Morgan, J. H.,

improving

© The Author 2013. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.

Advance Access publication on 6 February 2013

For Permissions, please email: journals.permissions @oup.com
doi:10.1093/iwc/iws014

A Design, Tests and Considerations for
Improving Keystroke and Mouse
Loggers

JONATHAN H. MORGAN', CHEN-YANG CHENG?, CHRISTOPHER PIKE® AND
FrANK E. RITTER!"

YCollege of Information Sciences and Technology, Penn State, University Park, PA 16802, USA
2Department of Industrial Engineering and Enterprise Information, Tunghai University, R.0.C
3Appl.ied Research Lab, Penn State, University Park, PA 16802, USA

*Corresponding author: frank.ritter @ psu.edu

We start by reviewing several logging tools. We then report improvements to a keystroke logger we
have developed for the Mac and PC, Recording User Input (RUI). These improvements include
changes to its interface, increased accuracy and extensions to its logging ability. RUI runs in
the background recording user behavior with timestamps and mouse location data across all
applications—thus avoiding problems associated with video logs and instrumenting individual
applications. We provide a summary and comparison of tests for loggers and present procedures
for validating logger timing that quantifies timing accuracy using an external clock. We demonstrate
these tests on RUI and three other applications (Morae, Camtasia and AppMonitor). We conclude by
providing some general specifications and considerations for creating, testing, evaluating and using
keystroke and mouse loggers with respect to different experimental questions and tasks.

STUDY HIGHLIGHTS

e Reviews several interface logging tools.

e Reports improvements to a keystroke logger for the Mac and PC, Recording User Input (RUI), including
increased accuracy and extensions to its logging ability. RUI runs in the background recording user
behavior with timestamps and mouse location data across all applications—thus avoiding problems
associated with video logs and instrumenting individual applications.

e We provide a summary and comparison of tests for loggers and new procedures for validating logger
timing that quantifies timing accuracy using an external clock.

o We demonstrate these tests on RUI and three other applications (Morae, Camtasia and AppMonitor).

e We provide design considerations for choosing and creating loggers.

Keywords: user logs; timing validation, logging tools; keystroke logs; protocol data; sequential data

Editorial Board Member: Andrew Cockburn

Received 15 November 2010, Revised 31 May 2012; Accepted 24 September 2012

1. INTRODUCTION

Obtaining and validating accurate timing for computer users
has arguably become more difficult over time as operating
systems have become more complex (De Clercq et al., 2003;
Myors, 1999). Naturalistic studies of computer use and
human—computer interaction (HCI) studies, nevertheless, often
require accurate logging of keystrokes and mouse movements

(Ritter et al., 2013; also see Held et al. 1999 and Leijten and Van
Waes 2006 for nice examples). Consequently, there is a wide
variety of testing environments but few general logging tools.
In this report, we start by reviewing several logging tools.
We then report improvements to a keystroke logger we have
developed, RUI. These improvements include changes to its
interface, increased accuracy and extensions to its logging
ability. We provide a summary and comparison of tests for

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

Cheng, C.-Y,, Pike, C., & Ritter,

keystroke and mouse loggers. Interacting

F. E.

with Computers,

(2013). and considerations

242-258.

A design,
25(3),

tests,

for

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

ritter
Text Box
Morgan, J. H., Cheng, C.-Y., Pike, C., & Ritter, F. E. (2013). A design, tests, and considerations for
improving keystroke and mouse loggers. Interacting with Computers, 25(3), 242-258.

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 243

loggers and new procedures for validating logger’s timing
that quantifies timing accuracy using an external clock. We
demonstrate these tests on RUI and three other applications
(Morae, Camtasia and AppMonitor). We then examine these
applications with respect to these tests. We provide some general
specifications and some considerations for creating, testing,
evaluating and using keystroke and mouse loggers with respect
to different experimental questions and tasks.

2. REVIEW OF KEYSTROKE LOGGERS

Researchers recording behavior on computer interfaces for later
analysis (e.g. Latif, 2008; Patton and Gray, 2010) confront
several challenges. Existing solutions are either not general or
limited in some way. For example, video recording methods
will provide a record of working with nearly any interface, but
they are cumbersome to use and their sampling rates (typically
24 times per second) are insufficient for measuring many of the
smaller effects required by HCI's and psychology’s paradigms,
as noted by Plant et al. (2002, 2004) and Alexander ef al.
(2008).! In addition, as Alexander et al. (2008) point out, video
logs are vulnerable to interpretation errors when analyzing
complex sequences or logic events (such as menu selection)
because they depend upon the analyst’s contextual knowledge.

When possible, direct instrumentation of the interface or task
is quite useful because it allows analysts to specify and record
the data necessary for their research in vivo. Many commercial
applications, however, are designed to resist instrumentation for
proprietary reasons.

Recording behavior with timing information directly from
a keyboard or keypad using hardware dongles is another
way forward (e.g. St. Amant er al., 2007). Dongles such as
KeyDemon USB and KeyDemon PS2? are available to record
keystrokes, but timing information at the millisecond level is just
now being introduced in these commercially available solutions.
Hardware approaches are typically very accurate; however,
collecting data from these sources does pose some challenges,
particularly for naturalistic or large geographically distributed
HCI studies.

Where indirect instrumentation is possible, such as modifying
a library that is used by many applications, it provides a
useful and flexible solution. AppMonitor (Alexander ef al.,
2008) provides yet another alternative, a light-weight client-
side logger for Windows machines. AppMonitor records not
only low-level actions but also the interface semantics of actions
where these are defined. Like Alexander et al., we advocate
the use of client-side loggers to capture user behavior not only

Video sampling rates constrain not only the ability to log user activity but
also to validate it. Audio tests (with a sampling rate of approximately 8000
samples/s when compared with a sampling rate of 24 samples/s for video)
provide a powerful alternative.

2These and other examples of hardware solutions can be found at
www.keelog.com, while more current examples can be found by searching the
Internet.

because, as they have persuasively shown, such loggers can
effectively capture interface-related semantic content, but also
because their relatively small footprint makes them resistant to
rate errors and time stealing.

We can note several software loggers in addition to
RUL? including AppMonitor, Camtasia,* Inputlog.” Morae,
MouseTracker® and DirectRT.” While these are all software
solutions, it is useful to distinguish between task-oriented
collection tools and stimulus presentation tools. The first
category is primarily suited for data exploration and testing in
naturalistic settings; the second for experiment development and
hypothesis testing in lab settings. What primarily distinguishes
these two groups is the degree of experimental control allowed
by the tool upon the user environment.

The first group (e.g. RUI, AppMonitor, Camtasia and Input-
log) provide little or no experimental control. RUI, AppMoni-
tor and Camtasia require initialization, while Inputlog requires
users to select their recording preferences and identify the test-
ing session. These tools are best suited for generally unstruc-
tured task environments, where investigators are primarily inter-
ested in identifying key features of the task or activity as users,
computer user models or robots experience it. In these instances,
investigators may not yet have a strong theory regarding the
behaviors in question but rather are performing exploratory
analysis. Loggers, such as Morae, represent an intermediary
position, as they do not structure the user’s task environment
but do depend on external recording equipment in a HCI lab
setting.

The second group (e.g. MouseTracker, DirectRT, ePrime and
perhaps Inquisit) allow experimenters to both structure and
record activity using both stimulus presentations and analysis
tools, providing them a high degree of experimental control.
They, however, require experimenters to specify where and
when the experimental stimuli occur, making them excellent
for psychological studies of low-level stimuli but unsuitable
for many naturalistic HCI or human-robot interaction (HRI)
experiments.

We, here, are primarily concerned with task-oriented HCI
and HRI tools and their validation. We thus limit our focus to
two RUI platforms (Mac RUI and PC RUI), Morae, Camtasia
and AppMonitor, as these have all been used in HCI or HRI

3Since starting this project, we have also found out about Fastlog by De
Clercq (users.ugent.be/~adeclerc/fastlog) and Inquisit by Millisecond software
(www.millisecond.com). Interested readers may wish to examine them as well.

4Camtasia and Morae are available at www.techsmith.com/morae.asp and
www.techsmith.com/camtasia.asp.

5[nputlog is primarily used in writing research (e.g. Leitjen and Van Waes
2006; Sullivan and Lindgren, 2006; Van Waes et al., 2011), and is available at
www.inputlog.net/.

SMouseTracker (Freeman and Ambady, 2010) supports the spatial analysis,
raw time analysis and distributional analysis of mouse movements (but not
keystrokes), and is available at mousetracker.jbfreeman.net.

"DirectRT is an experimental suite designed to help design and run
cognitive and perceptual experiments, and is available at www.empirisoft.
com/directrt.aspx.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

244 J.H. MORGAN et al.

experiments. We first introduce Mac RUI and PC RUI as
examples of a HCI/HRI logger. We then describe a comparative
study of these loggers using five tests. We next discuss this study
and our tests before addressing validation challenges and related
risks associated with HCI and HRI loggers more generally. We
conclude by providing a general specification for HCI and HRI
loggers that arise from our experiences running HCI and HRI
studies and designing HCI/HRI tools.

Before describing RUI or our tests in detail, a general
introduction of our tested applications is in order. We begin
with RUIL. RUI is a pair of keystroke loggers that captures
user behavior for the Mac and PC operating systems (Kukreja
et al., 2007). We also examine two TechSmith applications,
Morae, a usability testing package, and Camtasia, a recording
and presentation tool. Though Camtasia is primarily used
to record on-screen activity for making presentations and
tutorials, its prevalence and accessibility have made it a popular
alternative for recording user behavior. Finally, AppMonitor is
a HCI logger, specializing in the capture of semantic content
by recording the movement between and manipulation of
foreground and background applications.

3. RUIL: RECORDING USER INPUT

In their initial work on RUI, Kukreja ef al. (2007) provided a
general keystroke logger that worked on two major operating
systems, Mac OS X (Mac RUI 1.0) and Windows (PC RUI 1.0).
We briefly describe these versions, our revisions to them and
some studies using them.

3.1. Mac RUI 2.0

Mac RUI 2.0 (January 2012) is a keystroke and mouse action
logger implemented in the Carbon framework for Mac OS X.
Users can record keystrokes, mouse clicks and mouse move-
ments, or any combination thereof. Logs, as noted in Table I,
include a header and a timestamp since log start, action
and argument (such as keys pressed or move locations) for
keystrokes, mouse clicks and mouse movements in a tab delim-
ited file. In Table 1, the user moves the mouse, clicks and then
types, “Hello”.

3.2. PCRUI2.04

Written in the .Net framework using C#, the latest version of
RUI for the PC platform, 2.04 (April 2012), records events
more accurately than its predecessor (Kukreja et al., 2007) by
generating a filewriting object from a list at the end of each
recorded session and thus enabling it to smoothly capture events
by generating a filewriting object to smoothly capture events
across all Windows application at the end of each recorded
session. PC RUT 2.04 supports both HH:MM:SS and decimal
time logging; it also collects summary statistics from the log

Table 1. An example log file from Mac RUI 2.0.

Subject ID C:\Documents and Settings\Desktop Test 3.txt

File Created: 11/25/2009 03:56:00 PM
Elapsed [s] Action X Y
0 Moved 275 605
7.322 Moved 276 605
7.486 Moved 278 605
7.655 Pressed Left
7.827 Released Left
8.486 KEY SHIFT + H
8.661 KEY e
8.994 KEY 1
9.159 KEY |
9.319 KEY 0
12.662 Moved 715 782
Table 2. An example log file from PC RUI 2.04.
Subject ID: C:\Documents and Settings\Desktop\ Test 4.txt
File Created: 10/26/2011 6:00:01 PM
Version: 2.04
Released: 07/20/2011
Elapsed Time [s]: Action X Y
0.390 Moved 1279 504
0.406 Moved 1278 504
1.468 Pressed Left
1.703 Key LShiftKey
1.828 Key H Shift
1.921 Key e
2.031 Key l
2.125 Key 1
2.296 Key o
2.421 Key OemPeriod
2.515 Pressed Right
2.640 Key D1

file regarding keystrokes, mouse clicks, distances moved and
times.® We provide a very short example log in Table 2.

We also expanded the PC platform’s logging capabilities by
providing new runtime features such as the ability to note task
changes using a task hierarchy, and the option to perform the
NASA Task Load Index (TLX) test. The NASA TLX (Hart and
Staveland, 1988) is a commonly used measure of workload. The
workload factors assessed are: mental, physical and temporal
demands; performance; effort; and frustration. A user completes
a ratings assessment for each task, as well as weighting each
factor. Taking ratings with RUI provides a convenient way to
record workload and ties these measures to keystroke and mouse

8Distance is the movement by the mouse pointer in pixels, while the time is
elapsed time from the initialization of the logger in seconds, unless otherwise
specified by the user.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 245

click times by putting them in the log. The code to take the TLX
measures adds about 80 KB to RUI’s footprint.

3.3. Previous uses of RUI

RUT’s multiple platforms and timing resolution has proved a
useful tool for a range of HCI and HRI studies. Since its release,
RUT has been used by us and others in HCI and cognition studies.
Ritter et al. (2007) used PC RUI to log human and agent data for
simple robot teleoperation tasks. Their work developed theories
of HRI design and implementation, tested an ACT-R cognitive
model and demonstrated that a low-level cognitive user model
could interact directly with an HRI interface to provide behavior
predictions. These log files provided timestamps for mouse
movements and keystrokes that were then compared with
model predictions. Friedrich (2008) used Mac RUI to examine
problem-solving strategies, while Kim and Ritter (2007) and
Paik (2011) used Mac RUI to study learning and retention.
From this work, Kim developed cognitive task models that
predict comparative retention rates of participants performing
procedural tasks using keystroke commands versus using a GUI.
In both cases, mouse movements and keystrokes were used to
infer process within a task, with the total task time being derived
from the logs.

Hurst et al. (2007) used RUI to implement a pseudo-
haptic technique for improving user interfaces for physically
challenged populations. This tool uses RUI to capture where
users click on the screen (using the (x, y) locations recorded in
the log) to make the target areas bigger and more predictable. In
an unpublished study, another group has used PC RUI 2.04 to
record users and identify them for a cybersecurity application.
Here, the relative timing between keystrokes was used. Drawing
upon these and other experiences with RUI, we have revised
both existing RUI versions, including versions that anonymize
personal information while retaining data that ASCI keys were
pressed.

4. TESTS AND STANDARDS FOR HCI AND HRI
KEYSTROKE LOGGERS

We now discuss a comparative study of RUI's two platforms,
two commercial keystroke loggers (Morae and Camtasia) and
AppMonitor (Alexander et al., 2008). Table 3 summarizes
the tests and standards applied to each application. The table
organizes the rest of this section, because in each subsection we
describe the rational of each test or standard, the method used
and the test results for each application.

This table generalizes the tests we used to develop RUI
(Kukreja ef al, 2007), as well as introducing tests used
in the development of later versions of RUI and for other
loggers. Table 3 begins to note important characteristics for
these instruments—that they are reliable and robust against
external disturbances (although defining all disturbances is

Table 3. Tests and standards for HCI and HRI keystroke loggers.

(1) No zero interkeystroke timings

(2) A gamma distribution of interkeystroke times

(3) A narrow distribution of mouse position logging times for fixed
logging times that is comparable to the requested sample rate

(4) Comparison of logs with an external clock

(5) Low temporal drift over multiple days

difficult) and load requirements, have (where necessary) small
or well-understood biases, possess adequate precision to see
effects of interest, and lead to replicable and thus relatable
results. This list is not exhaustive, in that as a logger is used
in new ways further criteria and further artifacts are often
identified. The list should be useful already, in that it provides
a means of differentiating loggers. We next discuss each of
these.

4.1. No zero interkeystroke timings

Except for a few unique and identifiable key combinations
(e.g. CTRL, ALT, DEL), few or no zero interkeystroke time
events should be present in the test data. A 0 ms interkeystroke
timing event arises when two keystrokes have been logged
simultaneously, indicating that either a batching error has
occurred (two keypresses processed at the same time that
were not pressed at the same time) or that the user has, in
fact, pressed two keys essentially simultaneously. In previous
validation studies (e.g. Ritter and Wood, 2002), loggers under
a high enough load often failed this test when ran on multi-user
systems. The analyst can differentiate between these two cases
by examining the logs. The first case, the presence of batching
errors, constitutes a fundamental but frequently correctable
development error.

We have found O ms timings for mouse movement events.
In these instances, the mouse appears to send two locations in
the same sample period. This appears to be due to the mouse
hardware sending two locations, in order, within its same cycle
period. To test this, we examined naturally generated logs,
discussed in the next section.

4.1.1. Method

Materials and participants. The participants (n = 6) for this
test and the other tests were from a sample of convenience
(colleagues not affiliated with the project). We recorded
keystrokes and mouse clicks using a MacBook Pro 3.1 running
Mac OS X v. 10.4.11 to test Mac RUI 1.0; and a Windows PC
on a Dell Intel® Core™ 2 CPU to test PC RUI 2.04, Morae
3.0, Camtasia Studio 6, AppMonitor 1.2.1. We performed all
keystroke and mouse trials reported here using a Logitech
USB keyboard” and Logitech laser mouse, respectively. We
did, however, also use the keyboards and mice accompanying

9The USB polling rate is 125 Hz, introducing an average delay of 4 ms
between the execution of a keystroke and its acknowledgement by the OS.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

246 J.H. MORGAN et al.

each system during the pilot testing of the external clock test
to confirm that the audio waveforms of keystrokes and mice
do not vary significantly with respect to the physical hardware
employed for the test. In later tests, we note changes to this basic
setup and any additional apparatus if used.

Procedure. The participants were logged over three 30 min
trials over the course of 2 days for Mac RUI, PC RUI, Morae and
AppMonitor. In each trial, we used unordered combinations of
the ASCII (a-zA-Z1-0, symbols) keys, modifier keys, mouse
clicks and mouse movements. We were unable to perform
the test for Camtasia because it records events into a WAV movie
file; we could only compare automatically generated sounds for
each keystroke or mouse click with physical mouse clicks or
keystrokes we recorded for the external clock test.

4.1.2. Results

For Mac RUI, PC RUI, Morae and AppMonitor, we found no
0 ms interkeystroke timing events for samples of approximately
10000 events for each—the recording of mouse movements
caused the sample totals to differ slightly. Our test of
Camtasia was inconclusive. While we found that each audio
representation corresponded with a physical sound (120
keystrokes), the log lacked the granularity necessary to detect
batching errors.

4.2. A gamma distribution of interkeystroke times

Reaction times typically follow distributions with a single
long right tail because reaction times can never fall below
0. Consequently, distributions such as a gamma distribution
(Luce, 1986; Patton and Gray, 2010; Van Zandt, 2002; Van
Zandt and Ratcliff, 1995), a log-normal (Braun ef al., 2003)
or an ex-Gaussian (Van Zandt, 2002) generally characterize RT
data. The absence of such a distribution suggests that either the
data are not reaction time data or that the logger is not recording
correctly.

4.2.1. Method
We analyzed the data we tested for zero interkeystroke timing
events to determine the distribution of interkeystroke times.

4.2.2. Results

The keystroke times for Mac RUI and PC RUI when fitted
to a gamma distribution exhibited r? values of 0.977 and
0.963, respectively. Figure 1 shows the distribution and fit
for PC RUI. We, however, could not perform this test on
AppMonitor, Camtasia or Morae. For AppMonitor, we could not
replicate a 30 min typing trial because AppMonitor only records
timestamps for two ASCII keys, the Enter key and spacebar. As
in the previous test, Camtasia’s dependence on WAV files made

0.8 ————— —=—Gamma Distribution

0.5—9— ©--RUI Data

E \

OO0 OHOH O B G H OHE O O R OO R B O
0 10 20 30 40

Normalized 50 ms Bins from0to 2 s

Figure 1. Reaction time data: PC RUI 2.04.

this test impossible. As for Morae, its exported logs only provide
timestamps in seconds, making the test meaningless.'”

4.3. A narrow distribution of mouse position logging
times for fixed logging times

Whereas mouse clicks and keystrokes have a definitive stopping
and starting point, mouse movements are a relatively fluid
activity. Defining a meaningful mouse move is a difficult
heuristic that most designers of logging software avoid. Instead,
designers frequently choose to log changes in the mouse’s
position, and thus are obliged to rely upon the default refresh
rate of an event listener (RUI is in this group). Logging so many
events can contribute to memory delays that in turn generate
statistical outliers in the timing data.

If a logger is recording mouse movements properly, the
positions will be logged at a consistent interval (Dasarathy,
1985). This interval represents the update rate of the logger’s
mouse event listener. Loggers frequently use separate event
listeners for recording keystrokes and mouse activity. In either
case, the update rates generally range between 15 and 20ms.
An application’s update rate establishes the limit of its accuracy.
Thus, by examining the distribution of mouse movements
throughout a trial’s time course, one can determine the range of
this interval, and thus have a general sense of an application’s
accuracy in this regard. If the logger uses mouse events (as
opposed to polling), then this test determines if the times are
reasonable (intervals between 15 and 20 ms) and that there are
no artifacts present in the timing data.

4.3.1. Method

To verify the distribution of mouse position logging times, we
conducted three 3 min sessions. We, however, could only obtain
mouse move events for Mac RUT 1.0 (6522 events), PC RUI 2.04
(11336 events) and AppMonitor (12 296 events)—the number
of events varied because each session was a free movement or
scrolling test.

10Using Morae Manger’s ‘Search Results’ window and Audacity, you can
generate by hand a log with ms timing. We did this for the external clock test;
however, this method is prohibitive for tests consisting of more than a couple
hundred events.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 247

10,000

1,000

100

Count

10

Figure 2. Log histogram of times between mouse locations from Mac RUI 1.0 for 5.5 min of moves (N = 6514 data points). Note that the bins

are nonlinear to make small numbers more visible.

Testing AppMonitor required us to scroll the mouse
continuously during the course of the trial because AppMonitor
only records timestamps for mouse move events associated with
scrolling. Thus, while we expect that AppMonitor is accurate,
our claims regarding AppMonitor are weaker because of the
limited nature of the test. We were not able to analyze Morae or
Camtasia in this way. While Morae supports the video playback
of mouse moves, it does not log mouse move events in either its
‘Search Results’ window orinits exportable logs. Camtasia does
not log mouse moves. A mouse could start and stop, creating
long gaps between mouse location recordings. So, in our tests,
we discarded events that had a gap between moves of over
20 ms.

We based our choice of 20 ms on an analysis of mouse move
distribution times across multiple trials. These distributions
were consistent across trials and platforms. Figure 2 shows a
time interval for one such trial. In Fig. 2, the first distribution of
times between mouse locations has a break point at 20 ms, very
close to the expected sampling rate of 18 ms. There are very
few moves above 20 ms. A single pixel movement generates a
mouse event, so above 20 ms per pixel the mouse is moving less
than 50 pixels per second, or about 0.5 inches per second. These
cases, however, are not stressing the logger to pick up times. This
number could be adjusted; the histogram shows that the slower
moves, unless there were many of them, would not change the
logging rate and would, most likely, be indistinguishable from
times between moves.

4.3.2. Results

After adjusting the data as noted, the remaining moves for Mac
RUI (5486 events), PC RUI (9740 events) and AppMonitor
(12290 events) exhibited modal values of 16 ms for Mac RUI
and AppMonitor and 17 ms for PC RUI between logging events.

Thus, the mouse logging behavior was not perfect, but does
appear to neither over nor under sample the mouse move
locations.

4.4. Comparing the keystroke logger’s time with an
external clock

Recording timestamps within multitasking operating systems
introduces complications. Routine synchronization via NTP
servers does nothing to correct low-level, short-term time
stealing (variance in timestamps due to logging processes not
getting their allotment of time, Maclnnes and Taylor, 2001) or
its effects (i.e. rate errors). While built-in time synchronization
programs such as those found in Mac OS 8.5.1 and later, the
prevalence of synchronization and calculation software, and the
growing use of special purpose Window classes has generally
made computer clocks more reliable, there remains a need for
tests that are not only resistant to but also capable of detecting
time stealing. We now describe one such test and its limitations.
(De Clercq et al., 2003 used a more direct, but less available,
hardware-based solution to perform a test like this.)

4.4.1. Camera-based tests: method
We basically used the same approach with only changes to the
apparatus and procedure.

Apparatus. For the external validation, we used a Robic SC-505
5-Lap Memory Stopwatch (accurate to a | ms/day) and a Canon
DVD Camcorder DC220. For the analysis, we used Ace DVD

Audio Extractor®'" and Audacity®."?

1 1www.freedownloudscemer.com/MultimedizLandfGrzlphics!Miscf

Sound_Tools/Ace_DVD_Audio_Extractor.html
12 Audacity 1.2.6, audacity.sourceforge net.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

248 J.H. MORGAN et al.

2.820 2830 2840 2.850 2860 2870

2,880 2890 2.800 2.810 2.920 2.830 284

|
Ch TR ik I‘I!; I
ih
ol I

fiim

Figure 3. Keystrokes in Audacity waveform. Time (x-axis) is in s and volume (y-axis) is in dB.

Procedure. Keystroke and mouse click samples were collected
from each application (Mac RUI 1.0, PC RUI 2.04, Morae 3.0,
Camtasia Studio 6 and AppMonitor 1.2.1) while being recorded
on the camcorder using its internal microphone. For each
application, we compared the audio waveform of the physical
action (e.g. key pressing, mouse clicking or stylus tapping) to
the logger’s output. During each trial, the participant waited
approximately 2 s between each event (keystroke or mouse click
depending on the test) and after every 10 events, moved the
mouse to delineate between sequences of events.'?

We controlled for the bias introduced by sound propagation
by keeping the distance between the camera’s microphone and
the keyboard or mouse less than 6” at any point during the
trial, meaning that the maximum degree of bias introduced by
sound propagation across this distance was approximately a
fixed 4 ms'* (in most cases far less). An offset of 4 ms is within
the variation of 20 ms found with this method. To reduce the
effects of ambient noise, all trials occurred in a quiet room.

Determining the external clock’s rate of drift. For our time
trials, we used a camera capable of writing to DVDs as
our external clock. To validate the camera, we performed
two tests. We ran five trials where we recorded the National
Institute of Standards and Technology’s (www.time.gov/
timezone.cgi?Eastern/d/-5/java) atomic clock for 35 min, the
duration of the camera’s DVDs. From these trials, we derived an
average drift of 1 s per 804 s (the cameralags NIST). We further
substantiated this finding by recording a high-performance
stopwatch for five trials and comparing the results of these trials
with those of the earlier NIST trials. We found that the results
were consistent. Although this difference indicates a small drift
in the camera’s time, we were able to adjust all the subsequent
data to account for this effect. Furthermore, the significance of
the camera drift is mitigated by the fact that we are primarily
interested in the range of the variation of the trial data with
respect to an external clock rather than their absolute values.

13The spacing between keystrokes and mouse clicks ensured a clean audio
waveform while the mouse movement between sequences allowed visually
confirming starting and stopping points. In addition, these periods of mouse
movement allowed observing if any logging errors occurred when shifting
between event types.

HA¢ 20°C, sound travels 343 m/s. Therefore, at a distance of 1.37m
(approximately 4.49ft), there will be a delay of approximately 4 ms.

Analysis. We extracted audio files from the DVD recordings
using the Ace DVD Audio Extractor 1.1.2."5 We then used
Audacity® (1.2.6, audacity.sourceforge.net), an open source
audio editor and recorder, to display the recording’s audio
waveform. Figure 3 is an example of a keystroke waveform.

We verified that each wave was, in fact, a keystroke or mouse
click by using Audacity®’s playback function.'® Once verified,
we determined the time of each keystroke or mouse click by
recording the time of each wave’s crest.!’

Limitations of a camera-based test. Although we have
attempted to create a test based on an external clock, we have
had to suffice ourselves with comparing application logs with
extracted audio files from video recordings. The limitations
imposed by this approach permit us to validate an application’s
accuracy only down to the 20ms level after adjusting for the
biases introduced by the camera’s rate of drift, the distance
between the camera and the keyboard or mouse and the polling
rate delay. Furthermore, we found that interpreting the data
required us to create rather syncopated samples, approximately
1-2 sbetween each keystroke or mouse click. Although we have
done trials with higher frequency inputs, we found that the sound
waveform in these trials was too complex to interpret. Finally,
this method allows us to validate individual keystrokes or mouse
clicks, not specific mouse movements. Verification of mouse
movements is impossible using this method because the analyst
must align the sound of the keystroke or mouse click from the
waveform with the tested application’s log file—mouse moves
do not make sounds. It does, however, provide a test that is not
a binary pass/fail, but rather provides a measure of accuracy.

4.4.2. Camera-based tests: results
Alignment of log files and the external clock. Figure 4 shows an
example of the time course of the alignment of the external clock

15www.freedownloadscemer.com!MultimE:diaiandfGrﬂphics!Misci
Sound_Tools/Ace_DVD_Audio_Extractor.html.

161n longer samples, visual confirmation was necessary. Visual checks
are also useful when differentiating the sample’s starting point from the
application’s activation sequence.

There are multiple wave crests; the maximum of the first burst is used
as the time. Figure 4 has this indicated in Audacity at 2.822s. We found this
pattern to be consistent across varying keyboard and mouse types. Mouse clicks
present a more pronounced but similar pattern. In all cases, the maximum of
waveform has a maximum duration of 3 ms.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 249

90,000

Pk

0,000

70,000

i

el

60,000

50,000

e

)ouse Movement

Mac RUIL 2.0 (ms)

40,000
30,000 /

20,000 //
10,000

2

0 20,000 40,000
Camera (ms)

60,000 80,000 1,00,000

Figure 4. Extracted external clock times vs. Mac RUI 1.0’s recorded times for keystrokes.

20

10

Mause Movement

Time Difference (ras)

. . A .
-10- W \ \/\
-20-

Sequential Actions

Figure 5. Observed differences between RUI (Mac RUI 1.0) and the external clock.

times (x-axis) and the RUI times (y-axis) for 20 keystrokes and
mouse movements for Mac RUI 1.0.

Mac RUI results. The correspondence in Fig. 4 is a straight
line, indicating a one-to-one correspondence between the times
recorded by the external clock and those logged by RUL!®
Figure 5 shows the relative time differences (differences in
the recorded offsets) over the course of 19 keystrokes, or
approximately 1 min of activity. After comparing the times
generated by the external clock to the RUI times, we found
that the difference values vary from —27 to +15ms over the
course of the trial. Most measures are within £20 ms and all are
within =30 ms. Thus, these results indicate that timing of Mac
RUI is not guaranteed at the 1 ms level, as previously claimed

18Mac RUI records both upstrokes and downstrokes, while the other
applications do not. In other applications, we analyzed the downstroke of each
keystroke.

(Kukreja et al., 2007), but 30 ms would be a more appropriate
accuracy. This result, nevertheless, suggests that this approach’s
can provide more tests to 10 ms or perhaps 5 ms resolution—as
we performed these analyses we found that it was difficult to
know the start of the keystroke time within 3 ms because of the
shape of the waveform.

Figure 6 shows the differences for the 20 mouse clicks (39
data points)!? taken from Mac RUI 1.0. We generally find that
the degree of variation for these trials is less than for the typing
trials, perhaps partly because mouse clicks possess a crisper
audio signature, making the data interpretation easier. These
measures show that the external clock generated times and RUI
times appear to differ by —8 to +3 ms over the course of the trial.
Most measures are within =210 ms and all are within 11 ms. As

19Mac RUI records both up and downstrokes, thus the 40 data points. We
used the first event to synchronize the two times. Consequently, this data point
does not appear in Fig. 6.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

250 J.H. MORGAN et al.

4

2'\ A M]
g, i t
@ 10y 115 20 35 40
= .24
E 2 Mouse Movement
g o]
=
w
E™]

-8

=10

Sequential Actions

Figure 6. Observed differences with the external clock for mouse clicks (Mac RUI 1.0).

25

Time Difference (ms)
¥,]

)] 5

204
154
Mouse Movement
10 15 S 20

Sequential Actions

Figure 7. Observed differences between keystrokes (PC RUI 2.04) and the external clock.

in typing trials, the limitations of this approach prohibit us from
certifying Mac RUTI 1.0’s mouse click data at the 1 ms level,
but 20 ms accuracy may be appropriate. The degree of variation
for these trials is less than for the typing trials, perhaps partly
because mouse clicks possess a crisper audio signature, making
the data interpretation easier.

PC RUI 2.04 results. Figure 7 shows the differences between
PC RUI 2.04 and the external clock for 20 keystrokes. These
measures show that the external clock times and RUI times
appear to differ by a range of +21 to —7ms. Again, most
points are within 20 ms. Nevertheless, based on this validation
approach, we cannot guarantee RUI’s timing at the 1 ms level,
but suggest a rating of 30 ms for keystrokes.

Figure 8 shows the differences between PC RUI 2.0 4 and the
external clock for 20 mouse clicks. These measures show that
the external clock times and the RUI times appear to differ by
—12 to +3 ms over the course of the trial. Most measures are

within +10ms and all are within 12 ms. Thus, we suggest PC
RUI is accurate to =20 ms for mouse moves.

Morae 3.0 results. Figure 9 shows that the difference between
the external clock and the times found in Morae Manager’s
Search Results window—these times provide more precision
than Morae’s default logs but are not exportable and cannot
be cut and pasted. For both keystrokes and mouse clicks,
Morae’s exported logs use HH:MM:SS.S format that truncates
the logged times to a tenth of a second. When using these
logs, we could only obtain Morae’s timing to £0.1 s precision.
When recording keystrokes using results from the Search
Results window, the corresponding times varied from —52 to
+22 ms. The alignment between times derived from the external
clock and Morae’s logged times showed no noticeable drift or
noise. These findings suggest that Morae is accurate to 100 ms
(perhaps 60 ms), making it sufficient for most HCI usability
studies.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 251

=2
1

1
[
L

"

Time Difference (ms)
& &

-16

|

[y

[
L

a
Iy

W\ 10 15 20

Mouse Moveme

30

Sequential Actions

Figure 8. Observed differences for mouse clicks (PC RUI 2.04).

204

104

Time Difference (ms)
e
o

j 10 15
Mouse Movement

-30

-40

-50

-60

Sequential Actions
Figure 9. Observed differences for keystrokes (Morae 3.0).

70

[JE
Y
g 50
8 404
8
£ 301
E 20 Mouse Movement
Q 1{].
€w
g o ; - - ‘
SN 5 10 V 15 20

-20

Sequential Actions
Figure 10. Observed differences for mouse clicks (Morae 3.0).

Figure 10 shows the differences between the external clock to differ by —11 to +58 ms over the trial’s time course. These
and log times, recorded by hand, from Morae Manager 3.0’s findings indicate that Morae’s accuracy seems to be consistent
Search Results window, for 20 mouse clicks. These measures across modalities (60 to 100 ms for keystrokes and mouse
show that the external clock times and the Morae times appear clicks depending on how conservative you want to be).

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

252 J.H. MORGAN et al.

1600

1400

1200

Time Difference (ms)
F) (4,3 =3 E
=3 [=3 [=] [=]
-

(=]

Mouse Movement

Sequential Actions

Figure 11. Observed differences for keystrokes (Camtasia, Studio 6).

Time Difference (ms)
Y
(=]
o

Mouse Movement

oL\
\VARRR

=200

10 15 20

Sequential Actions

Figure 12. Observed differences for mouse clicks (Camtasia, Studio 6).

Camtasia, Studio 6 results. Camtasia does not generate logs;
rather it stores information in WAV and AVI files. Because
Camtasia does not assume (in its default and commonly used
setting) a microphone, it inserts a keystroke sound into an audio
file for each keystroke entered. In these trials, we generated
Camtasia’s recorded times by analyzing the WAV file for each
trial using Audacity®, as well as Camtasia’s own audio analysis
tool. We preformed an audio analysis because like other video
logs the sampling rate is too low to record user behavior at
or below 20ms. We again found that the alignment for both
keystrokes and mouse clicks was generally good without any
noticeable drift or noise.

Figure 11 shows the differences between times taken from
Camtasia’s audio recording and the external clock for 20
keystrokes. These measures show that the times extracted from
Camtasia’s WAV file when compared with the external clock
display a linear drift of approximately 1s per minute, an error
of about 1%. Thus, while the interkeystroke and mouse click
times may be fairly accurate, we found this rate of drift held
constant for 10 trials. One feature of Camtasia may contribute
to this relatively high rate of drift. Camtasia does not record

the keystroke sounds but rather generates a very clean audio
representation when each key is pressed. This is desirable for
creating understandable audio tracks for presentations. On the
other hand, it may be rounding off the sound times for each
click by fitting them to the video’s frame rate. So, one possible
explanation of this drift is the effect of these accumulated
rounding decisions.

Figure 12 shows the differences between Camtasia and the
external clock for the 20 mouse clicks. These measures show
that the external clock’s times and Camtasia’s times for mouse
clicks also display a linear drift of approximately 1 s per minute.
As in the case of keystrokes, Camtasia generates an audio
representation of each mouse click, making mouse click timing
susceptible to the same potential problem. Thus, we believe
Camtasia’s timing is accurate to the nearest second.

AppMonitor 1.2.1 results. In our tests, we found AppMonitor
to be fairly accurate. Each data point in Fig. 13 represents one
instance of the enter key because AppMonitor only provides
key names for the enter key and spacebar. Figure 13 shows the
differences between AppMonitor and the external clock for 20

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 253

Time Difference (mgs)
5,]

[=]

[}
«n
1

[
=
[=]

101
Mouse Movement
V 5 V 10 15 20 25 30 35

v4'u

Sequential Actions

Figure 13. Observed differences for keystrokes (AppMonitor, 1.2.1).

304 Mouse Movemenpt

Time Difference (ms)
B
[=]

i

0, M /

o T T —¥ T 11— r ¥
5 10 15 N 20 25 30\1 35 40

Sequential Actions

Figure 14. Observed differences for mouse clicks (AppMonitor, 1.2.1).

keystrokes. These measures show that the external clock times
and the AppMonitor times appear to differ by a range of —7 to
+22ms over the course of the trial. Like RUI, most points are
within £20 ms of the external clock.

Figure 14 shows the differences between AppMonitor and the
external clock for 20 mouse clicks (39 data points). AppMonitor
records both up and downstrokes. These measures show that the
external clock times and AppMonitor’s times appear to differ
by —9 to +85 ms over the course of the trial. Most measures are
within & 10 ms. Consequently, AppMonitor appears accurate to
100 ms, but it might be better.

External clock test summary. The camera-based tests are
expensive to perform because they have to be performed by
hand, but appear to provide a relatively high resolution test
that can provide time estimates within 3 ms based on sound
waveforms. These tests show that all loggers can record a
set of timestamps within 3ms of camera time, but that the
loggers have between 10 and 80 ms variance in how well they
record.

4.5. Low temporal drift over multiple days

Keystroke and mouse action loggers should exhibit low
temporal drift over multiple days when run in isolation.
Assessing an application’s rate of drift over days and weeks,
however, is surprisingly difficult. Determining an application’s
rate of drift requires knowing the external measure’s rate of drift,
as described in our discussion of the external clock test. With
that knowledge, the analyst can then compare the application’s
timing with respect to an external clock, and thus determine to
what degree this error influences the data.

This relatively straightforward description is complicated
when one considers the constraints imposed by the external
clock. We determined each application’s rate of drift, but it was
arough estimate limited by the recording time (30 min) of our
camera’s DVDs. This limitation obliged us to record four 30 min
trials over the course of 2 days for Mac and PC RUI. We could
not perform this test on Morae, Camtasia or AppMonitor. For
Morae and Camtasia, generating a (ms) log by hand at these
time scales is prohibitive. In the case of AppMonitor, the fact
that AppMonitor provides timestamps for a limited number of

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

254 J.H. MORGAN et al.

keystroke and mouse movements makes recording the breadth
of naturalistic activity impossible, severely limiting this test’s
external validity.

Apparatus. We used a Canon DVD Camcorder DC220 to
record the NIST atomic clock, and a Robic SC-505 5 Lap
Memory Stopwatch (accurate to a 1 ms/day) to confirm the
measurements.

Procedure. Over the course of a week, we compared the times
of Mac RUI and PC RUI with the NIST atomic clock times in
30 min increments. We isolated these applications from NIST
clocks for 2 days, resulting in four tests for each application. In
each case, we adjusted the results to compensate for the external
clock’s offset, and confirmed them by using the stopwatch.

Results. For Mac and PC RUI, we found no perceptible lag
during the 30 min tests over the course of 2 days. We expect a
drift could emerge for tests over multiple days or weeks. These
results may have important implications for larger longitudinal
studies that care about differences of seconds over days (which
might be relatively rare), particularly as the size of the logger
footprint increases to capture semantic data. On the other hand,
lag occurring over multiple days is less important for hour-long
studies, or studies that do not need accuracy within seconds over
days or weeks.

5. DISCUSSION AND CONCLUSION

In this paper, we have discussed risks to accuracy that confront
experimenters and designers in capturing and analyzing more
complex sets of interaction data. After briefly introducing RUI

and its research applications, we described a comparative study
of RUI, two commercial applications (Morae and Camtasia) and
a logger from a university lab (AppMonitor). While we found
that we could validate the logger’s timing accuracy, including
RUTI’s timing to £30ms for keystrokes and £10ms mouse
moves, we also found that validating loggers for mouse moves
and tests exceeding 30 min was difficult.

We next summarize the results of these tests. We then
examine what these tests mean for future loggers by creating a
preliminary set of considerations for loggers meant to identify
and address some of the major risks present in HCI and
cognitive psychology studies related to keystroke loggers. We
conclude with a final thought about future work and how these
considerations highlight some current limitations of loggers.

5.1. Summary of results

The results of our tests are summarized in Table 4. They show
measures on a range of loggers and that the revised and extended
versions of RUI pass a wider range of tests than previously
reported (Kukreja er al., 2007). These revised versions of
RUI appear to record keystrokes and mouse clicks without
batching, pass the gamma distribution test, accurately record
mouse movements and can accurately record keystrokes and
mouse clicks with an accuracy of 30 ms, or slightly better in
one case (Mac). This accuracy enables RUI to support a wide
range of HCI and cognitive psychology tasks, but not all tasks.
Finally, we did not include the results of test five (determining
long-term temporal drift) because we could only test the RUI
platforms, and even for these platforms additional testing would

Table 4. Summary of tests across applications.

Mac
Tests RUI 1.0
1 (0 Interkeystroke timing Pass
test
2 Gamma distribution test 0.977
for keystrokes
3 Mouse move distribution 17 ms
test modal values
4a Assessing accuracy using —28to 15
an external clock for (£30ms)
keystrokes (in ms)
4b Assessing timing accuracy —8t3
using an external clock (£10ms)

for mouse clicks (in ms)

PC Camtasia, AppMonitor

RUI 2.04 Morae 3.0 Studio 6 1.2.1

Pass Pass Fail? Pass®

0.963 NAb NA? NA®

16ms N/Ad N/Ad 16 ms
—7t021 —52t023 —123t0 1115 —7to +22
(£30ms) (£60ms) (~1s) (£30 ms)
—12t03 —121t0359 176 to 1480 —91to +85
(£20ms) (£60ms) (~1s) (£100ms)

4Camtasia does not provide keystroke logs.

bMorae’s exported logs only provide keystrokes to the nearest tenth of a second.

“Because AppMonitor only provides timestamps for the Enter key and space bar, test samples collected from

AppMonitor are unlikely to representative, as it is impossible to fully replicate.

dMorae and Camtasia do not log mouse moves at (time, x, y).

€AppMonitor does not provide timestamps for ASCII keys, with the exception of the Enter key and spacebar.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 255

be necessary to solidify our findings. We, however, included this
test in Table 3 because we believe the increased prevalence of
online HCI studies warrants considering long-term temporal
drift and ways of testing it.

These tests can also be used to test and describe other log-
gers. Morae and Camtasia, for example, can accurately record
keystrokes and mouse clicks occurring at time scales equal to
or greater than a 100ms and AppMonitor at lower times for
keystrokes. For broad HCI studies, however, Morae’s and Cam-
tasia’s degree of accuracy is usually sufficient, and they offer
other features. Furthermore, Morae’s, Camtasia’s and App-
Monitor’s ability to capture semantic data exceeds that of RUL

5.2. A preliminary set of considerations for HCI and HRI
loggers

In summary, as social networking applications and portable
devices become more important, experimenters will increas-
ingly have to utilize concurrent risk driven analyses using log-
gers to study behavior (Pew and Mavor, 2007). Users and devel-
opers will have to balance the demands for semantic content and
accuracy as well. As Alexander et al. (2008) note, light-weight
logging will most likely be necessary for developing longitudi-
nal studies. However, capturing this data requires applications
that are user friendly and capable of remote reporting. This
second requirement will require researchers to continue to con-
sider, as Alexander er al. (2008) have done, security and con-
fidentially of participants in naturalistic studies (e.g. Kim and
Ritter, 2007), as well as more traditional concerns regarding
confounding variables and repeatability.

AppMonitor provides a powerful lesson regarding the bal-
ancing of user confidentiality and experimental repeatability.
AppMonitor ensures confidentiality largely by limiting its scope
to foreground and background manipulations, scrolling and
mouse clicks—these events are less likely to betray sensitive
user information. Consequently, while AppMonitor provides an
effective way of capturing semantic content, it does so at the cost
of excluding useful finer grain data necessary to support a KLM-
GOMS analysis (Card et al., 1983) or other reaction time anal-
yses. We believe that providing analysts a range of selectable
options of what to log can avoid overloading user logs while
also supporting multiple kinds of analysis. In earlier versions of
AppMonitor, Alexander et al., (2008) also used this approach.

We also believe that privacy settings can go a long way
towards reconciling the tensions between user confidentiality
and experimental repeatability. RUI supports both annotated
and anonymized logs. Annotated logs record both key times
and names; we use this mode in lab-based experiments with
the explicit consent of our participants. Anonymized logs note
keystroke times without recording key names; we have used
this setting in a large-scale naturalistic study (Dancey et al.,
forthcoming). Both settings assign users a subject ID number.

We suspect that frequent iterations between observational
and experimental settings will characterize future HCI and

cognitive psychology studies, as researchers appraise the
influence of contextual factors through experiments and validate
experimental results through subsequent naturalistic studies
(Ritter et al., 2013). We also believe that experiments will
frequently occur concurrently in interdisciplinary contexts that
will require loggers to prioritize not only the participant’s user
experience but also that of the experimenter.

We begin to address these risks by offering a preliminary
set of considerations for users and developers of loggers in
Table 5. This set of considerations (that in time might turn into a
specification) is neither exhaustive nor equally applicable to all
applications. The tests we have described and the considerations
we have identified through developing RUI and looking at
similar tools will help researchers better assess and mitigate
the risks introduced by keystroke and mouse action loggers to
HCI and naturalistic studies, either by developing or finding a
logger that addresses these risks (Ritter ef al., 2013).

The list of considerations in Table 5 requires a few
clarifying comments. Point 3 states that loggers should indicate
that logging is occurring. While we understand the value of
unobtrusive logging, we believe out of a concern for privacy
that by default the logger should require the user to initially
activate it (Point 1), and that it should indicate to the user that
it is recording. In some studies, these precautions may not be
necessary; however, we believe this requirement is valuable for
general use.

We would also like to push slightly on the concept of ease of
use by distinguishing between the user’s experience and that of
the experimenter. To be clear, we believe that the user experience
should be easy. On the other hand, it is also important to consider
the experimenter as a user too in this case. As the ability to
capture semantic content increases, experimenters will have
to have more sophisticated, easy to use and rapid to deploy
ways to record in vive distinctions in semantic content such
as those described by Alexander ef al. (2008). Experimenters
will also need relatively light-weight input driven tools such as
cognitive load and stress tests for testing experimental designs,
and some assurance that their experiments will be consistent
across operating systems.

Furthermore, when considering the experiment’s footprint
and generalizabilty, point 5 suggests considering types of key
actions entailed by the study. As Table 5 illustrates, loggers
differ in even their basic capabilities (e.g. the logging of mouse
movements). Determining the study’s needs early is important.
For instance, it may not be desirable to record all key presses
or the exact positions of all mouse movements. A logger
that records both up and down key presses or every mouse
position can overload the analyst. Nevertheless, developers and
experimenters do generally need to think more broadly. For
example, early versions of RUI did not log enough of the non-
ASCII keystrokes, omitting some command keys.

Point 6 suggests recording time in seconds and ms. While
most computers’ clocks can provide greater precision, using
and validating finer time scales can be problematic. Besides the

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

256 J.H. MORGAN et al.

Table 5. Considerations for HCI and HRI keystroke loggers.

(1) Be easy to start up, run and close and save data
(2) Provide a choice of default file locations for the logs
(3) Indicate that logging is occurring

(4) Inthe log, note the user, the time the log begins, the software and version that generates it and the machine the logs were taken on

(5) Record:
ASCII keystrokes (a-zA-Z1-0, symbols)

Non-ASCII control and navigation keys, such as arrows and page up
ASCII and non-ASCII keys either on the downstroke, upstroke or both

Modifier keys either on the downstroke, upstroke or both
Media buttons and function keys
Mouse clicks

Mouse moves or position (e.g. every 15 ms or when the mouse provides it)

Mouse wheel events

Suppress reporting a mouse position if no movement has occurred

Events on mouse equivalents, such as touchpads, joysticks and touch displays

Semantic meaning of the keystrokes
Task context of the keystrokes
Support anonymizing keystrokes

(6) Event times shown preferably in s and ms, optionally in HH:MM:SS
(7) Replay logs (but, as Luo and John, 2005, note, subject to inherent difficulties)

(8) Timing accuracy validated to level needed

(9) Be stable enough to run for several hours to several months without crashing

(10) Run on the operating system of interest (Unix, Windows, Apple OS, etc.)

(11) Beresilient to load on the computer

difficulties associated with establishing an external clock with
such precision, the audio signatures of key and mouse actions
pose challenges for interpretation. Greater levels of precision
may not just be unnecessary, but can potentially obscure results.
In addition, longer studies may require including a date on each
timestamp, but in our studies dates would be unhelpful and
make logs larger and harder to analyze. Finally, while we did
not test these tools to see how well timing was maintained as
load increased on the computer they were running on (point
11), this may stay a problem and it may also become less of a
problem as more machines have multiple processors.

5.3. Limitations of loggers

There are limitations to loggers and to RUT in particular. Most of
the systems reviewed, while they meet most of the criteria listed
in Table 5, do not support them all. Some of these discrepancies
arise from tradeoffs at the design phase. Others arise from tools
created within a context that do not require all the criteria and
then tools are used more widely obtaining additional features
as designers apply tools to new problems. It remains difficult to
record logs in environments not designed to support logging or
actively designed to discourage logging. For instance, loggers
have trouble recording the target size of the objects being clicked
and sometimes even the window or panel containing the object.
Some tools can support this, but their support has limitations.

At this point, RUT and the other loggers fail to meet the full
set of considerations. In particular, RUI's ability to capture
semantic data is limited and some low-level behaviors still
require interpretation (the effects of auto-repeat, for instance).
Nevertheless, we believe this specification (Table 5) and these
tests (Table 3) are useful for researchers interested in using and
developing keystroke loggers in HCI and cognitive psychology
studies (Ritter ef al., 2013).

Users of keystroke logging programs and tools need to
remain mindful of how their loggers work and what are the
potential limitations specific to their tools. Software-based
loggers remain easy to use, but can always, of course, run
into problems when the machine they are running on becomes
overloaded and cannot itself process its inputs and outputs in a
timely manner.

Finally, these tests are not necessarily complete. As we
have worked with loggers, we have continually found ways
that they can fail to record accurately. Further work with
additional interfaces, systems and contexts of use will find
further constraints that loggers should meet.

ACKNOWLEDGEMENTS

Bonnie John’s experiences with and comments about RUI led to
many of the developments described here. Geoffrey Morgan and
Susan Strayer contributed to the development of PC RUI 2.04;

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

To IMPROVE KEYSTROKE AND MOUSE LOGGERS 257

Razvan Orendovici created the version of RUI that anonymizes
keystrokes; Joe Sanford has helped maintain RUI; and Thomas
George provided technical and procedural advice. Brad Best
helped fit the gamma curve. Greg Plumb helped gather data. In
addition, Olivier Georgeon, Wayne Gray, Jong Kim, Alex Kirlik,
William Stevenson, Michael Wenger and several anonymous
reviewers provided comments that improved this paper.

FUNDING

This project was supported by ONR Contracts N00014-03-1-
0248, #W911QY-07-01-0004 and N00014-11-1-0275.

REFERENCES

Alexander, J., Cockburn, A. and Lobb, R. (2008) AppMonitor: a tool for
recording user actions in unmodified windows applications. Behav.
Res. Methods, 40, 413-421.

Braun, W. J., Rousson, V., Simpson, W. A. and Prokop, J. (2003)
Parametric modelling of reaction time experiment data. Biometrics,
59, 661-669.

Card, S.K., Moran, T. and Newell, A. (1983) The Psychology of
Human-Computer Interaction. Erlbaum, Hillsdale, NJ.

Dasarathy, B. (1985) Timing constraints of real-time systems:
constructs for expressing them, methods for validating them. IEEE
Trans. Software Eng., 11, 80-86.

De Clercq, A., Crombez, G., Buysse, A. and Roeyers, H. (2003). A
simple and sensitive method to measure timing accuracy. Behav.

Res. Methods Instrum. Comput., 35, 109-115.

Freeman, J.B. and Ambady, N. (2010) MouseTracker: Software for
studying real-time mental processing using a computer mouse-
tracking method. Behavior Research Methods, 42, 226-241.

Friedrich, M.B. (2008) Implementierung von schematischen
Denkstrategien in einer hiéheren Programmiersprache: Erweit-
ern und Testen der vorhandenen Resultate durch Erfassen von
zusdtzlichen Daten und das Erstellen von weiteren Strategien
(Implementing diagrammatic reasoning strategies in a high level
language: Extending and testing the existing model results by
gathering additional data and creating additional strategies).
Faculty of Information Systems and Applied Computer Science,
University of Bamberg, Germany.

Hart, S.G. and Staveland, L.E. (1988). Development of NASA-TLX
(Task Load Index): results of empirical and theoretical research. In
Hancock, P.A. and Meshkati, N. (eds), Human Mental Workload.
Elsevier, Amsterdam, The Netherlands, pp. 139-183.

Held, J., Bruesch, M., Krueger, H. and Pasch, T.H. (1999) The Fit-
System: a new hand-held computer tool for ergonomic assessment.
Med. Biol. Eng. Comput., 37, 862-863.

Hurst, A., Mankoff, J., Dey, A.K. and Hudson, S.E. (2007) Dirty
desktops: using a patina of magnetic mouse dust to make common
interactor targets easier to select. In Proc. 20th Ann. ACM Symp.
User Interface Software and Technology, pp. 183-186. ACM, New
York, NY.

Kim, J. and Ritter, EE. (2007) Automatically recording keystrokes in
public clusters with RUI: issues and sample answers. In Proc. 29th
Ann. Conf. Cognitive Science Society, 1787. Austin, TX.

Kim, J.W., Koubek, R.J. and Ritter, FE. (2007) Investigation of
procedural skills degradation from different modalities. Proc. 8th
Int. Conf. Cognitive Modeling. Lewis, R.L., Polk, T.A., Laird, J.L.,
(eds), pp. 255-260. Taylor & Francis/Psychology Press, Oxford,
UK.

Kukreja, U., Stevenson, W.E. and Ritter, EE. (2007) RUI—Recording
User Input from interfaces under Windows and Mac OS X. Behav.
Res. Methods, 38, 656-659.

Latif, M.M.A. (2008) A state-of-the-art review of the real-time
computer-aided study of the writing process. Int. J. Engl. Stud.,
8, 29-50.

Leijten, M. and Van Waes, L. (2006) Inputlog: new perspectives on the
logging of on-line writing processes in a Windows environment.
In Sullivan, K.P.H. and Lindgren, E. (eds), Computer Keystroke
Logging and Writing: Methods and Applications. Studies in
Writing, Vol. 18, pp. 73-94. Elsevier, Oxford.

Luce, R.D. (1986) Response Times: Their Role in Inferring Elementary
Mental Organization. Oxford University Press, Oxford, UK.

Luo, L. and John, B.E. (2005) Predicting task execution time on
handheld devices using the keystroke-level model. Proceedings of
CHI "05, pp. 1605-1608. ACM, Portland, OR.

Maclnnes, W.J. and Taylor, T.L. (2001) Millisecond timing on
PCs and Macs. Behav. Res. Methods Instrum. Comput., 33,
174-178.

Myors, B. (1999). Timing accuracy of PC programs running under
DOS and Windows. Behav. Res. Methods Instrum. Comput., 31,
322-328.

Paik, J. (2011) A novel training paradigm for knowledge and skills
acquisition: Hybrid schedules lead to better learning for some but
not all tasks. Unpublished PhD thesis, Industrial Engineering, Penn
State University, University Park, PA.

Patton, EW. and Gray, W.D. (2010) SNLab-CM: a tool for
incorporating stochastic operations into activity network modeling.
Behav. Res. Methods, 42, 877-883.

Pew, R.W. and Mavor, A.S. (eds) (2007) Human-System Integration
in the System Development Process: A New Look. National
Academy Press, Washington, DC. books.nap.edu/catalog.php?
record_id=11893.

Plant, R.R., Hammond, N. and Whitehouse, T. (2002) Toward an
experimental timing standards lab: benchmarking precision in
the real world. Behav. Res. Methods Instrum. Comput., 34,
218-226.

Plant, R.R., Hammond, N. and Turner, G. (2004) Self-validating
presentation and response timing in cognitive paradigms: how and
why? Behav. Res. Methods, Instrum. Comput., 36, 291-303.

Ritter, FE. and Wood, A.B. (2005) Dismal: a spreadsheet for

sequential data analysis and HCI experimentation. Behav. Res.
Methods, 37, 71-81.

Ritter, FE., Kukreja, U. and St. Amant, R. (2007) Including a model
of visual processing with cognitive architecture to model a simple
teleoperation task. J. Cogn. Eng. Decis. Mak., 1,291-303.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

258 J.H. MORGAN et al.

Ritter, FE., Kim, J.W., Morgan, J.H. and Carlson, R.A. (2013) How to
run studies: a practical guide to research with human participants.
Sage, Thousand Oaks, CA.

St. Amant, R., Horton, T. E. and Ritter, EE. (2007) Model-based

evaluation of expert cell phone menu interaction. ACM TOCHI,
14, 1-24.

Sullivan, K.PH. and Lindgren, E. (2006) Computer Keystroke
Logging and Writing. Elsevier, Oxford.

Van Waes, L., Leijten, M., Wengelin, A. and Lindgren, E. (2011)
Logging tools to study digital writing processes. In Beringer,

V. (ed.), Past, Present, and Future Contributions of Cognitive
Writing Research to Cognitive Psychology. Psychology Press,
London.

Van Zandt, T. (2002) Analysis of response time distributions.
Methodology in experimental psychology. In Wixted, J. (ed.),
Stevens’ Handbook of Experimental Psychology (3rd edn). Vol.
IV, pp. 461-516. John Wiley & Sons, New York, NY.

Van Zandt, T. and Ratcliff, R. (1995) Statistical mimicking of
reaction time data: single-process models, parameter variability,

and mixtures. Psychon. Bull. Rev., 2, 20-54.

INTERACTING WITH COMPUTERS, Vol. 25 No. 3, 2013

€107 ‘z Ang uo yein) jo Ausiaarun) 1e /1o seumolpioyxo-omi//:dny woly papeo[uMo(]

