A Risk Driven Approach to Experimental Design and Practice

Frank E. Ritter and Jonathan H. Morgan (slides)
The College of IST
Penn State
and
Jong W. Kim and Richard Carlson (book)
Psychology, U. of Central Florida, and Psychology, Penn State

Supported by ONR, Contracts N00014-11-1-0275, N00014-10-1-0401, & W911QY-07-01-0004
Overview (TB, p. 3)

acs.ist.psu.edu/papers

1400-1415 (0) Orientation
1415-1445 (1) An overview of risk-driven experimental design
1445-1515 (2) Preparation for running an experiment
1515-1540 break
1540-1615 (3) Ethical challenges in the experimental process
1615-1645 (4) Risks to validity, with class participation
1645-1700 Slack
1700-1715 (5) Conducting an experiment
1715-1730 (6) Concluding a study and reporting results
What to get out of this Tutorial

1) Some feeling for how to run a study
 ➤ Cognitive science may be modeling + data
 So, to use data you have to know how it was gathered
 ➤ Modeling is slow, so data publication helps modelers
 ➤ If you are a computer scientist, you won’t have taste in this area
 => Help you develop a green thumb
 ➤ Not how to *design* a study, but related

2) Some tools to help you set up a study

3) Materials
 Draft book on this topic (please let me know if you use it for a class)
 Handout
 Example problems

4) A break at ~1515 pm (local)

5) A greater appreciation for mistakes to avoid and a theory of how to avoid them
Who are you?

1) Name, organization, background, number of studies, what you want to get from this
2) Please form into pairs for later exercise
A study, varying an Independent variable (IV, e.g., amount of practice), to see the effect on a dependent variable (DV)

Worth reading a methods book(s)

Subjects (Ss) or Participants (Ps), Users, learners, students, Experimenters (Es)

See APA manual and also Roediger (2006) for arguments for S and P and U/L/S

Example studies

- Multi-lingual fonts
- Partially sighted and blind users
- HRI
Experimental Process Overview, linear (TB, p. 11)

An iterative, and often overlapping process.
Experimental Process Overview
Risk Driven, more spiral (TB, p. 4)

- Are revisions to the method necessary?
 - Preparing IRB application/ Finalizing Initial Risk Assessment
 - What do I need for my pilot?
 - Capabilities and Resource Review
 - How are these measures vulnerable?
 - Feasibility Analysis
 - What have learned?
 - Determining Your Methods & Measures
 - Are there transfer effects?
 - Question Formulation
 - What are my major risks?
 - Refining Procedures and Scripts
 - Go forward, revise, or quit?
 - Recruiting Participants
 - Determining your research goals
 - Is our sample large enough.
 - Is it representative? Is it safe for everyone to participate?
 - Data Collection
 - Is everyone safe? Asked during each session.
 - Anonymizing and Storing Data
 - Do we have positive control of our data? Asked after each session.
 - Data Analysis and Presentation
 - Do my results risk hurting anyone?
 - Venue Selection/ Future Work
Summary: Lessons so Far

- More steps than I thought
- Iterative and risk-driven (if you pay attention)
- A process but not a set process
- Studies will overlap each other and inspire each other
- It is useful to have the RAs/Es pay attention
 - Ss suddenly ‘get it’
 - Ss don’t get some aspect
 - Ss comments
 - Ss ‘cheat’ somehow
Preparation for an experiment (TB, p. 14)

Experiments are driven by their questions and shaped by the methods available to explore those questions and existing results/lessons in that area.
What studies need IRB?

- In the US
 - if not publishing no IRB (but, be careful), includes class projects
 - If only authors are Ss, no IRB
 - If only published / publicly available data, no IRB but IRB has to ok this (!)
 - Else, IRB
 - Blood, sexual history, etc. are high-risk, => full IRB

- Outside US
 - Depends, UK used to do IRB only on high-risk studies
 - Can you tell me?

- In all cases, worth having someone check your work
IRB Forms

- Used to check your work
- May be worth being clear and concise
- Also check with example forms for language
- Draft for the PI
Summary: Piloting

- Write out method
- Used to check your work
- Use a script,
 Step 1, start program, Step 2 “Welcome to…”
- Start local, e.g., YOU, and then officemate, and then move further and further away
- Mount a scratch monkey
- Check your apparatus and data gathering and use of data
- Consider/reconsider, number of Ss to run
 - Previous studies
 - Power analyses (Cohen for Ss; Ritter et al. for models)
 - Why not prefer large effects?
Ethical Challenges Associated with the Experimental Process

Ethical problems can be decreased by deliberate proactive action.

A couple of bad examples and then a general view
The Monster Study: Wendell Johnson’s Stuttering Study (1939)

- Evaluated the effect of external valuations on stuttering
 - interrupting vs. non-interrupting conditions
- Studied 22 orphans ranging in age from 5-15 years old, grouping them into 5 fluency categories
- Resulted in long-term developmental and psychological harm, with $925,000 awarded to six of the participants in 2007
- Avoid manipulations that can harm people
Jesse Gelsinger (1981-1999)

- Included in a bio-medical intervention study to replace a missing participant despite testing positive for high ammonia levels.
- The informed consent agreement failed to disclose either known adverse drug effects or the death of two monkeys in animal trials.
- A profound conflict-of-interest existed.
- Avoid conflict of interests.
- Cases like this give rise to the need for IRBs.
A HCI Study Gone Wrong (circa 2008)

- No informed consent
- No privacy grantees or data management plan
- “You have no friends.” Yes, a student researcher felt compelled to inform a participant and the S’s teachers and Dean of this fact.
Ethical Challenges Associated with the Experimental Process

Ethical problems can be decreased by deliberate proactive action.
Summary: How to avoid ethical problems

- Recruit fairly
- Look out for your Ss
- Anonymise data at the beginning of each session by using subject IDs, not names
- Have a plan for surprising data (e.g., high BP)
- Communicate early and relatively often about publication plans and data ownership
- Some argue that you have an obligation to use the data you gather
Challenges to Validity: Constraints on your study

Or: alternative hypothesis for results (TB, p. 21)

Challenges to validity can be anticipated and mitigated.

Risks to Internal Validity

- **Insufficient Sample/Effect Size**
 - §§ 4.2.1 & 2.7
- **Experimenter & Participant Effects**
 - §§ 4.2.2-4.2.3
- **Demand Characteristics**
 - § 4.2.4
- **Equipment and Setup Effects**
 - § 4.2.5
- **Failures to Perform the Task**
 - § 4.2.6

Risks to External Validity

- **Poor Task Fidelity**
 - § 4.3.1
- **Poor Sample Representativeness**
 - § 4.3.2

- Use rules-of-thumb
- Perform power analysis
- Make & observe protocols
- Use a double-blind design if applicable
- Randomize when possible
- Keep the setup the same
- Practice directing participants
- Ensure psychological fidelity
- Establish what is relevant to the study population
- Avoid inadvertent selection bias
Conducting an Experiment (TB, p. 24-25)

Success in execution is directly correlated to careful preparation.
Summary: Running a session

- Use of piloting means no surprises (except for the data!)
- Script keeps treatment the same, it includes session set up
- Keep eyes open while running for further insights
- Anonymise data as soon as possible
Concluding an Experiment and Reporting Your Results (TB, p.27)

Debrief, debrief, debrief!
Summary: Concluding an Experiment and Reporting Your Results

- Concluding a session
 - Finish with the subject (thank, debrief, check paperwork)
 - Check the data was collected and saved
 - Comment on the data if anomalies

- Data care, security and privacy
 - Anonymizing removes nearly all ills

- Back up data (daily, weekly)

- Data analysis
 - Not how, but note how (document and keep track of)
 - Know your data if you are the RA that analyses
 - Save the analyses, time is not important, space is not important, the insights and results are important
 - Aside: we prefer regression
 - Aside: we prefer individual analyse
Ch 6.5 Communicating your results

- Start with a target in mind (if you can)
- Work to larger publications (workshop, conf, journal, book)
- Rewrite, rewrite, rewrite (the book is draft 49 [mar12], now 53)
Exercise: setting up space [iff time]

- (a) Describe your space with your partner for your next study
- (b) Does it match the description pp. 32-33?
- (c) How could you improve it?
- (d) Should you improve it?
Ch. 7 Afterward

- Appropriate behavior with subjects
- Insights
- Repeatability
- Reportability
Summary 1 of tutorial:
Relooking at failure: What constitutes a failure?

- Someone got hurt.

- After committing significant resources, the study was never completed.

- We have learned nothing new because our data is not repeatable or generalizable.

- We have failed to communicate our results or their significance to anyone else.
Sources of Failure?

Why did someone get hurt?

➢ We failed to do a risk assessment.
➢ Being prepared for unanticipated problems.
➢ We failed to screen participants properly.
➢ We failed to either develop or follow procedures, either experimental procedures or data management procedures.
➢ We did not anticipate or mitigate situational risks either in our experimental setting or outside of it that hurt our participants.
➢ We ignored additional insights we could have learned from the participants through observation or debriefing.
➢ Others?
Sources of Failure?

Why we were unable to complete the study?

- We were overly ambitious, perhaps because we failed to fit the research question or methods to the problem at hand.
- We ran out of time.
- We ran out of resources or lacked them in the first place.
- We lacked the people, either participants or staff, or trained staff.

(experiments appear to have less risk than modeling)
Sources of Failure?

Why we were unable to reproduce our results or generalize them?

- We failed to use the same experimental procedures or test under the same conditions for each S.

- We failed to achieve an adequate sample size or sufficient degree of representativeness in our sample.

- Our task fidelity was poor. We failed to construct an experimental task that was analogous with respect to its key points.
Sources of Failure?

Why have we been unable to report our results or communicate their significance?

- We failed to properly catalog or backup our data.
- We failed to write as we went. We no longer remember some of the critical early details.
- We made poor data analysis or display choices.
- We failed to identify a venue early, or understand who we should consider our audience.
How do we avoid failure?

We recognize that running a study is an incremental risk-driven process, similar in some respects to spiral development (Boehm & Hansen, 2001; Pew & Mavor, 2007).

To be successful, we need to:

- Formulate a research question that meets our research goals
- Have a theory of transfer effects that minimizes risks associated with confounding variables, and enables us to conserve time and resources.
- Pilot studies and study components
- Be candid in our risk assessments and be willing to adapt and refine.
Summary 2 of Tutorial

- There are steps to running a study separate from design and analysis
- These are practical, hands-on, implicit knowledge
- They are informed by previous studies
- To be successful, we need to:
 - Formulate a research question that meets our research goals
 - Pilot studies and study components
 - Be candid in our risk assessments and be willing to adapt and refine
 - Be aware of alternative hypotheses, and avoid what we can and control what we cannot avoid
 - Plan for reporting results early
If you will teach this....

- Full book available shortly from Sage
- Slides available as ppt or pdf
- Workbook available as pdf
References

