

COLLEGE OF INFORMATION SCIENCES AND TECHNOLOGY

THE PENNSYLVANIA STATE UNIVERSITY

A Mixed-Methods Comparison of Impression Formation Strategies on Social Networking Sites

Sanjana Mendu

Daniel A. Lee

spm6450@psu.edu dal5666@psu.edu

CLASS PROJECT FOR IST 521

15th December, 2020

COLLEGE OF IST, UNIVERSITY PARK, PA 16802

Abstract

Affordances of social networking sites (SNSs) present users with multiple forms of informational cues about other users, including self-generated content, and content generated from other online network members (Hall et al., 2014; Walther, 1996). Warranting Theory outlines the process by which social media users gather information about others to form impressions through content posted by their network members. This information is presented through various cues that connect individuals' online self-presentations with their assumed or actual traits (Walther & Parks, 2002). To extend this literature on impression formation in computer-mediated communication (CMC), the present research seeks to investigate how individuals form first impressions of an online stranger from his/her social media profile. Participants were shown randomly selected Facebook and Twitter profiles taken from a pre-existing dataset of social media accounts. To evaluate cross-platform differences in impression formation strategies and to assess the influence of self- and other-generated content on impressions, we leveraged both quantitative methods (via on-screen activity logs and validated questionnaires) and qualitative methods (via verbal protocol analysis) to assess participants' construction of first impressions on both platforms. Specifically, we investigated the weight of self- and other-generated cues on participants' impressions. We expect the results of our qualitative analysis to align with findings from prior work, and we aim to contextualize these findings using objective measurements of user behavior.

Table of Contents

Introduction	3
Methods	5
Subjects	5
Materials	6
Study Design & Procedure	6
Results	8
Perceived Affordances	8
Photo- vs. Text-based content	9
Self- vs. Other-generated content	10
Observable Affordances	12
Photo- vs. Text-based content	13
Self- vs. Other-generated content	15
Discussion	16
Conclusion	18
References	19
Appendix A: Task Analysis Example of Online Impression Formation	21
Appendix B: Qualtrics Survey	22
Appendix C: RUI Summary Statistics	27

Introduction

Social networking site (SNS) users are afforded numerous tools for content-sharing and presenting themselves carefully to large, diverse networks (Marwick & boyd, 2011). From the perspective of profile viewers, previous research has addressed *impression formation* processes that occur via SNSs (see Hall et al., 2014; Van Der Heide et al., 2012). The same technological tools that allow users to control their own self-presentations (e.g., reposting, images, text-based content) can be used by profile viewers to build impressions (e.g., social attraction) of a target user.

For example, Van Der Heide et al. (2012) investigated the various ways in which photograph and text-based content available on users' profile uniquely influence the impression formation process. Specifically, they sought to clarify differences in the amount of influence that photographs and text-based content hold on others' impression formation. Van Der Heide et al. (2012) conducted two experiments to assess how SNS users form impressions of other users' extraversion (vs. introversion), given the types of photographs and text-based posts available on those users' profiles. Results indicate that impression formations depend on photos and text separately, such that photos are often observed before text-based self-disclosures to judge the degree of extraversion displayed by SNS users.

Similarly, Hall et al. (2014) asked participants to self-report their central personality characteristics including extraversion, agreeableness, conscientiousness, neuroticism, and openness. Those participants then downloaded the contents of their Facebook profile for review by independent coders, who assessed the types of impression cues available. Finally, 35 other participants acted as observers and rated the most apparent personality traits in the previous

participants' profiles. The independent codings were based on the observable cues available in each profile that are indicative of personality traits (Hall et al., 2014).

Additionally, DeVito et al. (2017) investigated how users' self-presentation efforts, and resulting impressions that others form, may be influenced by various content-sharing affordances of SNS platforms. Findings indicate that content shared by profile owners (e.g., own photos, written posts) holds unique influence over observers' impressions compared to users' profile content that was created by another user (e.g., tags in photos/comments, group photos). This difference between the influence of self-generated and other-generated content will be further explored in our study.

SNS affordances have been investigated and defined in multiple ways by communication scholars (e.g., Fox & McEwan, 2017). We will adopt the perspective of DeVito et al. (2017), who state that affordances of SNS platforms can be understood as the strategic use of available technological tools for social actions, including users' self-presentation efforts (content-sharing), and others' impression formation efforts. In this way, users present themselves to others using the same technological tools that *others' use* to form impressions of target users.

DeVito et al. (2017) provide preliminary insights into how affordances of SNSs, and various forms of content shared by users, foster a unique process of impression formation in the minds of profile viewers. We consider all of the above influence factors in combination for our study of the process of impression formation using SNS affordances that are available through target users' profiles.

Additionally, we assessed the previously described frameworks of impression formation through the lens of hierarchical task analysis (Gillan, 2012) to address the effects of online interface structures on users' impressions of other users (see Appendix A). While we did not use

task analysis methods directly in this research, we leveraged the affordances of similar approaches to identify the following research question and hypotheses towards exploring how impressions are formed using technological tools within SNSs:

Research Question: How do perceived and observable affordances of Facebook/Twitter influence platform use when forming impressions?

Hypothesis 1: There will be a significant difference in the amount of time spent observing photo vs text content

Hypothesis 2: There will be a significant difference in the amount of time spent observing self- vs other-generated content

Our mixed-methods design will contribute to this literature by measuring both perceived, and observable affordances. In the following paper, we address discrepancies between self-reported perceptions of technological tools and actual behavior on SNSs. Specifically, we outline the procedures and results from a pilot study comparing perceived and observable affordances on Facebook and Twitter.

Methods

Subjects

We recruited a total of 5 volunteers from a graduate information sciences course at our university to participate in this pilot study. Our population consisted primarily of women, with 4 female participants and 1 male participant. While the majority of participants were 23-24 years old, our sample also includes one participant over the age of 30. In terms of ethnicity, our sample was 40% Asian, 40% White, and 20% Black or African American.

Materials

To compare self-presentations of social networking site users with participants' impressions of those individuals, we will focus on users' Facebook and Twitter profiles. We used a publicly available dataset of Facebook and Twitter profiles published on GitHub¹. These profiles were gathered using the About.me API², which allows individuals to link their social network accounts to promote public visibility. This dataset was generated for the top 100 male and female names as of 2019 from the U.S. Social Security Website (2020) which were then queried using the About.me API to retrieve social media handles for approximately 2,000 users.

Our study was formatted into a Qualtrics survey (see Appendix A). This allowed us to collect survey information (demographics, perceived affordances of Facebook and Twitter), and provide external links to the mock profiles. The participants used their personal computers to complete the experiment tasks. Video and audio recordings were captured using the Zoom video-conferencing software to make a record of participants' on-screen actions, and their verbal statements. We also used Recording User Input (RUI), a freely available keystroke logging program, to track timings and locations of all mouse and key inputs during the experiment (Kukreja et al., 2006).

Study Design & Procedure

The participants used their personal computers, and asked to review four social media profiles on both Facebook and Twitter. Participants were asked to consider their impressions of the profile owners and verbally compare the shared content on those individuals' profiles contributed to their impressions of them. To facilitate discussion of how SNS users present

¹ <https://github.com/ovunck/about-me-dataset>

² <https://about.me>

themselves on both Facebook and Twitter, and whether there are any gaps between the participant's derived impression and the users' online self-presentation, the experimenters asked for feedback on the profile, and preliminary statements about the profile owner.

Each profile was viewed for a maximum duration of five minutes by participants before they were asked to respond to survey items about the owner of the profile. However, the researchers allowed participants to finish providing statements after the five minutes was complete. During this time, the interfaces were not used for further impression formation unless the researchers asked for clarification of their statements.

Participants were informed that the profile review task would be recorded both via keystroke logging with RUI software (Kukreja, Stevenson, & Ritter, 2006), and screen recording. When the participants indicated they were ready to begin the task, they were asked to click the *Begin Recording* button on the RUI software interface and complete the task as previously described.

We used Zoom to concurrently obtain both a video recording of on-screen activity as well as an audio recording of the experiment. The experimenters verbally obtained consent prior to recording video and audio content of participants' discussion and task completion. We also used Descript (2020), an automated video transcription service, to generate transcripts of the interviews. We then reviewed the original recordings and manually corrected the generated transcript to eliminate software-related errors.

Results

Overall, our participants completed the study within 25 to 50 minutes, with two of our participants needing approximately 30 minutes and one participant needing 40 minutes. Potential reasons for the variance in the duration of the procedures in this study are discussed in the proceeding section. Our hypotheses broadly propose that technological tools within Facebook and Twitter interfaces provide unique degrees of access to photo and text-based content, as well as unique degrees of access to self- and other-generated content. The variance in these technological tools, and corresponding perceptions across platforms are explored below with limited statistical analyses due to our small sample size. First, we explore perceived affordances through the corresponding self-report scale provided by Fox and McEwan, 2017. We then compare these patterns of data to observed use of technological tools, such as accessing friends and followers lists, and tagged content posted by others. Findings relevant to the preceding literature are discussed, as well as limitations to our study design and procedures.

Perceived Affordances

In the context of this study, we were primarily interested in exploring how perceived affordances of the Facebook and Twitter interfaces affect perceptions of profile owners. Therefore, we measured perceived affordances as outlined by Fox and McEwan (2017). Descriptive statistics of the perceived affordances of Facebook reveal that our participants feel this platform provides more network association tools ($M = 4.53$) than social presence ($M = 3.33$), or anonymity tools ($M = 2.45$). Descriptive statistics of the perceived affordances of Twitter are listed below.

Our participants unanimously judged Twitter as holding few social presence tools, with the lowest scale mean ($M = 1.67$) of any perceived affordances of either platform under

investigation. Our participants reported more network association tools within Twitter ($M = 4.67$) than Facebook, as well as more tools for anonymity ($M = 3.70$). In sum, our participants reported unique perceptions of social affordances between Facebook and Twitter, such that Facebook. However, our small sample size limits the extent to which we can explain these differences using relevant statistical analyses (e.g., correlation, regression tests).

Additionally, each of our participants provided verbal statements relevant to our hypotheses, which are further assessed in the context of perceived affordances. Initially, we reviewed the transcripts for statements addressing our first hypothesis, and the anticipated preference for photo-based, over text-based content to facilitate impression information. We then reviewed the transcripts for statements addressing our second hypothesis, and the anticipated preference for other-generated, over self-generated content to facilitate impression information.

Photo- vs. Text-based content

In the context of impression formation, profile photos were particularly important in signaling profile owners' identity and disposition. One participant commented on the normalcy of a profile picture as a positive influencing factor: "*Let's look at her [profile] picture. Ah, she looks... not doing, like, any weird poses, just a nice normal profile picture.*"

Text-based content, on the other hand, was useful in identifying geographic locations, when specified: "*He lives in Raleigh, North Carolina*", "*She lives in Oklahoma*." Contrarily, photo-based content on SNS profiles facilitated implicit learning about the user, requiring the participants to make inferences about the connections between different content items: "*I'm guessing that this is his family picture. So I assume he's married and has a child. And then I do see that, other photos... and he has a dog, I think?... And let me see... I... see another posting of food, which I guess he cooked.*"

In some cases the distinction between these two content modalities was more blurred than expected. For example, the friends list on Facebook provides information in the form of text- (i.e. names) and photo-based (i.e. profile pictures) content. These data in tandem contributed to participants' perception of profile owners: "*She has a lot of Facebook friends, which also... seems to have a very... wide representation of different kinds of... people in different types of professions and different age groups.*"

Self- vs. Other-generated content

Notably, participants actively and consistently sought out self-generated content: "*So I feel like, just like the other person, this person... Oh, actually she does post... some stuff about herself.*" But volume of self-generated content alone did not lend itself to making a positive impression. One participant became disengaged with a Twitter profile after observing a lack of cohesiveness across self-generated content: "*Doesn't seem like this person has a theme here. She just posts kind of random stuff*"

Interestingly, photos posted on the profile itself were not the only photo-based content of significance in the context of this task. One participant looked at the profile pictures of the profile owner's friends to inform their impression: "*He's friends with a guy who wears some type of cringy hat... so that's a bad sign.*" This supports the utility of other-generated content in the context of SNS-driven evaluations and provides a practical example of its relevance on Facebook.

One of the most commonly mentioned other-generated forms of content on Twitter was the Retweet tool, which allows users to share other users' posted content through their own profile. Therefore, the frequency of retweets was discussed by our participants as another source of information about the target users: "*And then he, I guess feels passionate enough that he will*

retweet like, related tweets on, into his Twitter to support like, to support, I guess, who, whoever he's retweeting. So, yeah. I'm reading his other retweet."

One participant reflected on the target profile, and content shared by the profile owner's spouse. Consistent with claims from DeVito et al. (2017), the spouse's shared content was used to confirm personal details about the target user: "*So it looks like [he] is married to this other person, [who] also [has] a profile. Looks like she's running a fundraising event for this.... wellness center ... birth and wellness center...He's also raising funds for...men's health, for November. So it looks like they're both doing fundraising activities.*"

Other-generated content was also mentioned when there were noticeable contradictions between self-generated content, and information posted by others. For example, one participant noticed that a mock profile owner was wearing a protective facemask in a portrait-style selfie: "*Okay, so he was wearing a mask.*" However, a photo shared by their network member(s) showed that the same individual was not concerned about having a mask on around friends: "*But in August, he, like, went to the beach with a bunch of his friends. So like, okay... Yeah, it seems like the mask thing was kind of like virtue signaling.*" In sum, these quotes provide unique insights into why SNS users vary their use of technological tools, and access to others' content\, when forming impressions.

Observable Affordances

In the context of this study, we measured observable affordances of Facebook and Twitter via RUI logs (see Appendix C), as well as video and audio recordings, collected during the experiment. To assess engagement with the profiles, we measured the number of data points generated in each RUI recording file with the length of the recording as measured in seconds. Since these measures are linearly correlated, we produced a normalized ratio of the number of data points generated per second as a proxy for profile engagement. While this is an imperfect metric, it at the very least gives us a rough idea of how important the role of keyboard and mouse interaction is in impression formation on SNSs.

Facebook (Profile 1, Profile 2)	Twitter (Profile 1, Profile 2)
Intro 3, 3	Profile Photo -, 4
Profile Picture 5, 3	Tweets -, 5
Cover Photo 4, 2	Retweets -, 3
Friends List 4, 3	Replies -, 1
Tagged Photos 3, 1	Media -, 2
Feature Photos 3, 4	
Status Updates 5, 5	
Life Events 3, 3	

Table 1. Observable affordances that participants' self-reported noticing while viewing profiles

Additionally, we asked participants to self-report the cues they perceived to be useful in forming impressions of the owners of the social media profiles they viewed. We provided a predefined list of items but also gave participants the option to specify additional cues they found useful in this context. **Table 1** (above) and **Table 2** (below) list how often participants self-reported noticing and finding cues useful respectively.

Facebook (Profile 1, Profile 2)	Twitter (Profile 1, Profile 2)
Intro 1, 2	Profile Photo 2, 2
Profile Picture 3, 1	Tweets 4, 3
Cover Photo 1, 2	Retweets 4, 3
Friends List 2, 1	Replies 3, 1
Tagged Photos 2, 1	Media 3, 1
Feature Photos 3, 2	
Status Updates 3, 2	
Life Events 3, 2	

Table 2. Observable affordances that participants found to be useful when learning about profile owners

Photo- vs. Text-based content

For the purposes of this experiment, we considered the following modalities for sharing photo-based content on Facebook: *Profile Picture, Cover Photo, Friends List, Tagged Photos, Featured Photos, Status Updates, Life Events*. For Twitter, we considered the *Profile Photo* and *Media* sections of the page to be the primary modalities for sharing photo-based content. Participants also highlighted the utility of embedded links to external photo-based SNSs (e.g. Instagram) in the optional text-entry field provided in the Qualtrics survey.

Profile pictures and status updates were the most predominantly noticed cues on the page, with every participant indicating they noticed them across 3 of the 4 conditions. But the utility of these cues seems variable since participants less frequently cited them as useful sources of information about the profile owner. This may also suggest that, although these cues are highlighted front and center on Facebook profiles, they are relatively unimportant in the context of impression formation. Interestingly, in the second Facebook profile condition, profile pictures

were listed as noticeable cues less frequently than in the first condition. This may be a result of the subsequent nature of the conditions and a product of learning the utility of cues on the platform in this first task (Ritter, Baxter, Churchill, 2014). In contrast, while featured photos were noticed by the majority of participants in each condition, almost all participants who self-reported noticing this cue cited it as informative in the impression formation task.

With respect to text-based content, we identified the following modalities for sharing this information on Facebook: *Intro, Friends List, Tagged Posts, Status Updates*. Participants also listed “*Shared Posts*” as a useful source of text-based content on this platform. We similarly identified modalities for sharing text-based content on Twitter: *Tweets, Retweets, Replies*. Overall, we observed clear differences in the importance of text-based vs. photo-based content across platforms.

Photo-based content was more important when viewing profiles on Facebook given the wider array of relevant cues and their prominence on the web interface. Contrarily, text-based content was more important on Twitter. Tagged posts on Facebook were not included in any of the participants’ evaluation process, suggesting that they are relatively unimportant to this population or potentially obscured on the platform.

We further noticed that participants spent more time looking at text-based content on Twitter than on Facebook, as evidenced by the relative lack in keystroke data generated by RUI across conditions ($M_{Facebook} = 6,266$, $M_{Twitter} = 4,331$). The data recorded by RUI also suggests that participants were more actively engaged with Facebook ($M = 20.564$ data points per second) profiles as opposed to Twitter ($M = 13.815$ data points per second) profiles. This could potentially point to a difference in active vs. passive viewing given the availability and informativeness of photo- and text-based content on both platforms.

Self- vs. Other-generated content

In this analysis, we focused on the following modalities for viewing self-generated content on Facebook: *Profile Picture, Cover Photo, Friends List, Featured Photos, Status Updates, Life Events*. We only considered the following modalities for viewing self-generated content on Twitter: *Profile Photo, Tweets, Retweets, Media*. One participant noted the utility of embedded links to external photo-based SNSs (e.g., Instagram) in forming impressions from Twitter profiles. As discussed in the context of photo- vs. text-based content, profile pictures and status updates on Facebook were the most commonly noticed self-generated cues on the profiles. However, this may be a result of their prominence on the web interface itself. Interesting, life events and featured photos emerged as particularly useful cues in the context of impression formation, with the majority of participants who noticed these sections of the page citing them as useful in completing the task.

With respect to other-generated content, we identified the following modalities for finding this information on Facebook: *Tagged Photos, Tagged Posts*. As in the case of text-based content, participants listed “*Shared Posts*” as a useful source of other-generated content on this platform. We similarly identified modalities for sharing text-based content on Twitter: *Retweets, Replies*. Notably, tweets (self-generated) and retweets (other-generated) were equivalently cited as useful cues for forming impressions of profile owners on Twitter.

As discussed in the results for text-based vs. photo-based content, tagged posts on Facebook were not reported as a noticed or important cue across all participants and conditions rendering them irrelevant to the current analysis. However, there was a notable lack of drop-off between noticeable and useful cues. That is, wherever participants were able to find other-

generated content on both Twitter and Facebook, they cited this information as useful in forming impressions of profile owners almost every time.

Overall, the structure of this experiment and the listed cues that can be characterized as self-generated content point to the primary objective of social media profiles being designed more for self-expression than a group forum for discussion. While this may seem intuitive in retrospect, the depth of discussion of self- vs. other-generated content in other SNS-enabled interactions has thus far overlooked the unique qualities of profiles specifically. Our results support the value of self-generated content in impression formation on both Facebook and Twitter, and clearly illustrate the dearth of other-generated content in the context of this task.

Discussion

Our first hypothesis proposed that participants would favor photos over text-based content to build impressions of other users. Various quotes from our VPA procedures indicate that while photos provided our participants with some social information (e.g., cooking hobby), information from text-based content (e.g., geographic location) was mentioned with consistent frequency. Overall, our participants targeted both text and photo-based content on both Facebook and Twitter to learn more about the respective profile owners. In the context of previous research addressing the influences of photo and text-based content on impressions of other SNS users (Van Der Heide et al., 2012), we did not expect our participants to balance their observations of photos and text-based content.

DeVito et al. (2017) provide numerous suggested directions for future research addressing affordances, self-presentation, and impressions. In particular, our study design most directly addresses their proposal that system-generated cues such as those relevant to visibility

(e.g., social presence cues, network cues) affect social outcomes and perceptions of others (Fox & McEwan, 2017). However, there were no patterns in our data suggesting that self and other-generated content are consistent factors. Specifically, there was no evidence of other-generated social cues holding a stronger influence on perceptions than self-generated cues in the VPA, or survey data. Future research should continue to use direct observations of users' behavior on SNS platforms to assess impression formation actions via corresponding platform affordances.

Limitations

The first limitation of our study design is that Facebook requires that profile viewers are logged in to the platform. Though each of our participants were able to log into Facebook, future research that repeats these procedures should note that this may limit access for some participants to the mock profiles. However, this limitation can be overcome if experimenters create their own mock profile to be "borrowed" by participants who do not have their own profile.

Additionally, time constraints of our study limited our sample to five participants. Future research can use the same procedures outlined above with a larger sample size, and test that sample with more advanced statistical analyses. These analyses will provide more comprehensive explanations of the relationships between technological affordances of SNSs, perceived affordances, and social outcomes (DeVito et al., 2017; Van Der Heide et al., 2012). Our study design also permits additional analyses of factors known to moderate the effects of technological affordances on impressions of others, such as personality characteristics of the profile reviewers (DeVito et al., 2017).

Conclusion

The previously described study design addresses methodological limitations of previous research into impression formation processes by directly observing how SNS assess social attraction of profile owners based on available technological tools for social actions (e.g., network, social presence). Additionally, our preliminary data reviews indicate that a larger sample would provide sufficient grounds for statistical analyses addressing social attraction and perceived technological tools of SNSs.

References

Card, S. K. (Ed.). (2018). The psychology of human-computer interaction. Crc Press.

Descript [Computer software]. (2020). Retrieved from <https://www.descript.com>

DeVito, M. A., Birnholtz, J., & Hancock, J. T. (2017, February). Platforms, people, and perception: Using affordances to understand self-presentation on social media. In *Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing* (pp. 740-754).

Fox, J., & McEwan, B. (2017). Distinguishing technologies for social interaction: The perceived social affordances of communication channels scale. *Communication Monographs*, 84(3), 298-318.

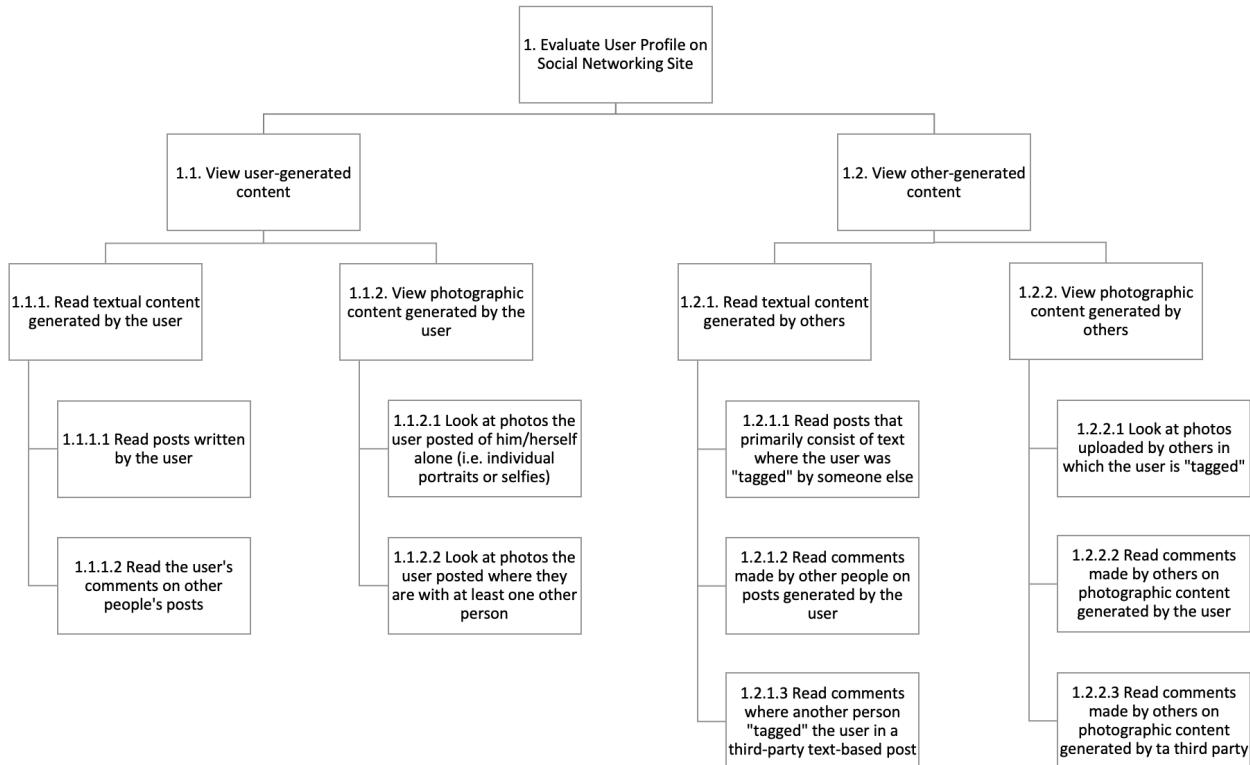
Gillan, D. J. (2012). Five questions concerning task analysis. In *The Handbook of Work Analysis: Methods, Systems, Applications and Science of Work Measurement in Organizations*, 201-214.

Hall, J. A., Pennington, N., & Lueders, A. (2014). Impression management and formation on Facebook: A lens model approach. *New Media & Society*, 16(6), 958-982.

Kukreja, U., Stevenson, W. E., & Ritter, F. E. (2006). RUI -- Recording User Input from interfaces under Windows and Mac OS X. *Behavior Research Methods*, 38(4), 656–659.

Marwick, A. E., & boyd, d. (2011). I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience. *New Media & Society*, 13(1), 114-133.

McCroskey, J. C., & McCain, T. A. (1974). The measurement of interpersonal attraction. *Speech Monographs*, 41, 261-266.


Ritter, F. E., Baxter, G. D., & Churchill, E. F. (2014). *Foundations for Designing User-Centered Systems*; Chapter 5. Springer-Verlag London, DOI, 10, 978-1.

Social Security. (2020). *Top Names Over the Last 100 Years*. The United States Social Security Administration. <https://www.ssa.gov/oact/babynames/decades/century.html>

Walther, J. B. (1996). Computer-mediated communication: Impersonal, interpersonal, and hyperpersonal interaction. *Communication Research*, 23(1), 3-43.

Walther, J. B., & Parks, M. R. (2002). Cues filtered out, cues filtered in. *Handbook of Interpersonal Communication*, 3, 529-563.

Appendix A: Task Analysis Example of Online Impression Formation

Appendix B: Qualtrics Survey

Demographics

How old are you?

Which ethnicity do you identify with? [Check all that apply]

- White
- Black or African American
- American Indian or Alaska Native
- Asian
- Native Hawaiian or Pacific Islander
- Hispanic/Latinx
- Other

What is your gender?

- Male
- Female

Beginning of Experiment

Beginning of Experiment

You will now be asked to view **4 social media profiles** in succession.

You will have **5 minutes** total to view each profile before returning to the survey.

After viewing each profile, you will be asked to answer a series of questions related to your experience.

Before viewing each profile, please start recording with the RUI keystroke logging software and share your screen in the Zoom session.

After the 5 minutes are up, please stop recording with RUI, keep track of where the data is stored, and stop sharing your screen to protect the confidentiality of our answers.

Perceived Affordances of Facebook

Perceived Affordances of Facebook

Thinking about **all** of the ways that you use Facebook, please indicate how much you agree with the following statements:

Perceived Affordances of Twitter

Perceived Affordances of Twitter

Thinking about all of the ways that you use Twitter, please indicate how much you agree with the following statements:

Profile Link

Facebook Profile #1

Please open the following link in a new tab to view the profile
 [\\${q://QID28/ChoiceGroup/DisplayedChoices}](http://QID28/ChoiceGroup/DisplayedChoices)

REMINDER:

Before viewing each profile, please start recording with the RUI keystroke logging software and share your screen in the Zoom session.

After the 5 minutes are up, please stop recording with RUI, keep track of where the data is stored, and stop sharing your screen to protect the confidentiality of your responses to the following questions.

Post-Condition for Facebook

Facebook Profile Evaluation

Which of the following did you notice when viewing this person's profile? [Check all that apply]

- Friends List
- Cover Photo
- Intro
- Profile Picture
- Tagged Posts
- Tagged Photos
- Life Events
- Featured Photos
- Status Updates
- Other

Which of the following information was useful to you when answering the questions above? [Check all that apply]

- Friends List
- Cover Photo
- Profile Picture
- Life Events
- Tagged Photos
- Featured Photos
- Intro
- Tagged Posts
- Status Updates
- Other

*Post-Condition for Twitter***Twitter Profile Evaluation**

Which of the following did you notice when viewing this person's profile? [Check all that apply]

- Replies
- Retweets
- Profile Photo
- Tweets
- Media
- Other

Which of the following information was useful to you when answering the questions above? [Check all that apply]

- Replies
- Tweets
- Media
- Profile Photo
- Retweets
- Other

Appendix C: RUI Summary Statistics

ID	Profile	Number of Clicks	Length of Recording (in seconds)	Length of Recording (in rows)	Rows to Seconds Ratio
P1	FB_1	33	344.438	7,071	20.529
P2	FB_1	28	321.727	4,834	15.025
P3	FB_1	33	349.938	7,879	22.515
P4	FB_1	-	-	-	-
P5	FB_1	3	322.565	4,820	14.943
P1	FB_2	39	390.203	9,028	23.137
P2	FB_2	38	209.137	5,696	27.236
P3	FB_2	-	-	-	-
P4	FB_2	-	-	-	-
P5	FB_2	4	326.856	4,533	13.868
P1	TW_1	12	316.657	3,895	12.300
P2	TW_1	10	247.514	1,997	8.068
P3	TW_1	24	347.115	8,333	24.006
P4	TW_1	-	-	-	-
P5	TW_1	5	310.584	3,414	10.992
P1	TW_2	19	271.511	4,877	17.962
P2	TW_2	36	302.336	3,705	12.255
P3	TW_2	5	340.858	6,268	18.389
P4	TW_2	-	-	-	-
P5	TW_2	8	329.679	2,159	6.549