
ABSTRACT
A prerequisite to the effective design of user interfaces is an
understanding of the tasks for which that interface will
actually be used. Surprisingly little task analysis has
appeared for one of the most discussed and fastest-growing
computer applications, browsing the World-Wide Web
(WWW). Based on naturally-collected verbal protocol data,
we present a taxonomy of tasks undertaken on the WWW.
The data reveal that several previous claims about browsing
behavior are questionable, and suggests that that widget-
centered approaches to interface design and evaluation may
be incomplete with respect to good user interfaces for the
Web. 

Keywords
World-Wide Web, task analysis, video protocols

INTRODUCTION
A great deal of public and research interest has been devoted
to the World-Wide Web (or WWW) in recent years. Most of
this research effort has focused on the technical aspects of
the Web and the application of new Web-based
technologies. Our concern, however, is with the usability of
the Web, in particular the use of browsers. In order to
perform any kind of sensible usability evaluation, be it
empirical, analytical, or heuristic, it is necessary to first
understand the tasks users engage in while browsing. That
is, in order to determine which HCI techniques and/or
approaches are most likely to aid in Web usability, it is
first necessary to understand what is that users actually do
with their time while using the Web.

While there has been valuable research on patterns of Web
use (e.g. navigation patterns [1, 7]), these “click-studies”
provide little information about the task contexts in which

the users’ actions occurred. For example, a click study can
provide information about how often pages are visited and
links are traversed, but not the tasks in which users were
engaged while doing so. The focus of the present research is
to gain a clearer understanding of the tasks users engage in
while browsing the Web and the time spent doing those
tasks. This will enable rating the relative importance of
various interface analysis methods—there is little to be
gained by analyzing tasks which users rarely perform, or
which cost users very little time.

Further, we wanted to observe the tasks users normally
perform in their daily Web use, rather than giving them
artificial tasks. While observing users doing specific tasks
can be useful, it is possible that the task or tasks used in
the study might not reflect the tasks that users do when left
to make their own decisions about how their time is
allocated. Other naturalistic studies of user behavior [e.g. 2]
have found that undirected user behavior is much more
complex and interleaved than directed behavior.

THE STUDY
Participants were asked to browse the WWW as they would
on a normal work day and provide verbal protocols
describing what they were doing as they browsed. A video
camera was set up to record both the protocol and the user’s
screen as they browsed, for one day of browsing. The
participants were eight volunteers from the university
community, all of whom were experienced Web users. We
attempted to collect a reasonable cross-section of users and
had faculty, students, secretarial staff, and research staff
included in the sample. In order to encourage the
participants to engage in the kind of browsing they would
do normally, they were videotaped in their offices (or home
in the case of one student participant) using their normal
workstation. While it is possible that participants altered
their browsing patterns due to the presence of the video
camera, we explicitly discouraged this. A variety of
platforms and browsers were used, with Netscape Navigator
running on a Power Macintosh being the most frequent
choice. Approximately 5.75 hours of videotape was

The Tangled Web We Wove: A Taskonomy of WWW Use

Michael D. Byrne1 , Bonnie E. John2 , Neil S. Wehrle3 , David C. Crow4

1Department of Psychology
2Human-Computer Interaction Institute 4Trilogy Development Group

3School of Design 6034 West Courtyard Dr.
Carnegie Mellon University Austin, TX 78730

Pittsburgh, PA 15213
byrne@acm.org, bej@cs.cmu.edu, nsw+@andrew.cmu.edu, david.crow@acm.org

Appears in Human Factors in Computing Systems:
Proceedings of CHI 99, pp. 544–551. New York: Addison
Wesley.



collected and analyzed, of which 5 hours was WWW
browsing. The amount of data generated and analyzed for
each participant ranged from approximately 15 minutes to
over 74 minutes. One of two analysts coded each videotape.

TASKONOMY
We constructed a taxonomy of tasks (a "taskonomy", shown
in Figure 1) through a combination of our prior research
into information-finding, analysis of the the capabilities of
the Web and Web browsers, personal introspection, and
observing our first three users. We observed six general
classes of Web tasks: Use Information, Locate on Page, Go
To Page, Provide Information, Configure Browser, and
React to Environment. 

As an example of how we constructed this taskonomy,
consider the task Locate on Page. Our prior research in the
use of a textual on-line help system [6] indicated that when
attempting to locate information, users could search for a
specific string or a related concept. Since web pages also
include images, we included a category for locating an
image. Introspecting, we added a category for locating
something “interesting.” Finally, we observed one of our

first three users searching for information that would be
tagged with a specific string (explained below).

While we had to add one subcategory to fully cover the five
additional protocols (Go To Page using the history list that
pops up when the Back button is depressed in newer
versions of Netscape), the six main categories remained
unchanged. That is, the taskonomy was virtually unchanged
after analyzing the first three users, and then successfully
covered the remaining five protocols (only two events out
of 892 new events fell outside the original taskonomy, both
of which were the unforeseen type of Goto). More details
about the coding scheme can be found at:
< h t t p : / / a c t . p s y . c m u . e d u / A C T / p e o p l e /
byrne/webtask/guide.html>. 

We chose to code the protocols at this level because we
believed this to be a useful first pass at understanding how
users allocated their time in terms of tasks and behaviors.
Other levels of abstraction are both possible and potentially
useful and should be pursued in follow-up research.

WWW Task

Locate on 
Page

Use 
Information

React to 
Environment

Configure 
Browser

Specific string

Related concept

Something 
“interesting“

Duplicate

Read / view 
/ listen

Save to disk 
(download)

Display for 
others

Print

Respond to 
dialog

Respond to 
display 
change

Reload

etc.

Set helpers

Change cache 
size

etc.
Scroll Resize 

window
etc.

Add 
bookmark

Provide 
Information

Shipping 
Address

Search 
string

Survey 
response

etc. Window 
Management

Go To Page

Back/Forward

History list

Bookmark

HyperLink

Provide URL

Image

Tagged 
information

etc.

Figure 1. Taxonomy of WWW user tasks



Use Information
Use Information describes any activity (or series of
activities) in which the user was attempting to use a piece
of information from the WWW. The Use Information
subcategories were based on our observations of what the
first three users did with the information they obtained from
the Web. Information on the Web can serve a variety of
purposes: it can be read, listened to, viewed or watched (e.g.
images, animations, layouts), duplicated (e.g. copy and
paste), downloaded to a local disk, displayed for others,
printed. Most activities done while browsing the Web are in
service of a Use Information task. 

A Use Information task began whenever the user initiated a
new activity with the goal of making use of some piece of
information. The task was considered complete whenever
the desired use had been made or the user explicitly gave up.
For example, if a user had a Use Information(print) task, it
would be considered started as soon as the user did anything
to find that piece of information and ended when the Print
dialog had finished.

Locate
Frequently, using a piece of information or going to a URL
requires finding that information or link on a Web page,
which typically requires some visual search. We called these
activities Locate tasks. Users could search for a specific
word, which we called Locate String search. Users also
searched for particular images (e.g. graphic links), coded as
Locate Image. They could be looking for something not
necessarily a particular word or image but anything related
to a concept (e.g. “I’m looking for ‘photography’ or
‘cameras’ or something like that”), which we termed Locate
Related. Another class of searches can be best described as
Locate Interesting, in which a user is seeking no specific
word or concept, but is simply looking for something that
might catch their interest. The most difficult kind of search
to explain, but one which was observed, was what we called
Locate Tagged. When a user was looking for a particular
piece of information and did not know what it was that they
were looking for, but knew some tag that would identify it
as the piece of information they wanted, it was coded as
Locate Tagged. For example, one user wanted to know the
resolution of a printer he was considering purchasing. He
did not know the number of dots per inch for the printer,
but knew that the number he wanted would be tagged with
something like “resolution” or “DPI” or the like. This is
distinct from Locate Related in that it is not the concept
that the user is searching for, but a value pointed to by
some tag matching a concept or word.

Locate tasks were coded as beginning either as soon as the
relevant page was visually available to be searched (usually
after loading) or the user’s protocol gave evidence they were
searching. Locates were typically considered complete when

the user explicitly indicated they had found the item or when
a mouse movement was made to the target item.
Alternately, a Locate task could be coded as finished when
the user gave up, either explicitly or by navigating to a
page not linked to the current one (e.g. clicking “back”).

Note that our use of Locate does not mean “Locate a page
on the Web” but is more like “Locate an item on a page.”
Locating a particular page on the WWW can require one
simple GoTo (e.g. if the page is bookmarked) or a series of
Locates and GoTos (e.g. following a series of hyperlinks).

Go To
Any activity which caused the browser to display a
particular URL we considered a Go To. Most browsers
support a wide array of ways in which a browser can be
directed to a URL, including the back/forward button,
bookmarks, hyperlinks, typing in a URL, history menus, a
Home button, and others. Our subcategories of GoTo were
based on an analysis of the methods supported by the
browsers used. Go To tasks are typically fairly rapid, but
they can be time-consuming, such as when typing a long
URL is involved, the network response is slow, or the
browser takes a long time to render the page.

GoTos were coded as starting as soon as the command that
caused the browser to change pages was initiated (for
example, as soon as users pointed at the URL field in the
toolbar) and were coded as complete as soon as the
destination page was displayed with enough content that it
was possible for the user to interact with it.

Provide Information
Users not only use the Web to get information, but to send
it as well. They provide product selections, authentication
information, shipping addresses, search criteria, and so on.
These activities were all classified as Provide Info tasks.
Provide info tasks were coded as beginning as soon as the
user began the mouse move or typing that supplied the
information (usually in a form) and ended as soon as there
was confirmation that the information had been received
(typically by the display of the response page). There are a
potentially infinite number of kinds of information users
could be providing, so we made no strong commitments to
particular subcategorization.

Configure
There is a wide variety of browser state information that is
user-configurable, and changing the state of the browser
(other than which URL to view) we termed Configure tasks.
The kinds of Configure tasks available to the user depended
on the number of user-configurable options provided by the
browsing software. The most obvious aspect of a browser
that users can (and frequently do) change is the state of the
window or windows. Users can change the size, location,



order, scroll position, and number of browser windows
(among other things). There are other things about the
browser that users can change, however, such as bookmarks
and assorted other preferences like cache size.

Configure tasks were coded as beginning as soon as a
mouse move or keystroke involved in changing whatever
aspect of the browser state change began, and ended
whenever the final state at the end of the task had been
reached.

React
While most browsing activities are user-driven rather than
browser-driven, there are times when the browser demands
something of the user. We classified these situations as
React tasks. These are typically in the form of a responding
to a dialog box (e.g. where to save a file, can’t find a DNS
entry, etc.), but can take other forms. One common other
form is the use of the Reload button—the user is reacting to
some problem with a page display. Many React tasks have
Configure tasks as subgoals. For example, when a page is
loaded that has a fixed-width table in it that is wider than the
current window, this often causes the user to react with a
Configure task to change the window width.

React tasks were coded as beginning whenever a dialog or
extraneous window appeared, or whenever the mouse
movement to the control (e.g. the “Reload” button) required
to react to the situation started. React tasks were considered
complete when the dialog or window had been dismissed or
when the action initiated by the React task completed (e.g.
the page had reloaded).

Subtask Sequencing
In general, these tasks cascaded a great deal and had
subtasks. For example, one user wanted to download a paper
written by a colleague. Thus, the top-level goal was to Use
Information (download). The user decided to use a search
engine to find the colleague’s page, which generated a Go
To Page (bookmark) task to get to the engine. Once there,
the user engaged in a Provide Information task to tell the
search engine what to look for, followed by a Locate on
Page task to find the appropriate link. This was followed by
another Go To Page (hyperlink) task to the relevant page,
then another Locate on Page to find a link to the paper
itself. The entire episode counts as a single Use Information
task, with several subtasks performed in sequence:

UseInfo(download)
GoTo(bookmark)
ProvideInfo(search criterion)
Locate (related)
GoTo(hyperLink)
Locate(related)

This episode generated six task instances. Note that the

duration of the top-level Use Information task would include
the time taken for all the subtasks—the task covers the time
beginning when the user begins their attempt to download
the file until the download is complete. 

Use Information tasks are not the only kinds of tasks that
can have subtasks. In fact, all of the task types can (and did)
have subtasks. Locate tasks often have Configure subtasks,
such as scrolling the window. Provide Information tasks can
generate Use Information tasks (often Duplicate) to provide
form fill-in values. Configure tasks rarely have subtasks,
but do occasionally (such as a Use Information subtask to
determine what it is that a particular preference does). React
tasks, as previously mentioned, often have Configure
subtasks. Furthermore, tasks at any level could generate
subtasks—this did not occur only at the top level. Since
each task type can generate one or more of the other types
as a subtask at any level, there is very little a priori
hierarchy that can be imposed on the taxonomy. 

RESULTS
We originally expected the tasks to form a hierarchy, but we
discovered that any one of these general classes of tasks can
generate any other type of task as a subgoal, thus, the
“hierarchy” is tangled and nearly flat—not so much a strict
hierarchy.

Top-level Categories
We found that our six top-level tasks (Use Information, Go
To, Locate, Provide Information, Configure, and React) did
an excellent job of capturing the types of behavior engaged
in by our users. All episodes in the protocols fit into these
six categories. Not surprisingly, some tasks were more
frequent than other and some took both more total time and
more time per task. Results for the top-level tasks are
presented in Figures 2 and 3. 

Note that the most common (in terms of raw number) class
of events are actually Configure events. Users often needed
to scroll the page in the window, and each time a user
scrolled, this created a Configure task (frequently as a
subtask of Locate). This finding conflicts with other reports
that users are reluctant to scroll [4].

However, in terms of total time it is clear that the tasks that
dominated our users’ browsing was Use Information. This
is hardly surprising since the widespread dissemination of
information cheaply and quickly was the original purpose of
the WWW. The next most time-consuming activity was
Locate. Locate often had Configure as a subtask, because
users often needed to scroll to locate the item for which they
were looking.

The GoTo class of tasks occupied our users for a fair
amount of time as well. What is striking about this number
is that most of the time taken to perform a GoTo is time



waiting for the page to load. Over 50% of that GoTo time
is, in fact, simply users waiting for page loads.

Note also that the time spent sums to more total time than
we had videotape. This is because tasks nest within one
another, as previously discussed. 

Average times are revealing as well. The average Use
Information task took our users over a minute. There are
two reasons these tasks are so much longer than the other

task types. First, these tasks include reading. Despite claims
to the contrary [5], some users actually do spend time
reading, rather than merely scanning, Web pages. Second,
Use Information tasks typically had more subtasks. The
information to be used often had to be found using a series
of Locates and Gotos.

Provide Info tasks were the next longest on average. These
tasks typically involve at least some typing, and can
sometimes require a large number of clicks and keystrokes.
Provide Info tasks also have system response time included,
as a Provide Info task was not scored as being completed
until the response page was displayed.

Several of the task categories have interesting divisions. In
particular, Use Information, Locate, and GoTo have useful
subcategories. Provide Informations and Reacts were neither
especially frequent or particularly time-consuming, so those
will not be considered in greater detail. Configure tasks were
frequent, but the bulk of them (477 out of 538, taking up
33 minutes total time) were scrolling.

Use Information
Use Information was the dominant category in terms of
both total and average time. While this is hardly surprising,
this does raise the question of what is it that users want to
do with the information they get from the Web—why are
they browsing in the first place.

The breakdown of Use Information tasks by subcategories is
presented in Figures 4 and 5, again by total number, of
tasks observed, total time spent, and average time per task.
These data are clearly dominated by Read tasks in terms of

0

10

20

30

40

50

60

70

80

Category

Figure 3. Average time (in seconds) spent on each top-level
task category

Figure 4. Number of events (black bars) and total time in
minutes (gray bars) for each type of Use Information task

0

50

100

150

0

20

40

60

80

100

120

140

160

180

Category

Figure 2. Number of events (black bars) and total time in
minutes (gray bars) for each type of top-level task

0

100

200

300

400

500

600

0

50

100

150

200

250

Category



number and total time. With respect to average time, only
the Read subcategory has sufficient number of events to
provide a stable estimate. 

Locate
When looking for an item on a page, there are various
levels of specificity users have in mind. These were
categorized into one of four types: String (or Image),
Interesting, Related, and Tagged. Breakdowns by type for
number of observations, total time, and average time are
presented in Figures 6 and 7.

It is noteworthy that the Tagged search was the least
common in terms of both frequency and total time. Tagged
searches tended to occur only at the leaf nodes of multi-page
searches, which were guided primarily by other types of
search.

String searches, which are the most specific type of search,
were the most rapid on average. Searching for specific
strings was not as common as the more general types of
searches and tended to be a result of users looking for a
specific text-based anchor which they knew was already
present on a page. Thus, these searches were probably aided
both by the users’ spatial memory for the page and the fact
that revisitation of links is common. Revisitation often
meant the sought-after link had been visited recently, and
most browsers display recently-visited text in a different
color than non-anchor, non-visited text. (Visual search for a
distinct color is typically very rapid. [8])

The relative frequency of searches for something Interesting

is also noteworthy. In typical laboratory studies of WWW
use [e.g. 3], users are given specific search goals. However,
we intentionally did not give users such targets, which
likely resulted in a greater number of less-directed searches
for things that just appeared “interesting” to the user.

GoTo
While most Web browsers support a wide array of methods
for changing the URL being viewed, actual usage patterns
suggest that users tend to rely mostly on a small number of
methods. Figures 8 and 9 present the number, total time,
and average time of the GoTo tasks performed by our users.
GoTo task times also include time that most users would
rather not spend, time waiting for pages to load. (The GoTo
operation is not considered complete until the new URL is

Figure 7. Average time (in seconds) spent on each type of
Locate task

String Interesting Related Tagged
0

5

10

15

20

25

Category

Figure 6. Number of events (black bars) and total time in
minutes (gray bars) for each type of Locate task

String Interesting Related Tagged
0

50

100

150

200

250

0

10

20

30

40

50

60

Category

Figure 5. Average time spent on each type of Use Information
task (in seconds)

0

10

20

30

40

50

60

70

80

90

100

Category



displayed.) Overall, our users spent over 47 minutes waiting
(of the 5 hours total time spent browsing), and nearly all of
this waiting was time spent waiting for pages to load. This
number is probably a significant underestimation of the
proportion of time average users spend waiting, as all but
one of our participants had high-speed ethernet-based
network connections (the Carnegie Mellon campus is served
by a T3). Furthermore, one of the most experienced
users—also an experienced programmer—had an aggressive
multi-window browsing strategy clearly motivated by the
desire to get something else done while waiting for slow
pages to load. Thus, this is likely a very conservative
estimate of the amount of time wasted by waiting.

Following hyperlinks was the most common way to change

the URL being viewed, with the next most common
method being the “back” button. Notice that, on average,
the “back” button is much faster than following hyperlinks.
This is almost certainly due to the fact that the page
accessed by the “back” button is usually cached by the
browser. This suggests that the gains that could by had by
better caching algorithms and higher network bandwidth
may be considerable.

Most of the “other” GoTo’s involve typing in a URL, and
thus these types of GoTo’s require a great deal more time.
URLs appear to be particularly difficult for users to type
because of the unusual punctuation and preponderance of
nonwords. Other types of navigation, such as the use of
history menus, were quite infrequent. This may be because
the user interfaces of most history systems are less than
optimally matched to the way users think about Web
navigation [7]. Alternatively, it may simply be that users
rarely back up more than a page or two at a time.

DISCUSSION
Implications for WWW Browser Design
What these data suggest is that time spent worrying about
things like button layouts and history menus may not have
much impact on normal Web browsing. Users do not spend
a great deal of time interacting with the GUI widgets of
their browsers relative to the amount of time they spend
engaged in things like reading, visual search, and waiting.
On the other hand, this may well be because the
functionality or interface provided to users to support their
tasks are poor. It is not clear whether users would spend
more time interacting with GUI widgets if they were better
designed. For example, we observed little use of the history
system. This may be because the history system is poorly
designed, as suggested by [7]. However, it might also be the
case that users would make little use of history systems no
matter how implemented.

An obvious case where widget design could make a
difference is scrolling. Users spend a great deal of time
scrolling (approximately 40 minutes in our 5-hour sample
was spent scrolling), and advances which reduce the latency
of scroll operations (such as wheeled mice like the
Microsoft IntelliMouse) have the potential to save users
considerable time. Whether such devices actually do save
users time is still an open question, but the potential is
clearly there.

Because users spend so much time waiting, improving the
performance of the caching and rendering algorithms in
browsers should clearly be a high priority as it could
potentially save users considerable time. Improving system
performance to reduce waiting time is hardly a new
suggestion in HCI; however, this appears particularly
salient in the case of the Web. Even pages that clearly

Figure 9. Average time (in seconds) spent on each type of Goto
task

hyperLink backButton Other/unknown
0

2

4

6

8

10

12

14

16

18

20

Category

Figure 8. Number of events (black bars) and total time in
minutes (gray bars) for each type of Goto task

hyperLink backButton Other/unknown
0

50

100

150

200

250

300

350

0

10

20

30

40

50

60



should have been cached (e.g. those loaded by the “back”
button) took an average of approximately five seconds to be
fully loaded and rendered.

Implications for Page Design
Users are willing to scroll through and read long passages,
despite claims to the contrary [5] based on “classic directed
tasks.” In undirected situations, if users find essays or
articles that are of interest to them, they do read them. This
suggests that long, textual Web pages are not necessarily a
bad idea but should be designed for readability. On the other
hand, users do spend a great deal of time searching pages for
items related to a target concept, and there may be tradeoffs
between readability and “scanability” of a page. These data
suggest that the tradeoffs should be carefully evaluated. For
some pages it may indeed be worthwhile to sacrifice
readability for searchability—but for other pages this may
only distract and annoy users. 

Some of the initial decisions made in designing browsers
defaults were excellent. For example, most Web browsers
underline and color links, which can be a tremendous aid to
the visual search process—visual search for a target that can
be discriminated on the basis of color alone are typically
very rapid [8]. However, HTML now allows designers to
override this and make link colors different than the defaults.
Most page design guidelines advise against this, and our
data is in agreement with this guideline—anything that
slows visual search is likely to cost users time.

Overall, the clearest point that these data make is that
WWW browsing is a complex mixture of a variety of
behaviors, and any attempt to improve the interface to the
Web needs to be sensitive to this variety.

FUTURE WORK
Although the summary data presented here give a high-level
view of what people are doing when they browse the Web,
the verbal protocols hold a wealth of detail. The current
analyses are clearly limited. Future analyses can and should
include analyses at higher levels of abstraction (e.g.
strategies and patterns of behaviors), and analysis of the
contents of the tasks in which users engage rather than just
the behaviors. For example, the current analyses did not
consider whether or not a given Locate was successful or
not, or what it was that was being Located, but merely that
the user was trying to locate something on a page.
Integration with click studies, which can provide more
detailed information about the exact contents of the Web
pages being browsed (e.g. “what percentage of the links on
a given page are visited?”), is also likely to provide further
insight into browsing behavior. 

Furthermore, the sample of users and environments is also
clearly limited. A wider sampling of users, browsers, and
network environments would not only improve the
generality of the results, but allow for more careful
consideration of individual differences. We expect that more
detailed analysis of naturalistic studies such as this one will
provide considerable design guidance.

ACKNOWLEDGEMENTS
This research was sponsored by the National Science
Foundation (NSF), Award #IRI-9457628 and by and by the
National Institute for Mental Health (NIMH), fellowship
#2732-MH19102. It was also supported by generous
contributions from the Xerox corporation. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of Xerox, the NSF, the NIMH, the U.S.
Government, or any other organization.

REFERENCES
1. Catledge, L. D., & Pitkow, J. E. (1995). Characterizing
browsing strategies in the World-Wide Web. In Proceedings
of the Third International World Wide Web Conference,
h t t p : / / w w w . i g d . f h g . d e / w w w / w w w 9 5 / p a p e r s / , D a r m s t a d t ,
Germany.

2. Cypher, A. (1986) The structure of users' activities. In
Norman, D.A. and Draper, S.W., (eds.) User Centered
System Design, pp. 243-263.

3. Morkes, J., & Nielsen, J. (1997). Concise,
SCANNABLE, and Objective: How to Write for the Web.
http://www.useit.com/papers/webwriting/writing.html

4. Nielsen, J. (1996). Top Ten Mistakes in Web Design.
http://www.sun.com/columns/alertbox/9605.html

5. Nielsen, J. (1997). How Users Read on the Web.
http://www.useit.com/alertbox/9710a.html

6. Peck, V. A. & John, B. E. (1992) Browser-Soar: A
cognitive model of a highly interactive task. In Human
Factors in Computing Systems: Proceedings of CHI 92
(pp. 165-172). New York: ACM Press.

7. Tauscher, L., & Greenberg, S. (1997). Revisitation
patterns in World Wide Web navigation. In Human Factors
in Computing Systems: Proceedings of CHI 97 (pp.
399–406). New York: ACM Press.

8. Triesman, A., & Gelade, G. (1980). A feature-integration
theory of attention. Cognitive Psychology, 12, 97–136.


