a good proxy
for tdelay is total i.e. one. However, for the rest of non re-
warded waiting times, only the ones corresponding to early
trials (and not the probe trials) would represent the real statis-
tics of the tdelay distribution (despite having a shifted value).
Hence, notion of certainty applied in this case corresponds to
the proportion that these early trials represent of all observa-
tions corresponding to non rewarded trials. When the trial is
rewarded, the weighting of twait is wrewarded = 1. When the
trial is not rewarded we set:

wNOTrewarded =
P(tdelay > twait,r = 1|abaited)

P(tdelay > twait|abaited)
,

=
preward ⇤ sv(twait)

preward ⇤ sv(twait)+1� preward
,

where sv(twait) = 1�P(tdelay > twait) corresponds to the sur-
vival function and preward is P(r = 1|abaited). If tdelay > twait
then reward was never delivered for that trial, despite being a

rewarded trial r = 1. The denominator for wNOTrewarded rep-
resents all observed trials where the baited lever was pressed
but no reward was delivered P(tdelay � twait|abaited) under the
current model for the distribution of tdelay. This corresponds
to the sum of early trials and probe trials.

P(tdelay � twait|abaited) = P(early)+P(probe)
P(early) = sv(twait) · preward

P(probe) = 1 ·P(r = 0|abaited) = 1� preward

wNOTrewarded =
P(early)

P(early)+P(probe)
(7)

This differential weighing helps to account for the fact
that the sampling of the real distribution of reward delays
tdelay ⇠ N (µdelay,s2

delay) is truncated, with the upper tail of
the distribution being unobserved.

In this algorithm, the memory comprises of two queues
of 10 trials in size (following the model in Li and Dudman
(2013)) for waiting times qwait, both conditioned on the sub-
ject’s action. Trial history is tracked with an extra counter,
countwait, that stores the number of baited lever trials. As de-
scribed in Algorithm 1, after each trial, memory is updated
with resulting waiting time if the baited lever was pressed for
the current trial.

VSA Implementation
Algorithm 2 gives the complete SSP implementation of the
algorithm. The algorithm computes the decision function,
D(twait), and makes the decision to leave. The algorithm com-
putes the CDF of tdelay, P(tdelay  t) by integrating the prob-
ability of the current waiting time. This requires representing
the current waiting time, f(twait), and an estimate of the dis-
tribution over reward delay times, µdelay using SSPs. In this
paper we arbitrarily set the dimensionality of the SSP encod-
ing to d = 256 and fix l = 1.

To compute the probability that the reward delay time, tdelay
is equal to the current elapsed time, twait, we need an esti-
mate of the time that has elapsed since the simulated mouse
started waiting in the vestibule. To estimate elapsed time we
exploit a property of binding fractional bound quantities, that
for two quantities, x,y 2 Rm, then the VSA binding opera-
tion f(x)~ f(y) = f(x+ y). Thus, the SSP-encoding of the
current time, f(twait) can be updated recursively by binding
it with an SSP encoding of the simulation time step, f(Dt),
hence f(twait +Dt) = f(Dt)~ f(twait). Since binding in the
HRR algebra is implemented using circular convolution, we
can also write this as the product between the current time
representation and a circulant matrix constructed from the
vector encoding the time step, denoted Circulant(f(Dt)) (see
line 5 of Algorithm 2). This integration can be implemented
by a recurrent linear network (line 4 of Algorithm 2), whose
state gets reset after an action is selected by the agent. To
compute the CDF, we integrate the probability observed at
every time step.
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Algorithm 1 Pseudocode for Algebraic model of waiting
Require: qwait(nq) . Memory for waiting times
Require: nq = 10 . Memory size for qwait
Require: counter(nc) . Memory for baited lever trials
Require: nc = 1 . Memory size for counter
Require: Dt � 0 . Simulation timestep
Require: n . Decision threshold
Require: tarrival . Time the mouse arrives at vestibule
Require: preward . Long-term probability of reward
Require: µ̂delay > 0 . Initial estimate of reward delay
Require: ŝdelay > 0 . Initial estimate of reward standard

deviation
1: twait tarrival
2: while twait  tmax do
3: pgo P

�
tdelay  twait | µ̂delay, ŝdelay

�

4: h log
⇣

pgo
1�pgo

⌘

5: if h� n_ reward arrives then
6: qwait.push(twait)
7: break
8: end if
9: twait twait +Dt

10: end while
11: if baited lever press then
12: counter counter+1
13: w 1
14: if no reward then
15: w preward⇤sv(twait)

preward⇤sv(twait)+1�preward
16: end if
17: end if
18: µnew = mean(qwait)
19: snew = std(qwait)
20: µ̂delay µ̂delay +w⇤

�
µnew� m̂udelay

�

21: µ̂delay ŝdelay +w⇤
�
snew� ˆsigmadelay

�

Given a set of observations,
�

tdelay,1, . . . , tdelay,N
 

, the dis-
tribution over reward delay times can be embedded in a vec-
tor, µdelay:

µdelay =
1
N

N

Â
i=1

f(tdelay,i), (8)

but this representation requires keeping track of the number
of observations, N. In order to make the estimation of the
reward delay more realistic, compute µdelay using a low-pass
filter (LPF). LPFs can be implemented recurrently: x0 = gx+
(1�g)z, for state variable x, observation, z, and g2 (0,1). Our
LPF on the vector µdelay is defined on line 9 of Algorithm 2.

In Fig. 1 we show the effect of estimating a distribution us-
ing the exact definition from eq. 8 and by using a low-pass fil-
ter, with g = 0.999, on 1000 observed delay times. For values
of g close to 1 and large sample sizes, the LPF approximate
the empirical distribution. Estimating µdelay with a LPF im-
plicitly imposes an ordering effect on observed reward delays.
Fig. 2 shows how observations are weighted as a function of
the age of the observation in time steps.

Algorithm 2 Pseudocode for SSP waiting model.
Require: Dt > 0 . Simulation timestep
Require: g 2 (0,1) . Memory Decay Rate
Require: f : R! Rd . SSP Encoding
Require: n . Decision threshold
Require: µdelay 0

1: f(twait) f(0)
2: h 0
3: pgo 0
4: while h n do
5: f(twait) = Circulant(f(Dt))f(twait)
6: pgo pgo +max

�
0,µdelay ·f(twait)

 
Dt

7: h log
⇣

pgo
1�pgo

⌘

8: if reward arrives then
9: µdelay = gµdelay +(1� g)f(twait)

10: break
11: end if
12: end while

Results
In Fig. 4 we show that both the algebraic and the SSP imple-
mentations reproduce the linear relationship between reward
delay standard deviation and waiting time in the vestibule
although with a higher slope than observed in experimental
data (dotted line). Looking at the standard error of the mean
(SEM) of the algebraic and SSP implementations in Fig. 4, it
appears that there is not a substantial difference in the perfor-
mance of the two classes of algorithm. This is despite the fact
that we are using relatively different models of representing
probability distributions.

In Fig. 5, the algebraic model consistently exhibits higher
correlation between waiting times of probe trials and timings
of previous rewarded trials, showing the explicit dependency
on the memory formulated. However, the SSP model shows
low correlation and similar behaviour across different history
windows, approximating observed experimental data in (Li &
Dudman, 2013), that shows correlation below 0.2.

Figure 6 shows how the waiting time, relative to the ref-
erence blocks, changes as the subjects transition from high
variance blocks to low variance blocks. Both algorithms show
a gradual transition, although the SSP implementation has a
sharper transition than the algebraic implementation. Likely
this is due to the sharp discount of memories created by the
low pass filter with g = 0.5 (see Fig. 2).

Discussion
In this work we reproduce results from Li and Dudman
(2013), Figure 3: waiting time has a linear dependence on the
variance of the reward arrival distribution (see Figure 4). Im-
portantly, our proposed method is based on a decision func-
tion that is agnostic to the type of distribution. Admittedly,
the algebraic implementation of the algorithm uses a Gaus-
sian distribution to compute it, but without losing generality
in the decision making process. In the SSP implementation,
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Figure 1: Estimated PDFs for tdelay using the SSP represen-
tation, for a window of 1000 samples for variance values of
750 and 2000 msec. We compute distributions using Eq. (8)
(Exact), and using a low-pass filter with g = 0.999 (LPF).
in contrast, we are using a non-parametric estimation of the
distribution. Another important characteristic of the SSP al-
gorithm is the effect of the discount factor, g, on the memory
for reward delays. In the work of Li and Dudman (2013), re-
ward delay memory was modelled by a uniform sliding win-
dow of 10 observations, with perfect recall and perfect for-
getting of anything outside of that window. We found that
a discount factor of g = 0.5 approximated mouse behaviour
in the SSP implementation. Both models perform similarly
relative to the data (as seen in Figure 4 A).

The main two differences between the algebraic and SSP
implemented models are the method of estimation for elapsed
time and how the reward time delay distribution is repre-
sented. Specifically, in Fig. 5, the SSP model’s correlation
does not grow monotonically with sdelay, which is consis-
tent with the experimental data (Li & Dudman, 2013, Fig-
ure S1A), with the reward distribution being learned from the
elapsed time, as compared to the algebraic model that explic-
itly depends on previous history.

One advantage of our SSP model is that representa-
tions constructed in the HRR algebra are dimensionality-
preserving. This means that more cues, either delivered in
conjunction or with some temporal structure, will not require
any additional memory – with the caveat that the dimension-
ality of the vector representation limits the representational
capacity. Indeed, these representations have already been
successfully employed in reinforcement learning tasks for bi-
ological and artificial agents (Bartlett et al., 2022a, 2022b,
2023). In contrast, the algebraic model, as well as the SET
model, need to recruit new explicit memories or counters for

Figure 2: The discount is how much each sample contributes
the estimated distribution parameters, as a function of sample
age in timesteps. The algebraic implementation (Alg) has a
perfect memory inside the history window. For smaller values
of g, the low pass filter (LPF) forgets samples faster.

Figure 3: Waiting times for trials in an example sdelay =
2000ms block for the algebraic model (top) and SSP model
(bottom). Legend shows types of trials consistent with those
used by Li et al. (see Section methods).
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Figure 4: (Left panel) Average waiting time as a function of
sigma (relative to s = 50 msec) for probe trials in algebraic
model (Alg) and SSP model. Dotted line represents observed
trend in experimental data.(Right panel) Probability of leav-
ing early in s = 2000 msec blocks as a function of delay for
rewarded trials.

Figure 5: Correlation between waiting time in probe trials and
delay times in previous rewarded trials with a history size of
1, 10 or 20 previous trials, for different sdelay.

Figure 6: Here we show how Dtwaiting changes when moving
from high variance blocks to lower variance blocks. The re-
sults show average behaviour across subjects, error bars indi-
cate SEM. Both algorithms display a smooth transition from
the high to low variance blocks, but the algebraic implemen-
tation qualitatively fits better the smooth transitions observed
in the experimental results of Li et al..

each added relevant cue or factor determining outcomes.
Our proposed models resemble the SET model, in as much

as we integrate temporal information and compare against a
memory. In our SSP model, the recurrent connection (line 5
of Algorithm 2) is analogous to the pacemaker-accumulator
of SET. However, the SET method samples previous reward
timings from the memory, whereas we compare against the
entire distribution. On the other hand, our algebraic model
explicitly defines time step accumulation. An alternative ap-
proach is the LeT model, which uses a localist representation
of successively activated states (neurons) to model time.

Like SET, our models do not take into account the re-
inforcement rate, although we could predict the reinforce-
ment rate from the current memory state, f(twait), bridging
the gap between the SET and LeT models in the SSP algo-
rithm, through the use of a distributed representation of time.
We suggest that our SSP model may encode something ap-
proximating the absolute reinforcement rates, like LeT. Since
our low-pass filter allows for the extinction of memories of
reward delivery, less frequently observed reward times will
drop out of the memory. However, because our model is con-
tinually forgetting, it will not necessarily achieve a steady-
state model of reinforcement rate.

Further, we conjecture that our model could be expanded
to contextual-aware settings through the use of the VSA bind-
ing operation. The representation of time could be replaced
with with a memory that integrates cues and selected actions,
registered at the time the event took place, resulting in a µdelay
that represents distributions over the cue(s), selected action,
and time of reward, i.e., f(twait)~f(cue)~f(a).

Our model assumes proficient mice that already know the
task structure. In the future, we want to relax that assumption,
and explore learning across blocks. This means learning also
the lever-press decision.

Simen et al. (2011) propose the stochastic ramp and trigger
(SRT) model of learning a timing task, resembling drift diffu-
sion models. SRT integrates elapsed time using Poisson neu-
rons with a linearly ramping firing rate. Our SSP algorithm
integrates elapsed time with a recurrent network representing
an SSP representation of time, f(twait). Our method resem-
bles the sequential probability ratio test model of drift diffu-
sion, implemented using SSPs (Furlong et al., 2023). How-
ever, where the previous SSP model integrates log evidence
for a decision, here the log evidence of the integrated proba-
bility of the elapse time, given the reward structure. Regard-
less, our method shares the mechanism of thresholding log
evidence to reach a decision with the SRT. By modelling this
problem in the space of SSPs, we are hypothesizing about
operations on the latent spaces represented by populations of
neurons. Previous work has established that the interspike
intervals of neural networks computing semantic pointers op-
erations match the coefficient of variation found in biological
systems (Komer & Eliasmith, 2016), so investigating if spik-
ing neural implementations of our proposed model replicate
firing activity observed in the SRT is warranted.
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Abstract

For successful and trustful human-robot interaction, the chal-
lenge is to provide the robot with information so it can adapt
dynamically to humans and changing situations. Cognitive ar-
chitectures such as ACT-R provide valuable capabilities to ad-
dress this challenge. This paper demonstrates how cognitive
architectures can be used to improve human-robot interaction.
First, this paper illustrates how mental representations can be
built up in order to anticipate the partner and the situation and
collaborate adaptively. Second, it is shown how a model can
be easily integrated into a robot. Finally, this paper provides an
example of how emotion recognition can be used to adapt the
interaction accordingly by utilizing perceived changes in the
real world. As a result, the paper presents instructions, con-
cepts and use cases for implementing the various aspects. The
paper encourages further research on how cognitive architec-
tures can address challenges in human-aware AI.
Keywords: Anticipation, Person Models, Human-Robot Inter-
action, Emotion Recognition, Social Robots, Adaptive Behav-
ior, Cognitive Models, ACT-R, Human-Aware AI

Introduction

Robots interacting with humans and solving tasks together
with a human partner need to have some kind of model of
the world, the situation, the task to be solved and the person
it is interacting with. So far, there are robots that have im-
pressive capabilities such as navigating, interacting with ob-
jects and showing social interaction (e.g. Rossi et al. (2019)).
However, there is still a lack of robots’ capabilities needed
to adapt to changes in the state of the human partner or of
circumstances due the developing situation. According to
Kambhampati (2019), research in Artificial Intelligence must
pay more attention to aspects of intelligence that help hu-
mans work with each other – including social intelligence.
Kambhampati (2019) introduced the term human-aware AI
systems as “goal directed autonomous systems that are capa-
ble of effectively interacting, collaborating, and teaming with
humans”. The challenges in designing such human-aware AI
systems, include “modeling the mental states of humans in
the loop, recognizing their desires and intentions, providing
proactive support, exhibiting explicable behavior, giving co-
gent explanations on demand, and engendering trust” (Kamb-
hampati, 2019). The approach to provide a robot with cog-
nitive models, or to use a cognitive architecture for this is
close at hand. Kurup and Lebiere (2012) made several sug-
gestions how cognitive architectures can offer support e.g. by
offering strong models for interacting with dynamic environ-

ments. The authors mention several points that require high-
level cognition in human-robotic interaction (HRI). Two of
these will be addressed here: (1) flexible, adaptive, dynamic
and real-time behavior and (2) interacting with humans in a
natural way. Regarding (1) robust real-world behavior cannot
be pre-programmed. It requires flexibility and building up of
representations that can be updated and implies the ability to
understand the current situation and how it developed. With
regard to (2), the focus is on the ability to understand the hu-
man partners actions and intentions and react appropriately.
These two points still haven’t been addressed sufficiently for
HRI. In this paper, we want to introduce a concept of person
models in combination with situation representation that can
be used for HRI and to argue how and why cognitive archi-
tectures offer valuable approaches to solve existing problems
in dealing with real world and collaboration challenges for
robots. The paper will be structured in three main parts:

First, the core concept of person and situation models for a
collaborative task in human-human interaction is introduced
and then transferred to HRI and towards an cognitive model
approach. Second, we show how cognitive models can be
integrated with a robot. For this, cognitive models must be
structured differently, i.e. as model tracing approaches, which
we call anticipatory models (e.g. (Klaproth et al., 2020) or
(Hao, Russwinkel, Haeufle, & Beckerle, 2023)). This kind
of models continuously takes input information from the real
world and builds representations by observing and interpret-
ing the information in relation to the stored general knowl-
edge. This can be task knowledge, general information about
human partners, or data about environmental changes. There
have been several approaches to enable a robot with cogni-
tive functions by connecting it with ACT-R. One approach
ACT-R/E (Trafton et al., 2013), was placing an additional
constraint on cognition namely that cognition occurs within a
physical body that must navigate in real surroundings, as well
as perceive the world and manipulate objects with a complex
extension of the cognitive architecture ACT-R. In this paper
we show how to connect ACT-R in a simple way with robots
such as Pepper via the goal buffer. Third, as an example
for information perceived from the environment, recognition
of emotional states is taken. In a use case, the importance
of emotion recognition and interpretation for adaptive HRI is
demonstrated (e.g. (Weidemann & Rußwinkel, 2021). Based
on the work of psychologist James Russell (J. A. Russell,
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2009), a simplified concept of basic emotions like neutral,
content, joyful, sad and angry, which is already implemented
in the Pepper robot, was used to enable adapted behaviour of
the robot towards humans.

The Person Model Theory

The Person Model Theory (PMT; Newen, 2015) assumes that
there are three types of models for analyzing other people
or situations: (i) person models, (ii) self models and (iii)
situation models. The person models are representations
that summarize certain characteristics of another person or a
group of people. Equivalently, the self model contains the
same information as the person models, only in relation to
the person him/herself. In contrast to these two types of mod-
els, situation models contain external information about the
environment and further contextual information that goes be-
yond the knowledge from the person models (e.g. A per-
son comes to the town hall. People coming to the town hall
usually have a concern. Therefore, the person has a concern
that he/she wants to address today.). Furthermore, Newen
(2015) postulates different types of understanding, on the one
hand implicit, intuitive understanding and on the other hand
inference-based understanding. This means that the person

models or self models can also be further subdivided into
implicit person schemas/self schemas and explicit person im-
ages/self images. The former include, for example, infor-
mation about facial expressions, emotions, gestures, mov-
ing patterns and body posture of another person or the per-
son him/herself (e.g. The other person is joyful.). Person
images/self-images, in contrast, contain information such as
names, descriptions, biographies and visual images (e.g. The
other person’s name is John.). Furthermore, one claim of
PMT is that children are already able to create models about
other people, themselves and the situation in this way, and
that these models are available early on in human develop-
ment (Newen, 2015).

Due to this extensive possibility of collecting and storing
knowledge in a targeted manner and its early availability in
human development, this approach seems to hold not too
much complexity and could be a good approach to be inte-
grated into social robots in order to adapt dynamically to a
partner.

Cognitive Modelling with ACT-R

To integrate the PMT into a robot, the ACT-R cognitive ar-
chitecture was chosen. ACT-R is based on cognitive psychol-
ogy research, which means that ACT-R models follow certain
rules and are subject to certain constraints. These include the
different modules that are associated with neural correlates
through imaging studies (Anderson et al., 2004). The ex-
change of information between the individual modules takes
place via so-called buffers, through which the modules are
connected to each other. The knowledge units containing the
information can be requested from designated buffers. These
so-called chunks can also be changed in the buffers. They

comprise a chunk name, chunk type and slots that can be cus-
tomized to define the number and content. These mechanics
are assigned to the symbolic processing of ACT-R. However,
ACT-R not only has symbolic processing, but also subsym-
bolic processing, which is why ACT-R is also considered a
hybrid architecture (Kotseruba & Tsotsos, 2018). Subsym-
bolic processing offers promising opportunities, especially
for further development of the theoretical approach and the
integration of this approach into complex ACT-R models, e.g.
in terms of utility learning or influencing production rule se-
lection by adjusting the utility. In the context of this paper
and the presentation of the theoretical approach, the focus in
this paper will be on symbolic processing for the sake of sim-
plicity.

The nature of knowledge representation in the form of
chunks and information exchange in the form of produc-
tions on the one hand, and the potential for refinement of
the theoretical approach through subsymbolic processing on
the other, make the ACT-R architecture a suitable choice for
modeling the components from PMT.

Combining Person Model Theory and ACT-R

To implement the PMT in an ACT-R model, three require-
ments must be met: (1) The model must be able to incorpo-
rate information from the environment provided by the robot.
(2) It must use the environmental information to keep both
the person model and the situation model up to date. (3) Fi-
nally, the model must send an appropriate output back to the
robot so that it can adapt its actions to dynamically changing
environmental conditions.

The primary task of the model is to build and update the
person models and situation models. Both contain dynam-
ically changing information units on the one hand and infor-
mation units that do not change during the interaction on the
other. In the person models, the dynamically changing infor-
mation units include facial expressions, movement patterns
or gestures, which can constantly change depending on the
course of the interaction and the current mood. In the situ-

ation models, these information units include details on the
current status of the interaction, i.e. the current action, the
current subgoal and the current phase. On the side of the
more static information units, information such as age, gen-
der, name, and biographical facts must be included in the per-

son models. Whereas information such as the type of inter-
action (e.g. conversation or collaboration in complex tasks)
must be included in the situation models. For a simple use
case in which only one person interacts with the robot at a
time (e.g. A person wants to apply for a new passport.), the
person model and the situation model can be combined in
one chunk, which is referred to below as the model chunk.
Since the information in the model chunk is constantly up-
dated during the interaction, the imaginal buffer was selected
to hold this chunk so that the model chunk can be perma-
nently maintained and adapted at any time. At the beginning
of each interaction, the imaginal buffer was free. When the
robot transmitted the information to the ACT-R model that

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

217



the interaction had started, a request was sent to the imagi-
nal buffer to create a new model chunk. The model chunk

contained several slots for the personal information - name
of the person, age, gender, emotion, language, simple lan-
guage - and several slots for the situation-related information
- the customer’s intention, the current sub-goal, the current
action, the next action, the current phase, and the next phase.
Whenever an input chunk with personal or situation-related
information was transmitted to the ACT-R model, the cor-
responding slot in the model chunk was filled or updated.
When the model chunk was created at the start of the inter-
action, only the slots for the current action, current phase and
the current subgoal were filled with values. Figure 1 shows
the schematic structure of a model chunk for a use case with
one interaction partner.

It should be noted that in use cases where several people in-
teract with the robot or interaction partners change frequently,
the person model and the situation model should be stored
in separate chunks and edited in the imaginal buffer as re-
quired.

Figure 1: Schematic structure of a model chunk

This multitude of information in the slots of the model

chunk offers a variety of possible combinations and enables
the model to send a dynamic output back to the robot that is
individually adapted to the person and situation. In addition,
the complexity of the model can be flexibly adjusted by se-
lecting certain characteristics to be taken into account from
the model chunk. As described above, the output is trans-
mitted to the robot via the pepper out slot of the goal chunk,
in which a custom value can be entered.

Connect ACT-R to a Pepper Robot

The use of cognitive architectures is promising for achieving
more human-like reactions and behavior in robots. Their for-
malized models can be used to further refine a comprehensive
theory of cognition in order to provide a common ground for
working towards a specific goal, responding flexibly to ac-
tions of the partner and developing a situational understand-
ing for adequate reactions.

Humanoid Robot Pepper

The social humanoid robot Pepper developed by Aldebaran
(Aldebaran, United Robotics Group and Softbank Robotics,
n.d.), as shown in Figure 5, is 120 centimeters tall and opti-
mized for human interaction. It is able to engage with people
through conversation, gestures and its touch screen. Pepper
can focus on, identify, and recognize people. Speech recog-
nition and dialog is available in 15 languages. Beyond, Pep-
per manages to perceive basic human emotions. The robot
features an open and fully programmable platform so that de-
velopers can program their own applications to run on Pepper.

Since research has generally shown that trust is the basis
for successful communication tasks and trust in robots is in-
creased by anthropomorphism, a humanoid social robot like
Pepper is a good choice for social interaction and the provi-
sion of services when dealing with customers. A human face,
the possibility of human-like expressions and body language
and the use of voice are seen as beneficial for the trust of cus-
tomers in the robot (Fink, 2012). The Pepper robot is already
being used in many HRI projects and has also been tested in
real production use.

System Setup for ACT-R and the Robot

We used the standalone version of ACT-R, i.e. the application
provided at https://act-r.psy.cmu.edu/. To establish a
remote connection from the robot to ACT-R, the remote in-
terface – the dispatcher – was used, which is implemented
by a central command server. The ACT-R core software con-
nected to this dispatcher to provide access to its commands,
and the dispatcher accepted TCP/IP socket connections that
allowed clients to access these commands and provide their
own commands for use. The commands available via the dis-
patcher can be used wherever a Lisp function was formerly
required. The use of the dispatcher is described in detail in
the ACT-R RPC Interface Documentation (remote.pdf in the
“docs” directory of the ACT-R installation).

By default, the standalone version forces the dispatcher to
use the localhost IP address of the computer on which it is
running for connections instead of an external IP address.
This means that only programs on the same computer can
establish a connection, and once ACT-R has been started, this
can no longer be changed. To disable this function, the file
force-local.lisp must be removed from the ACT-R/patches di-
rectory before the application is executed. Then it will use
the machine’s real IP address for the dispatcher’s connections,
and the setting *allow-external-connections* in the model file
will let other machines connect. Another option is to place
the model file in the ACT-R/user-loads directory. External
connections are then always permitted. The address and port
used by the dispatcher is displayed at the top of the ACT-R
terminal window. This information must be used on the re-
mote computer for the connection.

The client application we developed for Pepper contained a
program section for the remote connection to the dispatcher.
A very basic example of a general setup of such a connec-
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tion can be found in the “examples/connections” directory of
the ACT-R installation for various programming languages.
This client connection was used to start and control an ACT-R
model that represented the cognitive processes for controlling
human-robot interaction. The client was able to interact di-
rectly with the model by calling commands. The run-full-time
command, together with a number of seconds, started and ran
the model for the specified time. The evaluate method was
used to evaluate commands from the dispatcher. It required
the name of the command to evaluate. Figure 2 depicts the
complete system setup including the interaction of its sub-
components.

Figure 2: System Setup including the interaction of its sub-
components.

Our ACT-R model created in Lisp used a goal slot pep-
per out for sending commands to the client application us-
ing ACT-R productions. This goal slot was evaluated via a
permanently running while loop using the buffer-slot-value
command that got the value of a slot from the chunk in a
buffer of the current model. The buffer-slot-value was sent
as a string in JSON format via the TCP/IP socket stream. A
unique ID was assigned to each evaluation command to iden-
tify the correct part of the data in the stream received by the
socket. The permanent evaluation of the content of the goal
slot pepper out in the client application was used to create
special commands for the robot depending on this slot con-
tent, e.g. to execute a certain animation or to make a corre-
sponding utterance.

To illustrate the syntax, the following lines show an ex-
ample of using the evaluate method to retrieve a goal slot as
a control signal from the model. This was done using the
buffer-slot-value command in a while loop and a production
in the Lisp code of the ACT-R model using a goal slot pep-
per out for sending such a signal to the client application:

while (true) {
...
print("{method:evaluate, params:
[buffer-slot-value, nil, goal, pepper_out], id:10}")
...

}

(p checking-intention
=goal>

isa goal
next_a checking-intention

==>
=goal>

next_a clearing-pepper-out
pepper_out pepper-checks-intention

)

To transmit information from the client application on the
robot to the ACT-R model, the client used the overwrite-
buffer-chunk command to copy a chunk into the goal buffer.
Therefore, the model had predefined goal chunks in its declar-
ative memory. If a predefined chunk matched the chunk from
the client, all information from this predefined chunk were
placed in the buffer and could be used to trigger a production
in the model.

Combining Real World Information with ACT-R

The aim was to transfer the basic emotions identified by Pep-
per into an ACT-R model. The input from the robot was re-
ceived by the model by calling predefined chunks in the goal
buffer. The goal buffer was chosen to be a good candidate as
transfer buffer for a first simple approach. On the long run
a specific buffer holding information that is transferred from
Pepper would be necessary. Figure 3 shows the schematic
integration of the ACT-R architecture into the robot.

Figure 3: The ACT-R cognitive architecture according to
Borst and Anderson (2017) - edited by the authors. The Pep-
per robot transmits information from the external world as
an input chunk to the goal buffer of the ACT-R model. From
there, the information can be transferred to other chunks, such
as the model chunk in the imaginal buffer.

For transmitting a recognized emotion the overwrite-
buffer-chunk command was used to trigger the appropriate
productions of the ACT-R model. Predefined goal chunks
in the declarative memory of the model made it possible to
control the productions depending on the transmitted emo-
tion values. Examples of such goal chunks, which were pre-
pared in the Lisp code of the ACT-R model, and an example
production that filled a pepper out goal slot with a value that
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was evaluated in the client application of the robot, can be
found in the following lines:
(add-dm
(mood-content-chunk isa goal mood content state pepper-changes-mood)
(mood-joyful-chunk isa goal mood joyful state pepper-changes-mood)
(mood-sad-chunk isa goal mood sad state pepper-changes-mood)
(mood-angry-chunk isa goal mood angry state pepper-changes-mood)

)

(p pepper-content
=goal>

isa goal
mood content
state pepper-changes-mood

==>
=goal>

next_a clearing-pepper-out
pepper_out pepper-content
state pepper-changed-mood

)

The robot’s responses controlled by the client application
were influenced in this way. Depending on the goal slot value,
different dialogues or responses were triggered on the robot
side. For anticipatory models that anticipate events in the real
world and feed this into a model (e.g. (Klaproth et al., 2020)
or (Hao et al., 2023)), the main idea is to not initiate all per-
ceptual processes as usually done in modelling. Instead, the
main processes work on mental representations that are built
up and hold the momentary understanding of a situation. Pro-
ductions and retrieved chunks depend on the situation under-
standing. Therefore, anticipatory models continuously take
input information from the real world and build up represen-
tations such as a person model in this example.

Emotion recognition in Human-Robot

Interaction

By integrating emotion recognition in HRI, robots can re-
spond more effectively to the needs of people, leading to an
improved collaboration and a more pleasant experience for
humans. This ability of the robot to recognize emotional
states and behave appropriately is particularly significant and
an important basis for building trust in HRI (Jessup & Schnei-
der, 2021). To recognize and categorize emotions, there are
various technical methods that can be used by robots: Facial
Recognition, Voice Recognition, Body Movement and Ges-
ture, Physiological Signal Processing and more established
approaches like Multi-modal Approaches.

Pepper’s perceptive abilities

The Pepper robot was developed with a focus on social inter-
actions with humans. It is equipped with the ability to per-
ceive its environment, including the emotional states of hu-
man interaction partners. Pepper can perceive numerous per-
sonal features, such as age, gender, smile state, mood (plea-
sure state), excitement state, attention state, engagement in-
tention state (Softbank Robotics, n.d.). Particularly important
for emotion recognition are the mood/pleasure state and the
excitement state. The pleasure state is based on facial fea-
tures, touch and speech semantics and can have the values
positive, neutral or negative. The excitement state is based on

the interaction partner’s voice and can have the values calm
or exited. Based on the work of James Russell (J. A. Russell,
2009), a transformation matrix shown in Table 1 was used
for the conversion of these states into the emotions neutral,
content, joyful, sad and angry.

Table 1: Transformation matrix to get the basic emotions

ExitementState PleasureState
Positive Neutral Negative

Calm Content Neutral Sad
Exited Joyful Neutral Angry

Figure 4: Pepper using person model (Softbank Robotics /
edited by the authors, 2024)

Adapted behaviour for successful task completion

To test our approach, a scenario-based study was conducted
with the Pepper robot. As part of the scenario, the robot
worked in a town hall and was tasked with helping customers
apply for a new passport. The Pepper robot helped the hu-
man to complete this task as shown in Figure 5. Pepper took
the perceived emotions of the person into account and thus
showed situationally appropriate behavior. The approach was
tested using three different scenarios:

• problem-free (task can be solved without any problems)

• complication (task with complication, but can be solved)

• problem (task can not be solved)

As in real life, emotional states can change during the sce-
narios. For example, the complication scenario can evoke
different emotions in people and lead to disturbances in cop-
ing with the task. Depending on individual dispositions, hu-
mans deal with such situations differently. In this scenario,
the person did not have the bio-metric images with them,
even though they were needed to apply for a passport. When
the person realizes that she does not have the passport photos
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Figure 5: Pepper in a collaborative task with a person that
wants to check if necessary documents are complete

with her, she can conclude that the task can no longer be com-
pleted successfully. This could possibly lead to anger (e.g.
Being frustrated about forgetting passport photos) or sadness

(e.g. Worrying that one won’t be able to go on holiday).
An adequate communication style was developed for

Pepper that corresponded to the new emotional state of the
person and the situation. The robot’s adjusted behavior was
designed to support the achievement of the goal and the
completion of the task. As an example, we adjusted the
response regarding the emotional state of a person who was
perceived as being sad with the following phrases:

sad: I understand. So, you don’t have any passport
photos with you. It can happen to anyone. However, it’s
not a big problem. You can go next door to the photo booth
to take bio-metric passport photos and then come back to me.

The underlined text was meant to support the person in
this situation by showing that Pepper understood the situa-
tion, reassuring and encouraging the person. In addition to
the customized communication, the gestures of Pepper were
also adapted depending on the emotional states of the person.
For the sake of simplicity, this article is limited to the presen-
tation of verbal response behaviour.

Discussion

This paper shows how to provide a robot with a dynamic
mental representation to enable an adaptive, human-like so-
cial interaction. Cognitive architectures such as ACT-R are
relevant for designing agents that can act flexibly in the real

world, e.g. reacting to new situations and adapting to the
task, environment and interaction partners. The aim of the
paper was to highlight core concepts and provide guidelines
on how this can be achieved and implemented. Overall three
aspects were presented: First, the core concept of person
and situation models necessary for acting adaptable to a part-
ner in a collaborative task was introduced. In our example,
the person and situation models were implemented as one
chunk. For more complex tasks and interaction situations,
it might be necessary to hold the information separately. Sec-

ond, we showed how cognitive models can be integrated into
a robot. One aspect of this is how anticipatory models can
be designed in order to continuously incorporate information
from the real world and build dynamic representations which
form the basis for further action decisions. Furthermore, a
simple approach is introduced on how to realize the informa-
tion flow between the cognitive architecture and the robot.
Third, as an example of external information perceived by
the robot, changes in the emotional state of the human part-
ner were used. Changes in the mental state itself, but also
the change of an emotion in a specific situation, can provide
relevant information for adapting appropriately to a partner.
One of the biggest challenges of emotion recognition in HRI
is the reliability of the AI systems that are used. Whether
emotion recognition without context actually allows direct
conclusions about a person’s inner state has been criticized
e.g. (Barrett, Adolphs, Marsella, Martinez, & Pollak, 2019)
(Weidemann & Rußwinkel, 2021). The actual emotional state
of a person depends on the situation or context and the in-
dividual and therefore cannot be reliably determined using
data-based approaches alone. For human compatible AI ac-
cording to S. J. Russell (2019), it is necessary that the system
is uncertain about the human state and should therefore col-
lect further evidence from human behavior. One of the first

future steps is to consider state and emotion changes more
closely to investigate interactions between humans and ma-
chines that have human-like cognitive abilities with the help
of appropriate models. A second future step should be to in-
clude more flexible task knowledge that is chosen according
to the state of the representations. The evaluation of such a
system should be a third future step. However, the adapt-
able nature of the interaction might need long and complex
interactions to be perceived. Therefore, the example needs to
be further expanded and then evaluated according to the per-
ceived transparency and perceived naturalness of the interac-
tion. Regarding the challenges with emotion recognition, in
a fourth future step, the emotional state should also be de-
rived from the evolving situation in order to reconcile multi-
ple sources of information for a more reliable and human-like
interaction.
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Abstract

Computational modeling is a powerful approach for discerning
individual differences in memory function. The model-based
assessments discussed in this paper rely on estimating an
individual's rate of memory decay– a stable and idiographic
parameter that can be captured by the model. However, this
paper aims to demonstrate prior knowledge as a confounding
factor in these model-based assessments and seeks to parse out
the error using Maximum Likelihood Estimations. The metric
of individualized memory performance, termed Speed of
Forgetting, was significantly lower for facts known
beforehand. Still, these facts were identified with 81%
accuracy by recovered base-level activation estimations blind
to the ground-truth data. A proposal for future model-based
assessments to account for prior knowledge is discussed.

Keywords: ACT-R, Cognitive Neuroscience, Computational
Modeling, Memory, Prior Knowledge

Introduction
Reliable assessment of memory function is essential to
conducting research on memory processes, understanding
memory-related disorders, and developing new therapeutic
interventions. Memory function is typically assessed
through performance in response to memory probes.
However, these responses not only reflect the underlying
accessibility of memory but also other confounding factors.
Among these confounds, prior knowledge–i.e., the

possibility that the participant might already know the
answer–is perhaps the most significant. Researchers have
attempted to address the issue of prior knowledge by
employing novel artificial or abstract stimuli. However,
these stimuli are often challenging to encode initially,
leading to an underestimation of memory function and
rendering them unsuitable for clinical use (Brady et al.,
2008). Alternatively, memory researchers have used
paired-associates to examine how novel associations
between familiar items (e.g. “fireman” and “slug”) are
learned (Anderson, 1974). Nonetheless, random associations
are susceptible to semantic congruency effects if the stimuli
are not meticulously chosen. For example, “fish” - ”sea”
would have higher congruence than “zebra” - “sea” (van
Kesteren et al., 2012). Analyses from Sense and van Rijn
(2022) confirm that prior knowledge should not be

neglected and used subject-specific grades as a proxy to
control for prior knowledge. Overall, it can be useful for
researchers to identify and mitigate the effects of prior
knowledge rather than continually designing new stimuli.
In this paper, we demonstrate the feasibility of such an

approach in the absence of a current proxy. This method
relies on model-based assessments of memory functions, in
which a participant’s long-term memory function is
delineated as a parameter of a model fitted to their data. We
illustrate that the impact of prior knowledge can be
conceptualized as an additional item-level parameter in the
model. Moreover, we establish that through
maximum-likelihood parameter recovery procedures, it is
possible to accurately discern the extent to which a specific
memory item was previously known.

Model-Based Assessments
Central to this paper is the use of model-based assessments,
which are memory function evaluations predicated on the
value of a parameter within a computational memory model
fitted to the data. Model-based assessments serve as a type
of “cognitive twin”, reflecting an individual’s cognitive
processes (Somers et al., 2020). Significantly, their
applications have recently been integrated into clinical
settings where appraisal of memory ability is critical, such
as in evaluating mild cognitive impairment and dementia
(Nasreddine et al., 2005). In this paper, we will use the
memory model originally proposed by Anderson and
Schooler (1991) and later incorporated as part of the ACT-R
cognitive architecture. This model can be viewed as a
computational implementation of the Multiple Trace Theory
(Nadel et al., 2000). According to this theory, a “memory” is
the accumulation of multiple episodic traces during which
the same information has been presented.
In essence, the activation of a memory, or odds of its

retrieval, increases with each trace but gradually decays
over time. For example, when the Spanish word “manzana”
for “apple” is initially learned at time 0, the activation of
that fact experiences a spike. Subsequently, that fact would
gradually be forgotten following a power curve until the
word's meaning is encountered again, perhaps at time 20
(Figure 1). Thus, as the meaning of “manzana” is learned,
the activation level increases, and the rate of decay slows.
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Figure 1: Hypothetical time course of the activation of a
memory (gray solid line) made of four different traces
(colored dashed lines) encoded at four different times.

More formally, a single memory m corresponds to a set of
decaying traces encoded at different times, indicated as t(1),
t(2), … t(N). The odds of retrieving each trace decay are a
power function of time, as dictated by the power law of
forgetting (Newell & Rosenbloom, 1981). In other words,
the odds of retrieving a memory m at a given time t are
proportional to its activation A(m, t), which is the
logarithmic sum of all of its decaying traces i over time:

A(m, t) = log ∑i (t - t(i))-d(i) (1)

Where (t - t(i)) is the time since the creation of the i-th trace,
and d(i) is a trace-specific decay rate. The trace’s decay rate,
in turn, is a function of the memory’s residual activation at
the time of the i-th trace’s creation, t = t(i), plus a constant
forgetting momentum φ:

d(i) = eA(m, t = t(i)) + φ (2)

The parameter φ represents the initial decay rate of a newly
formed memory and determines the decay rates of all
subsequent traces. This parameter is also known as the
Speed of Forgetting (SoF) and accounts for the spacing
effect and recency effect in memory retention (Cepeda et al.,
2008). Experimental research has shown that this parameter
is a latent characteristic of an individual, is stable over time,
and is reliable across experimental sessions and stimuli
(Hake et al., 2023; Sense et al., 2016; Zhou et al., 2021).
Using this underlying model to estimate the SoF

parameter, this model based assessment provides a fast,
easy, and reliable way to assess an individual's memory
ability. Due to the applicability of model-based assessments
to clinical memory impairment, improving model accuracy
is of utmost importance. Within this computational
framework, accounting for prior knowledge within the
model is a significant step toward this goal.

Representing Prior Knowledge
The model provides an intuitive way to represent prior
knowledge computationally. Generally, the activation of a

previously known item results from the combined
contribution of n experimentally observed traces and m
unobserved previous traces, which are inherently
inaccessible. To simplify computational representation, we
make a key assumption.
In most cases, prior knowledge has been acquired well

before the experiment begins. This means that the effect of
temporal decay is negligible within the context of a single
experimental session. This is illustrated over the course of
12 months in Figure 2, which plots the activations of three
hypothetical memories that have accumulated 1, 10, or 100
traces over the first month. While the number of associated
traces has a sizable effect on their residual activation, the
effect of forgetting becomes negligible over time. Thus, we
can assume that the effect of prior knowledge is an essential
constant over time in the course of our experiment. For this
reason, we will simply write that the “true” activation A’(m)
of a memory m is the sum of the contribution of the traces
accumulated over an experimental session plus a
memory-specific constant Km:

A’(m, t) = log ∑i (t - t(i))-d(i) + Km
= A(m, t) + Km (3)

In ACT-R terms, the parameter Km represents a
memory-specific base-level constant (BLC) that
summarizes the previous history of a memory before an
experiment takes place. While typically ignored, the
presence of such a constant dramatically affects the
estimates of other model parameters from experimental
data. However, as the remainder of this paper will show,
because the distortions introduced by BLC can be modeled
as well (as in Equation 3), their contributions can be
automatically estimated and corrected.
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Figure 2: Simulated activation of three memories as a
function of time following different numbers of encodings
(1, 10, or 100) in the first month.

Materials and Methods

Participants
Undergraduates enrolled at the local university (N = 70, 46
Female, aged 18-21) were recruited on a rolling basis over a
quarter to complete the study virtually. The recruitment
criteria were as follows: (1) ages ranging from 18 to 29, (2)
fluency in English, and (3) absence of significant medical or
psychiatric conditions that could influence cognitive
abilities. Participants who completed the prior knowledge
survey and both fact-learning tasks were provided with
course credit as compensation.

Prior Knowledge Survey
A PsychoPy task was designed to collect ground-truth data
for participants’ prior knowledge. Thirty national flags were
used, pulled from the Caribbean Flags and Asian Flags
learning lessons in a prior study. These flags provided an
adequate range of potential prior knowledge, with flags that
were more likely to be known beforehand, such as Japan,
mixed with countries less likely to be known, like
Montserrat.

Figure 3: Prior knowledge survey interface. Test screen
followed by feedback screen that indicated typed answers as
correct or incorrect.

As shown in Figure 3, participants were instructed to type
the country name of the flag prompt if they were familiar
with it. If they did not know it, participants selected the
“Don’t Know” button. The reaction time for country name
guesses and “Don’t Know” button presses was recorded.
Facts that were typed correctly in the survey, with tolerance

for spelling, were marked as having “prior knowledge”.
Participants were provided feedback on the accuracy of their
answers and provided with the correct answer in the case of
an incorrect response. As such, this prior knowledge survey
served a dual purpose to gauge ground truth data for the
facts known beforehand and also to function effectively as
the first trace of the fact.

Adaptive Fact-Learning System
Next, each participant completed two learning lessons,
Asian Flags and Caribbean Flags, that were administered
using a commercially available interactive interface
(MemoryLab; Figure 4). This system dynamically estimates
participants’ SoF in real-time as they learn each
stimulus-response pair (i.e., flag and country name). For
each trial, participants answered a multiple-choice question
and were shown the accuracy of their response. Each lesson
was 8 minutes and consisted of 15 facts. Participants were
not given a “study trial” as in prior studies due to the
feedback given during the prior knowledge survey. It is
important to note that the system’s algorithm estimates
parameters for the participants during the experiment, and
these estimates are subsequently compared to the model
including the prior knowledge constant. This assessment is
described further in Sense et al. (2016) and can be accessed
at https://www.memorylab.nl/en/.

Figure 4: Interface of MemoryLab adaptive fact-learning
software. Presentation of multiple-choice questions, correct
answer feedback, and incorrect answer feedback, shown
respectively.

Maximum Likelihood Recovery of Prior
Knowledge
To recover the amount of prior knowledge associated with
each fact learned by an individual, Maximum Likelihood
Estimation (MLE) was used. The model was retrospectively
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fitted to each individual’s data by choosing the set of
parameters θ that maximized the model’s likelihood. These
parameters represent both individual participants’
characteristics and the “unknown” pre-testing activation of
each fact that was presented to the participant during the
experiment. Formally, the likelihood of a set of parameters
given a vector of data x, L(θ|x), is the probability of
observing the data x, given the model: L(θ|x) = P(x|θ).
Because our data consists of multiple independent responses
x1, x2, …, xN, the likelihood can be expressed as the product
of the probabilities associated with each response:

L(M|x) = P(x1|M) ⋅ P(x2|M) ⋅… ⋅ P(xN|M) = ∏i P(xi|M)

Because the product of probabilities becomes vanishingly
small, it is common to use log-likelihood:

log L(M|x) = log ∏i P(xi|M) = ∑i log P(xi|M)

In our case, each model was simultaneously fitted to two
behavioral measures for each response: accuracy and its
corresponding response time. Trial-by-trial probabilities for
responses and response times were calculated as follows:
Given that a memory’s activation reflects its log odds of
retrieval, the probability Pt(m) that a memory m would be
retrieved at time t is given by:

Pt(m) = 1 / (1 + e–A(m, t) / s)

where s is a noise parameter that follows a logistic
distribution with standard deviation of √3/πs. Thus, given
the state of the model, it is possible to compute the
probability associated with each response. The probability
of a correct response is Pt(m), and the probability of an
incorrect response is 1 – Pt(m).
When considering response times, the calculations

become more complicated. In ACT-R, the response time RT
associated with the retrieval time of a memory m is an
inverse exponential function of the memory’s activation:

RT = TER + F ⋅ e-A(m, t)

where TER is the non-retrieval time (e.g., the time needed
to for perceptual and motor responses) and F is an
idiographic free parameter. Note that this expression is
deterministic; to transform it into a probability distribution,
we must consider the distribution of noise around the
activation. As noted above, noise s follows a logistic
distribution. Therefore, the resulting probability distribution
for response times is a shifted log-logistic distribution with
parameters α = e-A(m) and β = √3/πs:

P(RT) = (β / Fα)((t –TER)/α)β-1 / (1 + (t –TER)/(Fα)β)2

With these equations in place, it is possible to run a
maximum likelihood estimation procedure to recover the
most likely BLC values for every study item in a memory

experiment. The full model has one parameter (K) for each
fact, and four parameters for each individual: φ, F, s, and
TER. However, the adaptive fact learning system maintains F,
s, and TER to constant defaults (F = 1, s = 0.25, and TER =
300ms). We will adhere to the same principle. Because no
known closed-form formula exists to estimate the maximum
likelihood solutions for this model, we used a
derivative-free numerical minimization procedure, the
simplex method (Nelder & Mead, 1965), as implemented in
the Python SciPy package. To address the potential
difference between the first “study trial” and the beginning
of the learning trial, the offset time was calculated using
computer timestamps and integrated to account for potential
decay in activation.

Experimental Hypothesis
Based on the considerations laid out in the introduction, a
number of experimental predictions can be made. First, we
predict that prior knowledge of an item would be
inaccurately estimated with a lower Speed of Forgetting
(SoF). This arises from the assumption of a base-level
activation (BLC), being equal to 0 for all facts, resulting in
the model erroneously inferring quick and easy learning for
previously known facts, thereby underestimating SoF.
We also predict that a weak correlation will exist between

SoF values for previously known and previously unknown
facts across participants. This correlation is expected due to
the participant's SoF still influencing the benefit gained
from multiple probes, even when a fact is already known.
Finally, we expect that a MLE-based parameter recovery

procedure would be able to correctly identify previously
known items as having large BLC values and that an
automatic prior knowledge detector, utilizing a simple
threshold model, could achieve greater than chance
accuracy in identifying these facts.

Results

4
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Figure 5: Effect of Prior Knowledge across participants.
Facts known beforehand (green) had consistently lower SoF
than facts not known beforehand (blue). Gray lines represent
individual participants; colored boxes represent Tukey’s
boxplots, colored dots represent mean values.

Effect of Prior Knowledge on Speed of Forgetting
We found a significant impact of prior knowledge on the
estimates of Speed of Forgetting. Notably, items identified
by participants as previously known were consistently
estimated to have a lower SoF compared to unknown items.
This trend was evident across all participants, as illustrated
in Figure 5. Utilizing a random slope linear mixed-effects
model, we further analyzed this effect and discovered that
items designated as previously known were associated with
a significantly lower SoF (β = -0.09, 95% CI [-0.10, -0.09],
p < 0.001). For context, participants had prior knowledge
for approximately 18.6% of the facts they were tested on.

Figure 6: Correlation between the average SoF estimates
for facts known beforehand vs. not known beforehand
within each participant. Each point represents a participant
in the study; the dashed line is the identity line.

Correlation Between Known and Unknown Facts
Our second hypothesis centered on investigating the
relationship between SoF values for previously known and
previously unknown facts across participants. We
anticipated a weak correlation between these values,
suggesting that the SoF of known facts would still influence
subsequent assessments, even after initial familiarity.
Indeed, our analysis revealed a small yet statistically
significant correlation (r(70) = .36, p = 0.002; Figure 6),
supporting our hypothesis and indicating the persistence of
SoF effects even with prior knowledge.

Recovered Base-Level Constants
To test our third and final predictions, we conducted the
MLE procedure on the dataset for each participant,
recovering the most likely BLC value corresponding with
each fact. While the model itself is blind to whether a fact
was previously known or not, it correctly estimated that, on
average, the BLC values for previously known facts were
much higher than those for unknown facts (paired T(69) =
–17.00, p < 0.0001) as shown in Figure 7. Importantly, the
mean BLC values were higher for previously known facts
across all participants, and were correctly estimated as close
to zero for most previously unknown facts.

Figure 7: Recovered Base Level Activation values for facts
with true prior knowledge (green) vs. without true prior
knowledge (blue). Gray lines represent values for individual
participants; colored lines represent Tukey’s boxplots;
colored points represent means.

Figure 7 shows that an automatic procedure can correctly
identify previously known items, but it does not provide a
quantitative measure of its efficacy. To obtain this estimate,
we transformed the continuous estimates of BLC values into
binary predictions by applying a moving threshold: items
whose recovered BLC value was greater than the threshold
were classified as “previously known”. For each level of the
threshold, it is possible to compare the classification
accuracy against the ground truth, and estimate the
proportion of true positives (hits) and true negatives (correct
rejections) made.
These threshold-dependent proportions can be plotted to

obtain the Receiver Operating Characteristic (ROC) curve,
as shown in Figure 8. The area under the curve (AUC) of
such a curve represents the classification accuracy of the
method. In this case, the AUC is 0.81, implying that the

5
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naive binary classification based on MLE-recovered BLC
values alone could achieve 81% accuracy in identifying
previously known items. Simply put, the SoF error from
prior knowledge could be identified automatically and with
above-chance accuracy without knowing which facts
participants knew beforehand.

Figure 8: ROC-curve for inferring prior knowledge given
the recovered base-level activation from MLE.

Discussion
The current study introduces a novel approach for
disentangling prior fact knowledge in memory assessments
from previously collected data. Our results confirmed the
hypothesis predictions, demonstrating a significant decrease
in the estimations of Speed of Forgetting (SoF) for items
with prior knowledge. Furthermore, we observed a weak
correlation between SoF values for facts with and without
prior knowledge. Notably, we developed a simple threshold
model that accurately predicted prior knowledge using
Maximum Likelihood Estimation (MLE) and response times
with 81% accuracy. This model-based approach effectively
identified and dissociated the confounding influence of prior
knowledge, representing a significant advancement in
memory assessment methodology.
Identifying prior knowledge as a source of error in

model-based assessments is a novel and important finding
with implications across multiple levels of analysis. When it
is unfeasible to account for prior knowledge initially, such
as in previously collected data, it is possible to parse out
individual facts that likely have prior knowledge. However,
with 81% accuracy, this approach may not guarantee an
improvement in model accuracy for the intention of
classifying memory ability. The second level of analysis
would be to include a model parameter Km as discussed
previously. Prior knowledge of a fact would alter base-level

activations accordingly. The third level would be to actively
collect prior knowledge data. During the fact-learning task,
participants would have the option to click “I already knew
that” in study trials. When this happens, the base-level
activation for that would be adjusted. With these model
improvements, we predict that the memory classification
accuracy will improve.
To address some limitations, the sampled age population

likely has extensive experience taking multiple-choice
examinations and could have developed alternative
cognitive strategies for picking the correct answer other than
successful retrieval, such as process of elimination. The
multiple-choice format of the task was chosen due to
previous use in the literature displaying more consistent SoF
values (Sense et al., 2016). Finally, as memory is certainly
related to age, the sample in this study does not reflect the
elderly population that the task would be used for in clinical
settings. A geriatric population could have more or less
error resulting from prior knowledge, the results must be
carefully considered before extrapolating to other age
ranges.

Implications and Future Directions
Memory impairments are a common and debilitating aspect
of aging, particularly in neurodegenerative conditions. The
ability to quantify individual differences in memory is
crucial, as early detection of memory impairment is
essential for effective treatment. Moreover, the brief and
user-friendly online format makes the administration of
assessments remarkably convenient.
In light of our study's findings, it is imperative to

minimize error in memory assessments. Our identification
of error stemming from prior knowledge significantly
affecting estimated SoFs highlights the potential for
misclassification of individuals, particularly elderly
participants with prior knowledge, as healthy controls rather
than memory-impaired individuals. Addressing this source
of error reduces the risk of Type II errors in memory
assessment tasks, thereby enhancing the accuracy of
diagnostic outcomes.
To further enhance the accuracy of our model-based

assessment, we are undertaking another study aimed at
better understanding the model parameter TER by integrating
eye-tracking data. Analysis of scanpaths extracted from
eye-tracking data will enable a comprehensive examination
of the components contributing to this parameter, ultimately
leading to improvements in the model's accuracy. With these
combined improvements, we aim to rival the classification
accuracy of clinical-standard assessments, thereby
facilitating timely intervention and leading to improved
patient outcomes.
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Abstract

Model-based adaptive learning systems have successfully improved
the efficiency of fact learning in educational practice. Typically,
such systems work by keeping track of a learner’s memory pro-
cesses by measuring behavior during learning, and using this infor-
mation to tailor the learning process towards the needs of individual
learners. Where many adaptive learning systems applied today fo-
cus on learning paired associates, we here focus on learning gram-
mar rules based on instances of these general rules. We show that
participants’ (N = 42) behavioral responses on instance questions
for a rule can be used to infer general performance on other ques-
tions associated to that rule, and that we can capture this rule perfor-
mance in a single model-based speed of forgetting parameter. These
findings could be used to develop and optimize adaptive learning
systems that can be used to study general rules from instances.
Keywords: ACT-R; Adaptive Learning; Knowledge Tracing;
Instance-Based Learning; Grammar

Introduction

Adaptive learning systems have successfully improved the
process of memorizing factual information, such as vocabulary
or glossary items, by tailoring learning schedules to the
needs of individual learners. Typically, such systems aim to
predict learner performance from behavioral measures that are
recorded during learning, and use these predictions to tailor item
repetition schedules towards the needs of individual learners (e.g.,
presenting fewer or easier items when predicted performance is
low; and presenting more or more difficult items when predicted
performance is high). This approach has proven to increase learn-
ing efficiency compared to traditional, less adaptive approaches
in a wide range of materials, both in laboratory and classroom
settings (e.g., see Lindsey, Shroyer, Pashler, & Mozer, 2014;
Papousek, Pelánek, & Stanislav, 2014; Wozniak & Gorzelanczyk,
1994; Van Rijn, Van Maanen, & Van Woudenberg, 2009).

Existing adaptive learning systems are typically used to learn
paired associates, such as vocabulary items or glossary items.
For these materials, there is extensive evidence supporting the
idea that it is possible to use behavioral proxies, recorded during
the learning session, to infer the extent to which a learner has
successfully memorised a specific paired-associate item. Most
model-based adaptive learning systems present the learner with
retrieval practice questions, and use response accuracy as a be-
havioral proxy of the extent to which an item is stored in memory
(e.g., see Pavlik & Anderson, 2008; Van Rijn et al., 2009). As
using accuracy scores only does not allow for meaningful discrim-
ination within correct responses, (and as a consequence, accurate
performance predictions require many incorrect responses,) many

systems use response times in addition to accuracy scores to
predict performance (Byrne & Anderson, 1998; Sense, Behrens,
Meijer, & van Rijn, 2016, see). Finally, in recent implementations,
information carried in the speech signal during spoken retrieval
attempts has been used to infer the extent to which a learner
has successfully memorised a specific paired-associate item
(Wilschut, Sense, & van Rijn, 2024). Overall, for learning
paired-associate items, there is extensive support for the idea that
behavioral responses to retrieval practice questions can be used to
infer model parameters that map on to latent memory processes.

A popular framework used in model-based adaptive learn-
ing systems is the ACT-R model of human declarative memory
(Anderson et al., 2004). In ACT-R, learners’ memory representa-
tions for individual facts are stored as chunks in declarative mem-
ory. Chunks are schematic units of information that possess an ac-
tivation value: More active chunks are more likely to be retrieved
during a search of declarative memory. Arguably, a limitation of
this model is that it treats individual facts as independent units of
information. As such, it is not straightforward to model a learner’s
memory for facts that are clustered or related to other facts that
have been encountered in the learning session (although accounts
of spreading activation, in which activation spreads through a
semantic network, could account for such context effects (e.g.,
see Anderson, 1983; Thomson, Bennati, & Lebiere, 2014)).

Although model-based adaptive learning systems have proven
to be successful in improving the efficiency of learning paired
associates, it is unclear to what extent these findings generalise
to situations where facts are not independent from each other
(i.e., where the clustering of items plays an important rule). In
this research project, we aim to extend existing adaptive learning
models that keep track of memory performance for simple paired
associates by modeling a learner’s mastery of general/underlying
rules from instances of that rule (i.e. instance-based learning, see
Lejarraga, Dutt, & Gonzalez, 2012). If adaptive learning models
are able to keep track of a learner’s mastery of a common rule
based on responses to instance questions, this would widen the
scope of such systems and their possible application in a wide
range of educational settings. For example, current teaching
methods for learning language grammar rules, mathematics,
physics or chemistry all heavily rely on teaching students to pick
up regularities or general rules from instances.

There have been several successful attempts at modeling
the process of learning common rules or patterns from a set
of instances. For example, Stevens et al., 2018 showed that
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it is possible to model others’ decisions from instances in a
negotiation task. Instance-based rule learning models have
also been made for learning the English past tense (Taatgen &
Anderson, 2002), the German plural (Taatgen, 2001), as well
as for other domains, such as the balanced-scale task (Van Rijn,
Van Someren, & Van der Maas, 2003). Finally, within the context
of ACT-R, studies have focused on using instance-based learning
to explain human decision making (e.g., see Gonzalez, Dutt,
& Lebiere, 2013). Yet, the above approaches all aim to model
inductive rule learning from instances. In other words, the rule
is never explicitly given to the learners. In the current work,
we intend to explicitly provide feedback explaining the rule
after each instance question, with the intention that the learners
remember the rule, and recognize future instance questions that
are associated to the same rule. To our knowledge, we are the
first to model instance based rule learning in this exact setup.

In this project, we aim to explore if we can model instance-
based rule learning in an adaptive retrieval practice task, where
participants study Dutch grammar rules from specific instances.
We specifically aim to track a learner’s mastery of underlying
rules, and therefore model these rules, and not the instances, as
chunks in the memory model. We first examine the extent to
which performance on instance questions for specific questions
is associated to (a) other instance questions for the same grammar
rule during learning and (b) new instance questions presented on
a test following the learning session. Second, we will examine
if we can use model-based estimates of speed of forgetting during
learning to predict performance on the test. Finally, we aim to
show that using a fully adaptive, model-based item scheduling
algorithm—that takes both a learner’s accuracy scores and
response times into account to determine the most optimal item
repetition schedule for each individual learner—can be used to
successfully improve learning efficiency.

Methods

Participants

In total, 42 participants completed the experiment via the online
participant pool Prolific. Participants were included if they had
at least completed secondary education. Most participants had
completed education at a university of applied science (‘HBO’).
In addition, they were required to speak Dutch fluently. Finally,
participants were included only if they had completed at least 10
other Prolific studies prior to the current experiment. The mean
age of the participants was 35 years, 18 participants identified
as female and 24 participants as male.

Design and Procedure

The study consisted of two learning blocks and a test block,
which were completed by all participants in a single session. All
participants started with the learning blocks, which consisted
of one rt-adaptive learning block and one stack-based learning
block. Half of the participants (n = 21) started with the rt-adaptive
learning block, and completed the stack-based block second. For
the other half of the participants (n = 21), this order was reversed.
After the learning blocks, a test followed.

a b

Figure 1: Screenshots of the learning application. a shows a trial:
the learner is asked to type the correct word b shows the feedback
when an incorrect answer is given: the correct answer is provided
along with the explanation of the underlying grammar rule.

During the learning blocks, participants studied Dutch grammar
rules based on instance questions (see Materials). For each
grammar rule, there were six instances/instance questions, that
were randomly chosen to be presented to the learner (with the only
exception that a specific instance question would not be repeated
twice in a row). Participants were prompted with a request
(e.g., ‘write the plural form of the word between brackets’) and
a context sentence in which the target word occurred. Participants
were asked to type the item in correct spelling. If the answer was
correct, a short feedback screen appeared prompting the partic-
ipants that the answer was correct, after which the next item was
presented. If the answer was incorrect, the correct answer, as well
as an explanation of the associated grammar rule, were presented
to the participants. The feedback screen after incorrect responses
was self-paced: Participants were able to click ‘next’ to continue
at their own pace. Response times were defined as the time
elapsed between the presentation of the cue and the first keypress,
unless the participants used the backspace button to erase the first
keypress (in which case the response time would not be used).
Both the stack-based learning block and the rt-adaptive learning
block took 12 minutes in total. In the rt-adaptive scheduling block,
rule repetition schedules were personalised based on the accuracy
and response times that were recorded during the learning session
(see Rule scheduling); in the stack-based learning block, rules
were scheduled based on accuracy only (see Rule scheduling).

On the test, one new instance question was presented to the
participants for each grammar rule, where one rule was presented
at the time. During the test, response times were not recorded.

Materials

The materials for this study were gener-
ated in collaboration with Hogeschooltaal (see
https://www.hogeschooltaal.nl/?lang=en, a Dutch
institution facilitating the process of language proficiency
development in Dutch applied university students. The total
material set consisted of 18 grammar rules, for each of which
there were seven instance questions. Six instance questions were
used in the learning session, one instance question was used for
the test. All participants saw the same questions on the test. The
list of 18 grammar rules was split in two sets of nine rules, which
were then randomly assigned to a specific scheduling block (rt
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adaptive or stack-based) for each participant.

Rule scheduling

In the rt-adaptive scheduling block, we used an adaptive algorithm
to schedule rule repetitions in a way that is optimally tailored
towards the individual learner. This adaptive algorithm is based
on an ACT-R model of declarative memory (Anderson et al.,
2004), and is described in more detail in Sense et al. (2016). In
the current application, individual grammar rules—not individual
instances—are stored as chunks in the declarative memory model.
The algorithm aims to model the memory strength or activation of
each to-be-learned grammar rule over time, and presents rules to
the learner for retrieval practice whenever their activation decays
to a threshold value. Activation values are continually updated
using the learner’s response times and accuracy scores.

In practice, this means that instances for which a learner gives
slow and/or incorrect answers, activation values are adjusted down-
wards and rules are repeated more frequently, whereas if the
learner gives quick and correct answers to a retrieval practice ques-
tion, the activation will be adjusted upwards, and presented for
practice less frequently. In addition to personalising the rule repeti-
tion schedule, the algorithm captures individual differences in abil-
ity through a learner- and item-specific speed of forgetting param-
eter (a), which it estimates from the learner’s responses. Poorer
learners will have a higher speed of forgetting value, which causes
activation to decay faster, leading to more frequent repetition.

In the stack-based learning block, the rule repetition schedule
was determined by a Leitner-inspired stack-based system
(Mubarak & Smith, 2008), which groups words into virtual boxes:
All words start in Box 1 and move to the next box if answered
correctly. If a word is answered incorrectly, it moves back to
the previous box. Words in Box 1 are presented first, followed
by words in Box 2, followed by words in Box 3. If all rules are
in Box 3 (and if they are all answered correctly) the rules are
repeated in the order of first presentation until the learning time
is over. This stack-based system allows for difficult rules to be
rehearsed more often than easy rules and is a frequently used and
effective study strategy (Bryson, 2012).

Analyses

Analyses were conducted in R 3.4.1 (R Core Team, 2020),
with the mixed-effects modelling package lme4 1.1-28 (Bates,
Mächler, Bolker, & Walker, 2015). The mixed effects models
reported in this study include rule repetition, scheduling algorithm
(contrast coded: rt-adaptive learning = 0; stack based learning
= 1) and speed of forgetting. In all models, participant- and rule
id were added as random intercepts (Baayen, Davidson, & Bates,
2008). The data was visualised using ggplot2 (Wickham, 2016).
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Figure 2: Inferring grammar rule mastery from instance-based
learning behavior. Different colors represent unique grammar
rules. a shows the mean accuracy over repetitions of a grammar
rule, split by scheduling algorithm. Dots represent aggregate
performance over randomly introduced instance questions for each
rule. The graph shows that rule difficulty can be relatively reliably
inferred from average scores on specific instances of that rule. For
simplicity, only the first six of 18 grammar rules are shown here.
b shows the main accuracy for each individual instance question
during learning (dots) and associated test performance (triangles).
c shows the association between mean accuracy during learning
on instance questions associated to specific rules and accuracy
during the test on new instance questions for the same rules.
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Results
1

Inferring grammar rule

performance from instance-based learning behavior

The first aim of this research project was to examine the extent
to which it is possible to use behavioral responses to instance
questions to infer a learner’s mastery of an underlying grammar
rule. Figure 2a shows the mean accuracy on grammar rule
questions over repetitions, split by scheduling algorithm. Colored
lines represent individual grammar rules, and dots show average
scores on repetitions of each rule, which are based on aggregates
over instance questions. The figure clearly shows that it is
possible to distinguish trends of rule difficulty: some grammar
rules, aggregate accuracy scores over instance questions are
lower than for other grammar rules. Correspondingly, for some
grammar rules, initial performance is very low (close to 0),
whereas for other rules, initial performance is quite high. Finally,
the plot shows a trend of learning over repetitions (i.e., on average,
accuracy increases over repetitions).

Figure 2b shows performance on individual instance questions
for grammar rules. There is considerable variation between
instance questions, but it seems reasonable to determine overall
rule difficulty from a few observations of individual instances.
Figure 2c shows that there is a strong positive association between
average accuracy for grammar rules during learning and accuracy
on new instance questions for the same grammar rules on the
following test, both in the rt-adaptive scheduling block (r = 0.59,
p = 0.009) and in the stack-based scheduling block (r = 0.49, p

= 0.039).
Mixed effects models M1 and M2 (see Table 1 describe the

effects of repetition, scheduling system, and their interaction on
learning accuracy and response times, respectively. We found only
significant main effects of repetition: participants became more
accurate and responded faster over repetitions of a rule, regardless
of the rule scheduling algorithm and despite the fact that rule
repetitions consisted of randomly chosen instance questions.
The effects of rule scheduling algorithm were not statistically
significant. Overall, behavioral responses on instance questions
for grammar rules seem to be indicative of performance on other
instance questions that are associated to the same rule, both
during the learning sessions and on the test that follows learning.

Model-based estimations of test performance

The second aim of this project was to capture rule mastery in a
model-based speed of forgetting parameter. Figure 3a shows the
mean estimated speed of forgetting over repetitions of grammar
rules, based on instance questions for each rule. With each rule
repetition, the estimated speed of forgetting was updated based
on the accuracy and response time of the learner’s answer (see
Rule scheduling).

1Analysis code, data, and materials are available from
https://osf.io/grdmw/.
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Figure 3: Estimating test performance based on model-inferred
speed of forgetting for grammar rules. a shows the mean estimated
speed of forgetting for each individual grammar rule, based on
accuracy scores and response times for instance questions. Error
bars represent (+/-) 1 standard error of the mean. b shows the
mean test accuracy as a function of final speed of forgetting.
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Figure 4: Performance during learning and test. a and b show
the number of rules correctly recalled during learning and on
test, respectively. Dots represent average scores for individual
participants. c shows the proportion of correct responses during
learning and on test for both rule scheduling algorithms.
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Mixed effects models explaining performance during learning and on test from rule repetition and scheduling algorithm

*** = p < 0.001; ** = p < 0.01; * = p < 0.05.

M1. Accuracy during learning Estimate SE z p

Intercept 1.37 0.23 5.87 <0.001⇤⇤⇤
Rule repetition 0.08 0.01 8.85 <0.001⇤⇤⇤
Scheduling algorithm (stack-based = 1) �0.06 0.01 �0.56 0.576
Rule repetition * Scheduling algorithm 0.018 0.01 1.28 0.212
M2. Reaction times during learning Estimate SE t p

Intercept 7711.91 1473.33 5.23 <0.001⇤⇤⇤
Rule repetition �195.40 34.22 �5.71 <0.001⇤⇤⇤
Scheduling algorithm �562.45 362.16 �1.55 0.121
Rule repetition * Scheduling algorithm 74.72 44.99 1.66 0.097
M3. Accuracy on test Estimate SE z p

Intercept 1.14 0.42 2.69 0.007
N. repetitions during learning 0.01 0.00 2.57 0.010⇤
Scheduling algorithm �0.13 0.26 �0.50 0.616
Rule repetition * Scheduling algorithm 0.00 0.01 0.52 0.601

Estimating learning and test performance from rule repetitions and model-based speed of forgetting

*** = p < 0.001; ** = p < 0.01; * = p < 0.05.

M4. Accuracy during learning Estimate SE z p

Intercept 1.46 0.23 6.43 <0.001⇤⇤⇤
Speed of Forgetting �0.84 0.21 �4.09 <0.001⇤⇤⇤
Rule Repetition 0.10 0.01 12.91 <0.001⇤⇤⇤
M5. Mean accuracy on test Estimate SE t p

Intercept 0.96 0.11 8.51 <0.001⇤⇤⇤
Final Speed of Forgetting �0.76 0.31 �2.45 0.01⇤
N. repetitions during learning 0.00 0.00 0.71 0.47

Figure 3b shows the association between the final estimated
speed of forgetting for a grammar rule during the learning session,
and the mean accuracy during test for new instances of the
same rules. We found that, overall, grammar rules for which
a high speed of forgetting was estimated during learning, new
instance questions were answered with lower accuracy on the
test, indicating that the adaptive learning model could track rule
performance during the learning session to estimate later test
performance. Mixed effects models M4 and M5 (see Table 2)
support these interpretations, as they show that the speed of
forgetting for a grammar rule, estimated during learning based on
responses to instance questions, can be used to estimate accuracy
during learning, and on test, respectively.

Model-based optimization of learning

The final aim of this project was to explore the possibility of using
the instance-based estimations of speed of forgetting for grammar
rules to optimize repetition schedules, ultimately leading to a
higher learning efficiency of grammar rules. To that end, we
compared the learning efficiency with a fully adaptive scheduling
algorithm, that uses both accuracy scores and response times
to predict rule performance, to a stack-based rule scheduling

algorithm that is based on the accuracy of rule instances only
(see Rule scheduling). Figure 4a and 4b show the number of
correct responses during learning and on test, respectively. Figure
4c shows the proportion of correct answers during learning and
test with both scheduling algorithms. As is also supported by the
mixed effects models M1 and M3 (see Table 1), we found no
significant difference between using the stack-based scheduling
system and the rt-adaptive scheduling system.

Discussion

In this study, we aimed to extend existing adaptive learning
models that can keep track of memory performance for simple
paired associate stimuli to estimating mastery of grammar rules,
based on responses to randomly introduced instance questions.
The results can be summarized in three main points. First, we
examined the possibility of inferring rule performance from
behavioral responses on randomly chosen instance questions. Our
results suggest that, despite the fact that we found considerable
variation in performance on individual instance questions within
a rule, it seems sensible to keep track of a learner’s mastery of a
grammar rule using the behavioral responses on randomly chosen
instance questions. More specifically, accuracy scores on instance
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questions for grammar rules were indicative of performance on
other instance questions that are associated to the same rule, both
during the learning sessions and on the test that follows learning.

Second, we showed that the adaptive learning model, that
was originally developed to keep track of memory performance
of individual paired associate rules, could capture the extent to
which learners have mastered a grammar rule in a single speed of
forgetting parameter. A higher speed of forgetting during learning
for a specific grammar rule was associated with poorer memory
performance for new instances of the same grammar rule.

Finally, we attempted to use the model-based estimations
of a learner’s performance of a certain rule by optimizing the
repetition schedule for individual learners. We found that, despite
the fact that our learning model could capture differences between
grammar rules, model-based optimization of the rule repetition
schedule did not lead to better learning performance compared
to a more simple, stack-based adaptive learning system.

There are several possible reasons for the lack of a benefit of us-
ing the model-based rt-adaptive scheduling algorithm compared to
using a stack-based accuracy adaptive system. First, in the current
system, response times were defined as the time elapsed between
the first presentation of an instance question and the first keypress
of the response. The underlying rationale is that this response time
mainly reflects retrieval time, and can therefore be used as a proxy
of the memory strength for a specific rule (Byrne & Anderson,
1998). This way of measuring response latencies has proved to
be effective for paired associate learning, but it is possible that re-
sponse times should be decomposed more carefully when it comes
to grammar rule learning. For instance, future research should
examine whether the non-retrieval time (i.e., the time needed to
process a question before retrieval takes place, or the time needed
to prepare a response after retrieval has taken place) can be sub-
tracted from the response times before being taken into account to
determine scheduling for more complex materials such as gram-
mar rule learning. Second, it is possible that the current experimen-
tal setup was not sensitive enough to statistically detect differences
in learning efficiency between the accuracy-adaptive stack-based
and the model-based, rt-adaptive scheduling system. Future stud-
ies should further examine this issue, in particular over multiple
learning sessions and including longer-term retention tests.

Another possible direction for future studies is taking a
data-driven approach of clustering items, rather than defining
the common grammar rules beforehand. A post-hoc k-means
clustering analysis of the current dataset suggests that only
5–7 clusters is enough to accurately describe the variability of
performance on instance questions. In other words, learners
performed very similar on some of the grammar rules, which
makes the usefulness of treating them as separate knowledge
chunks questionable. As in some situations it might be difficult to
establish the most optimal common rule clustering upfront, it may
be worthwhile exploring methods to use a data-driven approach
to group items for individual learners in real time, and then track
a learner’s progress on each group of items.

Another important point that has received little attention in
the current work concerns the explanatory feedback about the

grammar rules that was shown to the learner after each incorrect
response. Future work should examine the consequences of
providing explanations of grammar rules after each response,
and how the time taken to study these rules during the feedback
moments impacts learning efficiency.

Despite these open questions, we show that it is possible to
model learners’ mastery general rules from answers to instance
questions, and that we can use this information to optimize rule
repetition schedules. These results demonstrate that—in the con-
text of learning Dutch grammar rules—it is sensible to use per-
formance on instance questions to infer a learner’s mastery of
the underlying rule. Despite the fact that our current attempts at
using this information to personalise the repetition schedule did
not result in increased learning efficiency, our results indicate that
it is sensible to track rule performance from responses on corre-
sponding instance questions. These findings underline the need
to further investigate possible ways of using this information to
improve repetition schedules for these rules. Ultimately, this could
lead to learning systems that allow for instance-based rule learning,
adapted to the needs and prior knowledge of individual learners.

Conclusion

In this project, we asked participants to study Dutch grammar
and spelling rules through exposure to specific instances of each
rule. We show that it is possible to use the learner’s answers to
instance questions to estimate their performance on new instances
of the same rules. Using a cognitive model of memory retrieval,
we show that we can estimate how well learners have memorized
the rules. Although future research should explore how these
estimations of a learner’s rule performance can be exploited to
increase learning efficiency, these results pave the way for the
development of adaptive learning applications that allow for rule
learning based on instances.
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Abstract

We identify theoretical challenges for developing a computa-
tional explanation of flexible linguistic inference. Specifically,
the human ability to interpret a novel expression (like mask-
shaming), where inferring plausible meanings requires inte-
grating relevant background knowledge (e.g., COVID-19 pan-
demic). We lay out (i) the core properties of the phenomenon
that together make up our construal of the explanandum, (ii)
explanatory desiderata to help make sure a theory explains the
explanandum, and (iii) cognitive constraints to ensure a theory
can plausibly be realised by human cognition and the brain.
By doing so, we reveal the ‘force field’ that theories of this ex-
planandum have to navigate, and we give examples of tensions
that arise between different elements of this force field. This
is an important step in theory-development because it allows
researchers who aim to solve one part of the puzzle of flexible
linguistic inference to keep in clear view the other parts.

Keywords: language comprehension; inference; theory-
development; computational explanation; meta-theory

Introduction
Language use is remarkably flexible. One aspect of this is
that humans appear to be able to integrate different kinds of
knowledge in novel ways when interpreting utterances. In
this paper, we focus specifically on humans’ ability to come
up with possible interpretations of neologisms, such as mask-
shaming. Coming up with a plausible interpretation of such a
novel expression arguably requires an ability to relate knowl-
edge of the meaning of the words and how they are com-
bined, to broader contextual or world knowledge (e.g., about
the COVID-19 pandemic; see Figure 1). Explaining this phe-
nomenon raises several theoretical challenges1: What is the
phenomenon really? What counts as a good explanation? The
aim of this paper is to outline those challenges. Importantly,
we consider how these challenges will interact, which brings
into clear view a ‘force field’ that explanations of flexible lin-
guistic inference need to navigate.

1We would like to preempt the possible presupposition that large
language models (LLMs) would already address these challenges.
LLMs do not provide any precise characterisation of the explanan-
dum (human flexible linguistic inference), nor are they explanatory
(Guest & Martin, 2023; Bender & Koller, 2020; van Rooij et al.,
2023; van Rooij, 2022).

The contribution we make in this paper takes inspiration
from several sources. First, Adolfi, van de Braak, and Woens-
dregt (2023) argue that theoretical problem-finding (as op-
posed to empirical problem-solving) is an important scien-
tific contribution in its own right. This activity involves
not just characterising the phenomenon, but also identify-
ing the theoretical constraints that determine what makes a
good explanation. Second, Guest (2024) and Guest and Mar-
tin (2023) argue that as scientific practitioners, we can make
meta-theoretical commitments about criteria that make a the-
ory good. Guest (2024) calls upon scientists to characterize
and examine the criteria we use to adjudicate over theories by
building and sharing what Guest and Martin (2023) and Guest
(2024) dubbed a metatheoretical calculus: a formal system
that describes the process by which theories are evaluated and
pitted against each other in a particular (sub)field. Finally,
Blokpoel (2018) argues that developing a computational-level
model (i.e., a formalised theory) of a cognitive capacity is
like sculpting. The scientist has to start out with a sufficiently
large block of material (i.e., model/theory) that can capture
the entire capacity (i.e., is generatively sufficient), and can
then figure out which parts to chisel away by applying vari-
ous computational-level constraints (e.g., tractability).

In this paper, we take inspiration from these approaches,
and apply them specifically to the phenomenon of flexible
linguistic inference. That is, the human ability to flexibly
interpret neologisms upon first encounter, in a way that ap-
pears to require integrating linguistic knowledge with world
knowledge. We start by outlining the specific phenomenon in
language comprehension that we want to explain, in the form
of three key properties, in Section The explanandum. Next,
inspired by Guest (2024), Guest and Martin (2023), Blokpoel
(2018), and Adolfi, van de Braak, and Woensdregt (2023),
we discuss two classes of constraints (Constraints on the ex-
planans) that we deem particularly relevant for theories of
this explanandum. First, in Section Explanatory desiderata,
we discuss two metatheoretical commitments that can help
make sure a given theory really explains the explanandum of
interest. Second, in Section Cognitive constraints, we discuss
two metatheoretical commitments that can help make sure the
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Figure 1: Illustrative example of our construal of the explanandum: The ability to come up with a plausible interpretation of
the neologism mask-shaming. From left to right: (a) structured representations of stored knowledge (including grammatical,
semantic, and world knowledge) are involved in building (b) structured representations of possible interpretations (here, two
possible interpretations, i1 and i2 are shown, with a zoomed-in view of i1 to illustrate the further structured knowledge that
is associated with these abstract representations). Finally, (c) given the background knowledge associated with the semantic
representations, and assuming this word is interpreted within the context of the COVID-19 pandemic, i1 is more plausible.

theory can also be plausibly realised by human cognition and
the brain. Finally, in Section Challenges for explaining flex-
ible linguistic inference, we highlight some examples of ten-
sions that may arise between these properties and constraints.

The properties of the phenomenon and constraints on the
explanans that we highlight in this paper are not exhaustive;
we see them as necessary but possibly not sufficient. How-
ever, by outlining the explanandum, several constraints on the
explanans, and some of the tensions that can arise between
these, we shed light on the force field that theories of flexible
linguistic inference need to navigate. This provides a founda-
tion from which further theory-development can depart.

The explanandum
In this section, we describe the core properties of the phe-
nomenon we want to explain; that is: our construal of the
explanandum. It appears to be the case that humans, un-
der the right circumstances (given a shared language, shared
world knowledge, and shared motivation to achieve mutual
understanding) are able to interpret novel expressions in a
way that requires knowledge not just of the word meanings
and grammar of the language, but also broader contextual or
world knowledge. And that these different kinds of knowl-
edge are flexibly integrated in this process of meaning infer-
ence. For example, the first time you heard the term mask-

shaming, you were probably able to come up with a sensi-
ble (not necessarily correct) interpretation of what this might
mean, in the context of the COVID-19 pandemic (Blokpoel,
Wareham, Haselager, Toni, & van Rooij, 2019). Figure 1
shows a possible construal of what such an inference pro-
cess might involve. Below, we discuss three properties that
we believe together form the core of this explanandum. Our
construal leaves out other components of language compre-
hension that also require explanation, such as segmentation
(i.e., turning a continuous stream of sound or sign into dis-
crete units; Adolfi, Wareham, & van Rooij, 2023) and word
recognition (i.e., mapping a sequence of phonemes onto a
lexical representation; Lahiri & Marslen-Wilson, 1991; Mc-
Queen, 2007). These capacities are outside the scope of this
paper, as our construal of the explanandum does not rely on
any particular theory of them.

Language comprehension is compositional
To understand the meaning of a linguistic expression (a
phrase or sentence), one doesn’t need to have come across it
as a whole before. Instead, we can most often infer the mean-
ing of the whole by knowing the meanings of the parts (lexi-
cal semantics) and how the structure of the whole influences
its meaning (syntax). The fact that (most often) the mean-
ing of the whole is a function of the meanings of the parts

Proceedings of the 22nd International Conference on Cognitive Modelling (ICCM 2023)

238



and the way in which those are combined, makes natural lan-
guages compositional (Martin & Baggio, 2020; Partee, 1995;
Pylkkänen, 2020). This compositionality buys us a high de-
gree of systematicity and productivity (i.e., we can produce
and understand utterances we have never come across before)
(Szabó, 2004; Martin & Baggio, 2020; Pylkkänen, 2020).

Language comprehension requires building abstract hierar-
chical structure from linearly incoming sensory input, on the
fly (Hagoort, 2019). Martin (2016, 2020) captures this com-
putationally as a process of perceptual inference, in which
incoming sensory cues are transformed into increasingly ab-
stract structures through activation of stored knowledge rep-
resentations. This computational model can account for
cases of language comprehension in which the compositional
meaning can be inferred directly from the stored language
knowledge and its mapping to conceptual knowledge. How-
ever, humans are also able to infer the possible meanings of
novel expressions in a way where semantics, syntax and com-
positionality alone are not enough.

Language comprehension involves world knowledge
Knowledge of the meanings of words (lexical semantics) is
often not independent from world knowledge.2 Hagoort et
al. (2004) showed that in language comprehension, general
world knowledge is integrated simultaneously with lexico-
semantic knowledge (see also Hagoort & van Berkum, 2007).
Using EEG, they showed that the event-related potential
(ERP) component associated with semantic integration (the
N400) looks similar in terms of timing, shape, and location
when reading sentences like “the Dutch trains are white and
very crowded” (a violation of world knowledge for the Dutch
participants, who know that Dutch trains are yellow) com-
pared to “the Dutch trains are sour and very crowded” (a se-
mantic violation, because the semantic features of the predi-
cate “sour” do not fit those of its argument “trains”). This is
empirical evidence against the classic two-step model of lan-
guage interpretation in which first the ‘local’ meaning of the
compound expression is computed, and world knowledge is
only integrated in a second step, to work out what the expres-
sion really means. Instead, Hagoort and van Berkum (2007)
show that world knowledge is brought to bear on utterance in-
terpretation as soon as it’s available (Just & Carpenter, 1980;
Hagoort & van Berkum, 2007; Hagoort, 2019).3

The importance of world knowledge for language compre-
hension becomes especially apparent when interpreting novel
expressions such as mask-shaming (see Figure 1). We posit
that in addition to building compositional structure based on
stored and structured language and world knowledge, this re-

2To illustrate how word meanings are underdetermined in the ab-
sence of world knowledge, Hagoort, Hald, Bastiaansen, and Peters-
son (2004) provide the following example: The word “finish” means
something different in the phrase “Mary finished the book” (which
implies she completed reading or writing it) compared to “the goat
finished the book” (which implies the goat ate or destroyed it).

3For a computational model of this integration of world knowl-
edge during incremental comprehension, see Venhuizen, Crocker,
and Brouwer (2019).

quires inferring new relationships between the incoming sen-
sory cues and (potentially novel) conceptual representations.
This may involve abductive inference, where novel candidate
hypotheses to explain a given observation are generated (in
this case: possible interpretations of a novel linguistic ex-
pression) (Blokpoel et al., 2019). Explaining this ability may
require a computational model that can reach across differ-
ent capacities in cognition and capture systematicity between
structured representations of incoming language input and
structured representations of world knowledge.

Language comprehension is incremental
Words (or signs) come in incrementally during language com-
prehension, in linear order (although signed languages al-
low for more simultaneity than spoken languages; Slonimska,
Özyürek, & Capirci, 2020). Tanenhaus, Spivey-Knowlton,
Eberhard, and Sedivy (1995) showed that linguistic utter-
ances are also processed incrementally, not just syntactically
but also semantically and in context. They showed that par-
ticipants seek to establish reference in context immediately,
as soon as words come in. More recently, Hagoort (2019) re-
viewed various psycholinguistic studies on meaning-making,
and concluded that complex meaning is created on the fly,
through a unification operation that takes lexical meanings
and context as its input and outputs a situation model (see
Zwaan & Radvansky, 1998, for more on situation models).

Sedivy (2007) reviews the psycholinguistic literature on in-
cremental language processing in the context of theories of
pragmatic inference (i.e., going beyond the literal meaning
of an utterance to figure out what it means in context). She
shows that there is at least some evidence from self-paced
reading experiments that participants rapidly integrate expec-
tations based on the informativeness of different possible re-
ferring expressions given the context. This suggests that also
the pragmatic integration of context happens incrementally.

The combination of incremental and immediate language
processing means that as hierarchical representations are be-
ing built from a linear input sequence, the set of possible in-
terpretations and their hierarchical structure may change and
need to be revised as new words come in. This means that
a computational-level theory of flexible linguistic inference
needs to be able to produce intermediate output when pro-
vided with only partial input sequences.

Constraints on the explanans
In this section, we highlight two classes of metatheoretical
constraints or commitments that we deem particularly im-
portant for the explanandum described above. These two
classes of constraints are somewhat different in nature: The
Explanatory desiderata have to do with whether a given the-
ory can really explain the phenomenon, and the Cognitive
constraints have to do with whether the theory can be plau-
sibly realised by human cognition and the brain. Blokpoel
(2018) argues that developing a computational-level model
(i.e., a formalised theory) of a cognitive capacity is like stone
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carving a sculpture out of a block of marble. First, the mod-
eller needs to make sure the block of marble they start with
(the ‘starting theory’) is large enough to capture the entire
explanandum (i.e., generatively sufficient). Otherwise, they
would have to glue parts back on later, which, in this analogy,
corresponds to adding ad-hoc components to the model. Sec-
ond, they can start chiseling down the sculpture based on var-
ious constraints, until the model provides a precise fit of the
cognitive capacity (i.e., the explanandum). In this paper, we
build on this metaphor: We view the explanatory desidarata
described below as characteristics of the block of stone that
the sculptor starts out with, and the cognitive constraints as
informing the chiseling process. This sculpting analogy also
allows us to illustrate what consequences it has for the later
chiseling process if the explanatory desiderata are violated.

Explanatory desiderata
Below, we discuss two metatheoretical desiderata that we
consider important for a theory of a cognitive process to
be explanatory. We also discuss the consequences if these
desiderata are not satisfied: such a theory is likely to break
apart during further chiseling based on cognitive constraints
(Figure 2). This highlights the importance of having ‘good
quality material’ to start with: A theory that (i) does not as-
sume what it’s trying to explain, and (ii) is not piecemeal.

Explaining without assuming Explanations of cognitive
processes can be described on the computational level as a
function that maps from input to output. That is, we can for-
malise a hypothesis about what a given cognitive capacity
does (i.e., a computational-level explanation), as a function
f : I f ! O f that specifies for each input i 2 I f its correspond-
ing output o 2 O f (Marr, 1982). Such a computational-level
theory constrains the set of possible algorithmic-level and
implementation-level specifications that are consistent with it
(Blokpoel, 2018). By explaining without assuming, we mean
that on the computational level, the theoretician should not
slip by assuming that that which is to be explained is part of
the input. Instead, the theory has to explain how a given prop-
erty of the explanandum is part of the output as a function of
the input. If, instead, this property that is in need of explana-
tion is assumed, without explaining how it arises or where it
comes from, the theory can be considered ‘hollow’, and this
may reveal itself upon later chiseling.

Let us take the compositional nature of language compre-
hension as an example. The input in this case should be a lin-
ear sequence of words, and the output should be a hierarchical
representation of the compositional structure that arises from
the interaction between the meanings of the words and the
way in which they are combined. If compositional structure
is already present in the input to this function, it is assumed,
rather than explained. If, instead, the formalisation of the
model provides a specification of the output as a function of
the input, where (some of) the output has compositional struc-
ture but the input does not, we can state that it explains com-
positionality without assuming it. Note that this definition of

explaining without assuming is independent of the specific
definition of compositionality one is working with.

Non-piecemeal We consider a theory piecemeal if it makes
use of different components (e.g., several separate computa-
tional processes) to explain different aspects of the explanan-
dum of interest. The worry with such a piecemeal explana-
tion is that it also requires an explanation of how these dif-
ferent components (e.g., computational processes) interface.
This process of ‘glueing’ the different components back to-
gether may turn out hard (especially if these different com-
ponent explanations were developed independently from one
another), for example because they have incompatible as-
sumptions. There can be valid reasons to conclude that a
piecemeal explanation, postulating several different compu-
tational processes, is in fact necessary. However, aiming for a
non-piecemeal approach first, can potentially avoid the hard
problem of having to glue parts back together later. Further-
more, by adopting such a non-piecemeal approach, the limits
of reaching such a unified, non-piecemeal explanation for a
given explanandum will eventually be discovered, if they ex-
ist. This does require starting out with a well-specified and
clearly carved out explanandum.

Let us take the different levels of organisation we find
in linguistic expressions (from phonemes to morphemes to
words to phrases to sentences) as an example. If our expla-
nation entails a computational process that could be applied
iteratively to build up interpretations from the smallest mean-
ingful linguistic unit (morphemes) up to entire sentences, it
can be considered non-piecemeal. If, instead, it has to postu-
late multiple computational processes in order to account for
different levels of linguistic analysis, it is more piecemeal in
nature. See Martin (2020) for an example of a non-piecemeal
approach to explaining language comprehension.

Figure 2: Illustration of how violating the two explanatory
desiderata will affect theory-development during later chisel-
ing based on cognitive constraints. a) When the theory as-
sumes the explanandum, instead of explaining it, it can be
seen as hollow, which may be revealed during the chisel-
ing process. b) When the theory is piecemeal—made up of
several components to explain different aspects of the phe-
nomenon, without forming a coherent whole—it may break
apart upon further chiseling (green outline indicates target
area to be chiseled off). Stone images taken from freepik.com
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Cognitive constraints

Here, we discuss two meta-theoretical constraints that are
specific to theories that aim to explain cognitive capacities.
These two constraints are necessary (i.e., any explanation
that doesn’t satisfy these two constraints will inherently not
explain the phenomenon), but not sufficient (i.e., other con-
straints that we do not discuss may also apply, meaning any
explanation that does satisfy the two constraints will not au-
tomatically provide a good explanation of the phenomenon).
For example, given the explanandum of flexible linguistic in-
ference, one may further want to ensure that the theory is con-
sistent with insights from psycholinguistic research.
Computational tractability Human minds are resource-
bounded. That is, we have limited time and memory re-
sources. This means that human minds (just like any other
resource-bounded system, such as a computer) can only com-
pute tractable functions for real-world input sizes (as opposed
to toy scale). This means that for an explanation of a cog-
nitive capacity to be plausible, it has to be computationally
tractable (van Rooij, 2008; van Rooij, Blokpoel, Kwisthout,
& Wareham, 2019). One can analyse whether a given the-
ory is tractable by specifying it at Marr’s computational level
(as a function that maps from input to output) (Marr, 1982),
and using mathematical proof techniques from computational
complexity theory (van Rooij, 2008; van Rooij et al., 2019).

If the theory of interest turns out to not be tractable, simi-
lar techniques from parameterized complexity theory can be
used to find out whether the input domain can be constrained
in a way that would make it tractable (van Rooij, 2008; van
Rooij et al., 2019). By input domain here we mean anything
that is part of the input to the function that describes the what
of the cognitive capacity. Note that this is a different notion
of input than the sensory input to the neural or cognitive sys-
tem when we process language (e.g., the auditory input of a
speech stream, the visual input of a sign or gesture stream,
etc.). Instead, the input domain in this context also includes
any stored knowledge that is used in the explanation of how
the cognitive system gets to a certain output (e.g., an interpre-
tation of a novel expression), such as lexico-semantic knowl-
edge, grammatical knowledge, world knowledge, etc. For an
example of such a parameterized tractability analysis applied
to a theory of intentional communication that involves infer-
ring others’ communicative goals, see van Rooij et al. (2011).
Neural plausibility Computational tractability is analysed
at Marr’s computational level of analysis (Marr, 1982), and
thus only requires a computational-level model that describes
the what of the cognitive capacity in question. That is, de-
scribing the nature of the input-output mapping being com-
puted (the cognitive function). However, as Martin (2016)
argues, any model of language computation must not only
answer such what questions, but also how questions. That is,
to provide a specification at the algorithmic level of analy-
sis: describing the nature of the algorithmic process by which
the cognitive function is being performed (the cognitive pro-

cess). Similarly, Hagoort (2019) argues that the computa-
tional, algorithmic, and implementational level are interde-
pendent, and that this should be taken into account when
developing a mechanistic account of meaning-making in the
mind (or in fact any cognitive function).

The set of possible algorithms is constrained by the
computational-level explanation, but is also underdetermined
by it (Blokpoel, 2018). That is, a given cognitive func-
tion (input-output mapping) can in principle be computed
by different algorithms (van Rooij et al., 2019; van Rooij &
Blokpoel, 2020; Blokpoel, 2018). However, as Martin (2016,
2020) demonstrates, algorithmic-level explanations can be
constrained and informed by what we know about how the
brain works: What type of computations can neural systems
carry out? (e.g., summation and normalization.) (see also
Martin, 2020; Kaushik & Martin, 2022). In addition to con-
straining possible theories to only those cognitive functions
for which there exists an algorithm that can tractably compute
it (see Section Computational tractability), one can further
constrain the space of possible theories by putting additional
constraints on the type of algorithm. Given a particular set of
operators (e.g., summation and normalization) that are con-
sidered plausible for the brain to implement, one could make
the commitment that the function needs to be computable by
an algorithm that uses only these operators. In other words,
one can make assumptions about the kind of architecture that
cognition is implemented in, and make the commitment that
the cognitive function a theory posits should be computable
by an architecture of this type (van Rooij, 2008).

Challenges for explaining flexible linguistic
inference

The sections above outlined the phenomenon to be explained,
as well as the form that a good explanation should take, all
together summarised in Figure 3. In the process of theory-
development, tensions may arise between each of these prop-
erties and constraints. Figure 3 can thus be seen as describing
a ‘force field’, within which tensions may arise both within
and across levels. Below, we work out two of these tensions
in a bit more detail: (i) explaining compositionality without
assuming it (tension between a property of the phenomenon
and an explanatory desideratum), and (ii) explaining the role
of world knowledge tractably (tension between a property of
the phenomenon and a cognitive constraint).

Explaining compositionality without assuming it
Explaining the compositional nature of language comprehen-
sion without assuming it raises questions for what type of
linguistic knowledge can be considered part of the input do-
main (see Section Computational tractability for what we
mean by input domain). There is a tension between assum-
ing that the relevant grammatical knowledge is in place (i.e.,
that we’re explaining flexible linguistic inference in compe-
tent adult language users), and providing an explanation of
the computational operations that are necessary to get from
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Figure 3: Illustration of how the explanandum and the constraints on the explanans relate to each other. The explanandum is
characterised by three core properties. To explain this explanandum, a theory has to be able to capture these three properties
(i.e., be generatively sufficient; Blokpoel, 2018). Evaluating the theory along the explanatory desiderata will help make sure that
it really provides an explanation of the phenomenon of interest, and making sure the theory fits within the cognitive constraints
will help make sure it can be plausibly realised by human cognition and the brain. Stone and tool images taken from freepik.com

a linear input sequence to a hierarchical, compositional rep-
resentation. The latter is what requires explanation, and this
computational process itself cannot be assumed to be part of
the input domain, else we are assuming without explaining.

Explaining the role of world knowledge tractably
Blokpoel et al. (2019) present a computational-level model of
how novel candidate hypotheses may be generated through
deep analogical inference: where structured representations
of knowledge are (iteratively) related to each other through
analogy, in a way that allows for augmentation of struc-
tured representations (through projection of parts from one
representation to its analogous representation). Blokpoel
et al. (2019) highlight several necessary properties for this
model, one of which is isotropy: That all knowledge is po-
tentially relevant in the inference process (see also Blokpoel,
2015, chapter 1; and Fodor, 1983, part IV). The explanan-
dum we focus on in this paper is related to the explanandum
of Blokpoel et al. (2019) in the sense that flexibly coming
up with plausible interpretations of neologisms probably re-
quires coming up with novel structured representations based
on the combination of linguistic knowledge and world knowl-
edge that is activated by the incoming expression. In fact, this
type of flexible interpretation of novel communicative signals
is exactly the example that Blokpoel et al. (2019) use to il-
lustrate their explanandum. The question they ask is: How
are candidate hypotheses generated in abductive inference?

Where (a) plausible interpretation(s) of a novel communica-
tive expression is an example of such candidate hypotheses.
This raises issues for computational tractability, because if all
world knowledge is potentially relevant, how can this compo-
nent of the input domain be constrained? (See Section Com-
putational tractability and Blokpoel et al., 2019, Section 4.2.)

Conclusion
Above, we worked out two examples of tensions that arise
between different components of the force field that we iden-
tified in this paper. What we learn from these examples is that
it is challenging even to satisfy one of the metatheoretical
commitments that we put forward as important for explain-
ing cognitive processes (i.e., the explanatory desiderata and
cognitive constraints), while at the same time doing justice
to each core property of the phenomenon (flexible linguistic
inference) in its full capacity. Moreover, in the two examples
above we limited ourselves to pairwise tensions between one
property of the phenomenon and one metatheoretical commit-
ment, but three-way or more-way tensions are also possible.

Other pairwise tensions that we did not have space to cover
in this paper include: (i) explaining incremental compre-
hension in a non-piecemeal way (how to account for dif-
ferent levels of linguistic analysis?); (ii) explaining compo-
sitional comprehension in an neurally plausible way (com-
positionality requires symbolic processing—variable-value
independence—while the brain excels at statistical and asso-
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ciative learning; Martin & Baggio, 2020); and (iii) composi-
tional comprehension and the involvement of world knowl-
edge (how are world knowledge and linguistic knowledge in-
tegrated?). We encourage theoreticians to work out three- or
more-way tensions between the different properties and con-
straints we put forward in this paper. To conclude, explain-
ing flexible linguistic inference while satisfying these proper-
ties and constraints (Figure 3) poses a major challenge. The
theory-development needed to solve this challenge, requires
a keen awareness of the force field we exposed in this paper.
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Abstract

Prediction is argued to be a key factor in comprehending sen-
tences in verb-final languages. The comprehender can pre-
dict the properties of the upcoming verb phrase using linguis-
tic cues from the pre-verbal input. What are the constraints
on prediction, beyond the ones posited by co-occurrence pat-
terns in the language? We evaluate four models of verb pre-
diction using data from a sentence completion study on Hindi.
The model differs in their assumption of whether/how working
memory constraints affect the prediction of the upcoming verb.
The model comparison conclusively shows that working mem-
ory constraints do affect the prediction of the verb in Hindi.
The results lead to a new insight into the underlying com-
prehension process: When the pre-verbal input is temporarily
stored in memory, it probabilistically distorts to a non-veridical
(or less accessible) memory representation, and this degraded
representation of the context generates potentially faulty pre-
dictions of the upcoming verb.

Keywords: Sentence processing; prediction; working mem-
ory; representation distortion; encoding interference

Introduction

A key assumption in theories of sentence processing is that
syntactic parsing happens incrementally by establishing links
between related words in a sentence leading to a hierarchical
structure (Frazier, 1987). The comprehender needs to inte-
grate the currently parsed input with the upcoming sentence
material. In verb-final languages, such as Hindi, prediction is
argued to be a central feature of this incremental sentence pro-
cessing (Konieczny, 2000; Vasishth & Lewis, 2006; Nakatani
& Gibson, 2010; Husain, Vasishth, & Srinivasan, 2014; Levy
& Keller, 2013). For instance, the cues from pre-verbal nom-
inal modifiers can be used to predict certain features of the
upcoming verb phrase. If the predicted linguistic features are
compatible with the actual verb input, it is easier to integrate
the verb with the previously built structure. Consequently,
prediction can lead to a processing facilitation during incre-
mental comprehension. What are the constraints on predic-
tive processing in verb-final languages?

A well-formulated account of sentence processing — the
lossy-context surprisal model — maintains that predictive ex-
pectations of the upcoming sentence material are subject to
working memory constraints. The model assumes that cur-
rently encountered input, say words w1 to wi�1, which is tem-
porarily stored in memory, undergoes information loss due to
limited working memory such that certain features/words are
deleted or inserted at constant rates. The comprehender uses

this lossy input and their prior linguistic knowledge to gen-
erate predictions about the upcoming words, wi,wi+1, .... As
the information loss in the input increases, the predictions be-
come more faulty. The model predicts that the less probable
input with high working memory load is likely to produce
more faulty predictions of the upcoming sentence material.

However, there is no empirical study that has directly tested
this model prediction in a verb-final language. In this paper,
we present a sentence completion study to test the effect of
working memory constraints on verb prediction. The partici-
pants were asked to read sentences with three pre-verbal noun
phrases where the nouns had either the same or distinct case
markers. The null hypothesis is that case interference — that
poses higher working memory load —- does not affect the
rate of grammatical verb predictions.

We test four competing models that make different pre-
dictions about the distribution of verb prediction errors in
these sentences. The first model is the null hypothesis model
which assumes that the rate of verb prediction errors is solely
determined by the conditional probability of an upcoming
verb given the veridical representation of the pre-verbal in-
put. The model draws its assumptions from the surprisal
theory (Levy, 2008a; Hale, 2001). The second model —
the memory interference model— assumes that case simi-
larity causes representation degradation of the nouns mak-
ing them less accessible in memory, and these less accessi-
ble nouns generate weaker/noisier predictions. The other two
models — the lossy-context surprisal models — assume that
when the nouns are stored in memory, the case markers are
deleted/inserted at constant rates causing the comprehender
to regress to most probable pre-verbal input. This leads to
faulty predictions of the verb. We find that the lossy-context
model whose information loss function was estimated empir-
ically shows the best predictive performance among the mod-
els considered here. However, this model was not distinguish-
able in its performance from the memory interference model
that assumed representation degradation of nouns causes im-
precise predictions. Overall, the results suggest that predic-
tion during sentence comprehension is constrained by proba-
bilistic distortion of representations stored in memory.

We first present the four models of verb prediction. Next,
we quantify the predictive performance of the models using
data from a sentence completion experiment in Hindi. We
then discuss the broader implications and conclude.
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Computational models of verb prediction

We implement four models of verb prediction that differ in
their assumptions about how working memory constraints af-
fect the prediction of the upcoming linguistic items. The first
model is the null hypothesis model and assumes no explicit
effect of working memory constraints on prediction. The sec-
ond model assumes that working memory constraints cause
encoding interference when similar case-marked nouns are
stored in memory, which in, turn affects the quality of pre-
diction. The remaining two models assume that actual pre-
verbal input distorts to a lossy representation such that cer-
tain case markers are deleted or exchanged probabilistically
and these lossy representations and the prior linguistic knowl-
edge is used by the comprehender to make potentially faulty
predictions. We specify the assumptions and prior predictions
of these four models for the following set of pre-verbal input
sentences in Hindi.

(1) a. ruchi-ko
Ruchi-ACC

sumit-ne
Sumit-ERG

priya-ko
Priya-ACC

. . .

. . .

b. ruchi-se
Ruchi-ABL

sumit-ne
Sumit-ERG

priya-se
Priya-ABL

. . .

. . .

c. ruchi-ko
Ruchi-ACC

sumit-ne
Sumit-ERG

priya-se
Priya-ABL

. . .

. . .

In the above example, conditions (1a) and (1b) are the case
interference conditions, where two of the nouns posses simi-
lar case markers while condition (1c) is no interference condi-
tion. We collect sentence completion data for the conditions
(1a –c) and compare the performance of the four models on
the observed rate of grammatical verb completions in each
condition.1

The surprisal model

The surprisal model (Levy, 2008a; Hale, 2001) assumes that
given a sentential context say words w1,w2,wn�1, the proba-
bility of encountering an upcoming word, say wn j, is assigned
by a distribution of conditional probabilities over all possible
continuations given the input w1,w2, ...,wn�1.

wn j ⇠ p(wn|w1,w2, ...,wn�1) (1)

For the contexts (1a – c), the conditional probability of see-
ing a non-finite verb or a causative verb can be derived from
the corpus. The rate of grammatical verb completions in con-
dition (1a) and (1b) will be given by the conditional proba-
bility of seeing a non-finite verb completion, and in condition
(1c), it will be given by the sum of conditional probabilities
of seeing the non-finite verb and the causative verb. As the
conditional probabilities for the surprisal model are computed
from a corpus of grammatical sentences, the rate of gram-
matical verb continuations in all these sentences are close to
1. Thus, effectively the surprial model predicts no difference
between the three conditions (1a), (1b) and (1c).

1Here, the label ACC means Accusative case marker, the label
ERG means the Ergative case marker, and ABL means the Ablative
case maker.

The memory interference model

The model assumes that encoding interference —the interfer-
ence due to nouns with similar features stored in memory—
adversely affects the prediction of the upcoming linguistic in-
put. We implement this assumption using a simple memory
interference model based on the feature overwriting theory of
(Oberauer & Kliegl, 2006). The model assumes that

• A noun stored in memory maintains a degree of represen-
tation/accessibility determined by the number of feature
units it shares with other pre-verbal nouns. As the number
of shared feature units increases, the representation degra-
dation increases.

• The representation quality of the pre-verbal noun deter-
mines the quality of the prediction: The rate of grammat-
ical verb completions is a function of the activation of the
pre-verbal nouns in memory.

The model was implemented as follows. The activation of
a pre-verbal noun (in the feature layer of the memory) is a
function of interference arising from similar features stored
in memory. The activation of the noun i that shares K feature
units with the other nouns is given by:

Ai = (1)� r
K

2n

n�1
(2)

where n is the total number of feature units for the noun i,
r is the rate of feature decay due to overwriting — the larger
the value of r, the higher the representation degradation of the
noun.

The probability of correct (grammatical) verb completions
is a logistic function of the activation of the subject noun Ai,

Pgram =
1

1+ e
� (Ai�a0)

T

(3)

where T is the noise factor that determines how strongly the
noun’s activation level impacts the quality of verb prediction.
As the noise factor T grows larger and larger, the rate of
grammatical continuations goes towards chance-level perfor-
mance.

Figure 1 shows the prior predictions of the model for the
three conditions shown in Example 1. The model predicts a
relatively small rate of grammatical verb continuations in the
case interference conditions 1a and 1b compared to condition
1c.

The lossy-context surprisal models

The lossy-context surprisal model (Futrell, Gibson, & Levy,
2020) assumes that the comprehender has access to only a
non-veridical, lossy representation of actual pre-verbal input
and uses this lossy representation and their prior linguistic
knowledge to make probabilistically faulty predictions about
the upcoming verb. For example, consider the sentence 1a
Ruchi-ko Sumit-ne Priya-ko ..., the input here is

I = N1�ko N2�ne N3�ko . . .
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Figure 1: The mean rate of grammatical completions pre-
dicted by the memory interference model in the three con-
ditions. In conditions (a) and (b), the model predicts lesser
grammatical completions due to interference arising from ko
and se markers respectively.

where N represents a noun, �ko represents an accusative
marker, and �ne represents an ergative marker in Hindi.

The input I gets distorted to a possible memory represen-
tation ri such that the first noun gets deleted with probability
d or the case marker on the first noun gets exchanged with an
ablative case marker with probability e.2

The following memory representations are possible,
r1 = N1�ko N2�ne N3�ko

r2 = N2�ne N3�ko

r3 = N1�se N2�ne N3�ko

The model further assumes that the comprehender re-
constructs a set of possible, true pre-verbal contexts from
their memory representation ri based on their prior linguis-
tic knowledge and their uncertainty about the degree of in-
formation loss in the system. We can derive the condi-
tional probability of producing a grammatical verb comple-
tion P(Vgram|ri) by marginalizing out all possible true con-
texts c1,c2, ...,cn

P(Vgram|ri) =
n

Â
j=1

P(Vgram|c j)P(c j|ri) (4)

where P(Vgram|c j) is the conditional probability of seeing the
verb given a possible true context c j. We can derive the prob-
ability P(c j|ri) up to proportionality using Bayes’ rule,

P(c j|ri) µ L(c j|ri)P(c j) (5)

where P(c j) represents the prior probability of seeing the rep-
resentation c j in the corpus, and L(c j|ri) is the likelihood of
obtaining the memory representation ri from a possible true
representation c j.

2The other representations are possible due to case deletions and
insertions. For example, the case marker on the first noun can get
deleted probabilistically. However, such representations are very un-
likely (ungrammatical) to occur in Hindi. Therefore, we ignore them
for simplicity and well-constrained model specifications for now.

Based on equations 4 and 5, we can rewrite the conditional
probability of seeing a grammatical verb completion as

P(Vgram|ri) µ
n

Â
j=1

P(Vgram|c j)L(ri|c j)P(c j) (6)

The likelihood function L(c j|ri) is called the lossy memory
encoding function: the likelihood that a true representation c j

gets distorted to memory representation ri given a deletion
rate d and case exchange rate e.3

ri|c j ⇠ Memory(d,e) (7)

where Memory(d,a) is the lossy memory encoding function,
d is the rate of deleting the first noun, and e is the rate of
exchanging the case marker on the first noun.

We implement two versions of the lossy-context surprisal
model that differ in their assumptions about the lossy memory
encoding function:

1. Deletion error model: The model assumes that the input
can distort to a memory representation such that the first
noun gets deleted with a probability d (deletion error). The
exchange error rate e is assumed to be zero in this model.
For example, when the comprehender stores the input N1�
ko N1�ne N1� ko... in memory, the noun N1i-ko can get
deleted in some trials to produce N1�ne N1� ko....

2. Deletion-and-exchange-error model: The model as-
sumes that the input can distort to a memory representa-
tion such that the first noun gets deleted with a probability
d (deletion error) and the case marker on the first noun can
get changed to another case marker with probability e (case
exchange error). For example, in the input N1�ko N1�ne

N1 � ko..., the ko marker on the first noun can change
to se marker in some trials to produce N1 � se N1 � ne

N1� ko....

Do we have any experimental evidence that both the noun
deletion errors and the case exchange errors occur in these
sentences? The above implementation of the model allows a
relatively high modeler’s degree of freedom. A principled
way will be to estimate the nature of the information loss
function experimentally. For example, we can experimentally
estimate whether both deletion and case exchange occur or
only one of them does.

We did a rating study to estimate to rates of deletion and
exchange error rates. The participants were asked to rate sen-
tences like A–C shown in Table 1. Among these sentences,
A and B can be treated as grammatical after a noun dele-
tion error or a case exchange error, and sentence C cannot be-
come grammatical due to such information loss mechanisms.

3The same memory function also underlies P(ri|I): the proba-
bility of generating a memory representation ri from the observed
linguistic input I. The function P(ri|I) represents the experimenter’s
uncertainty about the memory representation formed by the com-
prehender and the function L(ri|c j) represents the comprehender’s
uncertainty about the true intended input.
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The sentences were presented word-by-word and participants
were asked to judge the acceptability of the sentence (on a 1-
100 scale) after the last word disappeared. If the participants
make noun deletion and case exchange errors, sentences A
and B should get higher acceptability ratings than sentence C.
Moreover, if deletion error rates are higher than the exchange
error rates, sentence A should get the highest acceptability
ratings.

The acceptability rating results are shown in Table 2. We
observe that the deletion and exchange errors do occur as the
ratings of A and B are significantly higher than the C. And,
the rate of noun deletion and case exchange errors is approx-
imately the same ( 27-29% acceptability in B and C). We use
these ratings to estimate the rate of deletion and exchange er-
rors. For example, the deletion error rate can be estimated
as the rating of sentence A minus the rating of baseline un-
grammatical sentence C divided by the rating scale (100) and
so on. This is an approximate and indirect measure of error
rates under the assumption that sentences A and B are per-
ceived more grammatical compared to C due to a correspond-
ing rate of deletion and exchange errors in these sentences.
The empirically estimated error rates suggest that the second
lossy model that assumes both deletion and exchange errors
is a better approximation of the underlying memory encoding
function.

We specify the following priors on the deletion rate d and
the exchange error rate e informed by their empirical esti-
mates:

d ⇠ Normallb=0.1,ub=0.5(0,0.2) (8)

e ⇠ Normallb=0.1,ub=0.5(0,0.2) (9)

where lb = 0.1 is the lower bound on the deletion rate and
exchange rate values. The parameters a and e represent the
rate of information loss when the linguistic input is stored in
memory.

Table 1: Sample items for the ‘ko ne ko’ prefix conditions
in the acceptability experiments. Note: the items in condi-
tion A can be treated as grammatical if the light gray ele-
ment (N1-ko) is ignored. Similarly, the items in condition
B can be treated as grammatical only if the light gray col-
ored element (ko) is treated as a se; otherwise these items
are ungrammatical. Condition C is the baseline condition
and cannot be made grammatical through the mechanisms
stated above. ne=Ergative case-marker, ko=Accusative case-
marker, se=Ablative case-marker.

Condition Sample item

A (N1 deletion) N1-ko N2-ne N3-ko kitaab padhne ko kaha
‘asked to read the book’

B (N1 case-exchange) N1-ko-se N2-ne N3-ko kitaab lene ko kaha
‘asked to take the book’

C (Inherently ungrammatical) N1-ko N2-ne N3-se so gaya
‘slept’

Table 2: The acceptability rating (on a scale of 1� 100) of
ungrammatical sentences of type A, B, and C, where A are
the sentences that become grammatical if the first noun is
deleted, B are the sentences that become grammatical if the
case marker on the first noun changes to another marker, and
C sentences are inherently ungrammatical.

Acceptability

Condition rating

A First noun deletion can make it grammatical 29.8 (sd=5.8)
B Case exchange on the first noun can make it grammatical 26.6 (sd=5.2)
C Baseline ungrammatical 6.1 (sd=3.4)
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(2) The deletion-and-exchange-error model
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Figure 2: The mean rate of grammatical completions pre-
dicted by the lossy-context models, the deletion-only error
model and the deletion as well as case exchange error model.
In conditions (a) and (b), the deletion-and-exchange error
model predicts lesser grammatical completions due to inter-
ference arising from ko and se markers respectively.
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Figure 2 shows the prior predictions of the two lossy-
context models. The deletion error model predicts that the
rate of grammatical completion is slightly low in all three
conditions but there is no considerable difference across the
conditions. The deletion-and-exchange error model predicts
the rate of grammatical completion is considerably lower in
conditions (a) and (b) where the nouns share a case marking
feature compared to condition (c).

Model comparison

We compare the predictive performance of the above four
models of verb prediction using data from a sentence comple-
tion study in Hindi. First, I describe the sentence completion
task and the data and then show the quantitative evaluation of
the completing models.

Data

We did a sentence completion study (Taylor, 1953), where
incomplete items described in (2) were displayed on a com-
puter screen using the centered self-paced reading paradigm.
The participants were instructed to complete the sentences to
make them meaningful. The sentences comprised of three
nouns with three case markers depending on the condition,
which could be ne (Ergative case), se (Ablative/Instrumental
case), or ko (Accusative case). The first and the third nouns
possessed identical features (+animate, +female) in condi-
tions (a) and (b). We used three combinations of case mark-
ers: (a) N1-ko N2-ne N3-ko, (b) N1-se N2-ne N3-se, and (c)
N1-ko N2-ne N3-se. 12 items were prepared for each case-
marker combination; 36 native speakers of Hindi participated
in this experiment.

(2) a. N1-ko N2-ne N3-ko

ruchi-ko
Ruchi-ACC

sumit-ne
Sumit-ERG

priya-ko
Priya-ACC

. . .

. . .

b. N1-se N2-ne N3-se

ruchi-se
Ruchi-ABL

sumit-ne
Sumit-ERG

priya-se
Priya-ABL

. . .

. . .

c. N1-ko N2-ne N3-se

ruchi-ko
Ruchi-ACC

sumit-ne
Sumit-ERG

priya-se
Priya-ABL

. . .

. . .

We response coded the sentence completions such that all
grammatical completions were coded as ‘1’ and ungrammat-
ical completions as ‘0’. Table 3 shows the rates of grammat-
ical completions across the three conditions. We find that the
grammatical completions for the conditions with similar case
markers, i.e., for conditions (a) and (b), are around 50%. The
condition with distinct case-markers is significantly higher at
75%. A mixed-effect logistic regression analysis shows that
the rate of grammatical completions in condition (c) is signif-
icantly lower than in condition (a) (p<0.0001) and condition
(b) (p<0.0001).

Table 3: The rate of grammatical completions for the three
combinations of case-markers.

Condition Rate of grammatical completions

(a) N1-ko N2-ne N3-ko 0.52
(b) N1-se N2-ne N3-se 0.54
(c) N1-ko N2-ne N3-se 0.75

Quantitative model comparison results

The models were evaluated using leave-one-out cross-
validation on the data from the sentence completion task. We
use the difference of expected log pointwise predictive den-
sities, D del pd, measure to assess the relative predictive accu-
racy of the models. The higher the D del pd for two models, the
larger the difference between their predictive performances.
We find the following key results:

1. All models that assume representation degrada-
tion/distortion of the pre-verbal input perform considerably
better than the surprisal model, which assumes no effect
of memory constraints on prediction (all D del pd > 300).

2. The best predictive performance is shown by the lossy-
context surprisal model that assumes both deletion and case
exchange errors ( del pd =�836,SE = 10.8).

3. The memory interference model is comparable to the
lossy-context surprisal model that assumes both deletion
and case exchange errors (D del pd = 1.5(SE = 2.2)).

4. The memory interference model shows superior perfor-
mance compared to the lossy-context surprisal model that
assumes only the noun deletion errors. (D del pd = 5.7(SE =
2.1)).

The results suggest that the verb completion data can be
explained by either – (i) a memory interference model of

verb prediction which assumes that the representation of the
nouns with similar case marking degrades in memory due
to a feature overwriting process; these less accessible nouns
cause difficulty in predicting the correct verb continuations;
or (ii) a lossy-context surprisal model which assumes that
pre-verbal nouns stored in memory undergo distortions due
to deletion and case exchange errors, consequently, produc-
ing faulty predictions of the verb. Taken together, the results
indicate that probabilistic distortion of the pre-verbal input
stored in memory constrains the prediction of the upcoming
verb.

The reason behind the inferior performance of the deletion-
error-only model is that the first noun deletion errors produce
locally coherent structures that have large prior probabilities
in all three conditions. These non-veridical memory repre-
sentations containing two marked nouns will predict transi-
tive verbs which are equally ungrammatical continuations for
all three conditions. Thus, the model with the deletion error
noise ignores the possibility of any specific error due to case
interference in conditions (a) and (b).
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In contrast, the presence of case exchange errors predicts
a special cost in interference conditions. For example, in
condition (a), the ko marker on the first noun can change
to se marker with a probability e. In these cases, this non-
veridical memory representation has a higher prior probabil-
ity and will predict either a causative verb or a non-finite verb.
Since causative verbs are not compatible with the actual con-
text in conditions (a) and (b), we get a large number of un-
grammatical continuations, compared to condition (c) where
causative verbs are compatible with the context. Importantly,
noun deletion errors are necessary to explain the low rate of
grammatical continuations in all three conditions. Hence, a
lossy-context surprisal model that assumes both noun dele-
tion errors and case exchange errors best explains the data.

Overall, these modeling results support the hypothesis that
memory-based constraints, more specifically representation
distortion of the linguistic input, affect the prediction of the
upcoming linguistic material in verb-final languages.

Discussion

Is the prediction of the upcoming sentence material affected
by working memory constraints on the maintenance of the
previous context? To answer this question, we implemented
four models of verb prediction, the suprisal model, the mem-
ory interference model, and two lossy-context suprisal mod-
els. The surprisal model implements the null hypothesis that
the prediction of the verb is only constrained by its statis-
tical co-occurrence with the pre-verbal context and there is
no explicit influence of working memory on prediction. The
memory interference model assumes that pre-verbal nouns
with similar features are difficult to encode and maintain in
memory which in turn affects the quality of prediction of the
upcoming verb. Finally, the lossy-context surprisal models
assume that the pre-verbal input distorts to a lossy represen-
tation due to working memory constraints such that certain
nouns and case markers are deleted or exchanged at constant
rates. The comprehender uses a lossy memory representation
of the actual context and their prior linguistic knowledge to
make predictions about the upcoming verb. The models were
evaluated on sentence completion data from Hindi, a verb-
final language.

The model comparison revealed two key insights: (i) The
assumption that the pre-verbal input undergoes probabilistic
representation degradation is necessary to explain the verb
prediction data, as all the models under this assumption per-
formed better than the null hypothesis model, which assumed
no distortion of the pre-verbal input; and (ii) The distortion of
the pre-verbal input occurs either due to deletion and inser-
tion of features or due to a feature overwriting process when
nouns share certain features during encoding.

The results indicate that prediction is affected by work-
ing memory constraints: When a sentential context is tem-
porarily stored in memory, it undergoes probabilistic repre-
sentation distortion due to working memory limitations, and
consequently, it generates faulty predictions of the upcom-

ing sentence material. The results are important for theories
of sentence processing because they conclusively show that
prediction —which is viewed as an important factor in the
comprehension process— is constrained by working memory
limitation. As the working memory load increases on tem-
porarily stored linguistic input, the prediction of upcoming
linguistic items becomes noisier and faulty. For comprehen-
sion in verb-final languages, where prediction is argued to be
a central processing strategy, the results imply that prediction
of the verb is robust and useful only when the pre-verbal is
simple. A complex pre-verbal input is more likely to distort
to a non-veridical representation in memory causing faulty
prediction of the upcoming verb.

Another major implication is for studies that invoke pre-
diction as an explanation in contrast to the working memory
explanation. For example, the anti-locality effects —where
an increase in the number of pre-verbal modifiers causes pro-
cessing facilitation at the verb— observed in verb-final lan-
guages are explained by prediction-based accounts; the pre-
diction of verb gets better with increased pre-verbal material
leading to facilitation at the verb (Konieczny, 2000; Vasishth
& Lewis, 2006; Husain et al., 2014). The prediction ex-
planation is often invoked in contrast to the working mem-
ory explanation, e.g., strong predictive expectations in verb-
final languages override certain working memory constraints
(Husain et al., 2014). However, our results show that pre-
diction is not independent of working memory constraints; in
fact, it is drastically influenced by working memory.

Finally, this study lays a framework for systematic eval-
uation of the lossy-context theories of sentence processing
(Futrell et al., 2020; Levy, 2008b). The lossy-context models
typically allow a lot of modeler’s degree of freedom in spec-
ifying the lossy memory encoding function. For example,
the framework allows to freely assume which kind of errors
cause the information loss and which types of words or mor-
phemes are lost or changed with time. As a consequence, the
model is allowed to generate unconstrained predictions for a
given comprehension task. To constrain model predictions,
the memory encoding function must be restricted in its as-
sumptions. A systematic way to achieve this is to estimate
what kind of memory encoding errors do occur during com-
prehension. Our work is the first attempt to empirically es-
timate the nature of the lossy encoding function and to use
these estimates to constrain the model predictions.

The current work reveals new insights about the top-down
predictive processes during sentence comprehension: The
prediction of the upcoming sentence material is modulated
by probabilistic distortion of the previous linguistic context
stored in memory. To our knowledge, this is the first empiri-
cal study that shows that prediction is constrained by working
memory limitations. Our work contributes to understanding
how working memory constraints and predictive processes in-
teract and how these two factors can be integrated to build a
unified theory of sentence processing.
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